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We consider the Bayesian analysis of outlier models. We show that the Gibbs sampler brings 
considerable conceptual and computational simplicity to the problem of calculating posterior 
marginals. Although other techniques for finding posterior marginals are available, the Gibbs 
sampling approach is notable for its ease of implementation. Allowing the probability of an 
outlier to he unknown introduces an extra parameter into the model but this turns out to 
involve only minor modification to the algorithm. We illustrate these ideas using a contam- 
inated Gaussian distribution, a t-distribution, a contaminated binomial model and logistic 
regression. 
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1. Introduction 

Calculating posterior marginals for an outlier model typi- 
cally involves difficult computations. The simplest example 
of this type of model is a finite mixture of  normal distribu- 
tions. Box and Tiao (1968), Guttman et al (1978), Abra- 
ham and Box (1978), Freeman (1980), Pettit and Smith 
(1984; 1985) and Titterington et al (1985) consider such 
models. All these authors comment on the computational 
problems in dealing with these models. For  example, 
Freeman (1980), commenting on the work of  Box and 
Tiao, Abraham and Box, Guttman et al, says that 'all 
three models can only be used with small sample sizes 
unless a maximum of  two outliers is contemplated'. 

We will show how for such models, Bayesian statistical 
analysis is simple using a Monte Carlo technique known 
as the Gibbs sampler (Geman and Geman, 1984; Tanner 
and Wong, 1987; Gelfand and Smith, 1990). Furthermore, 
we shall be able to carry out a fully Bayesian analysis. 
That  is, we shall not assume that the number of outliers, 
or the probability that an observation is an outlier, is 
known. These simplifications are not needed when using 
the Gibbs algorithm. 

An outlier is usually defined to be an observation that 
does not come from the assumed model or an extreme 
observation that is far away from the rest of  the observa- 
tions. Giving a precise definition to the concept of  an 
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outlier is difficult since the notion of  an 'extreme observa- 
tion' is subtle. We shall not attempt a rigorous definition 
here. We refer the reader to Pettit and Smith (1985) for a 
discussion. An alternative view is presented in Chaloner 
and Brant (1988). 

The simplest, and perhaps most studied, case is the 
normal model with mean # and variance o-:. To allow for 
the possibility of  outliers, the model is enhanced so that 
the density for the observation Yi is of  the form 

f (Y i  ]Iz, o-2, (., Ai ) =(1 - c)q~(y i I k t, 0 "2) +edp(y i ]# -}-Ai, 0 "2) 

Here, ~b(y I/z, o-z) is the normal density with mean/z  and 
variance a 2, and E ~ [0, 1] is the probability that the ith 
observation is from a normal model whose location is 
shifted by a factor Ai. This is known as the contaminated 
(location-shift) normal. Even if e is assumed known, this 
model is cumbersome since the analysis depends on the 
number of  outliers in the model. Guttman et al (1978) 
assume that the number of  outliers k is known and, 
further, that each subset of  k observations is equally likely 
to be a set of  outliers. Even so, the computations are still 
difficult. 

Usually, the posterior marginal for # is the main con~ 
cern. Typically, we would also like to compute, for each 
observation, the posterior probability of  that observation 
being an outlier. To be realistic, we should treat e as 
unknown as well. Doing so increases the dimension of  the 
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problem. Furthermore, the likelihood is difficult to work 
with since it is the product of mixtures. This makes finding 
posterior probabilities considerably more difficult. We 
shall see that the problem is well suited to the Gibbs 
sampler. Our main point is not that other techniques will 
not work, but that the Gibbs sampler brings striking 
conceptual simplicity to the computations. It is simplicity, 
not efficiency, that is the biggest obstacle to the implemen- 
tation of Bayesian methods and this paper attempts to 
show how successful the Gibbs sampler is for obtaining 
such simplicity. 

The reason why the Gibbs sampler brings such simplic- 
ity to outlier problems is that the Gibbs sampler operates 
by iterating two different stages of calculations. In the first 
stage, we assume we know which observations are outliers. 
This allows us to correct the outliers, and then we sample 
from the posterior using the corrected data. In the second 
stage, we assume that we know the true parameter values 
and, for each observation, we compute the posterior prob- 
ability that the observation is an outlier. This is simple 
since the parameters are assumed to be known. Alternat- 
ing the two stages will eventually allow us to draw a 
sample from the posterior distribution. The details will be 
made clear in what follows. The important point is that 
the Gibbs sampler divides a difficult problem into a set of 
simpler problems. 

The outline of this paper is as follows. Section 2 gives a 
brief description of the Gibbs sampler. In Section 3 we 
treat the contaminated normal location-scale problem. In 
Section 4, we consider using the student t-distribution as a 
model for the sampling distribution. This distribution has 
been suggested as an alternative to the contaminated 
normal as a way of modeling the fact that extreme obser- 
vations are possible (Fraser, 1979; West, 1987; Lange et al, 
1989). 

Dealing with outliers in binomial problems (Winkler 
and Gaba, 1990) is also manageable, as we show 
in Section 5. We extend this to binomial regression 
(Pregibon, 1981; 1982; Copas, 1988) as well. Copas notes 
that, at most, a profile likelihood for each observation 
being an outlier is the best that can be obtained from the 
likelihood analysis. Here, we obtain the posterior proba- 
bility that each observation is an outlier. 

Section 6 contains a discussion of the results and indi- 
cates how the methods described in this paper can easily 
be generalized to handle regression problems and to han- 
dle outliers in other models such as exponential distribu- 
tions (Pettit, 1988). 

2. Gibbs sampling 

In this section we give a short description of the Gibbs 
sampling algorithm, as considered in Gelfand and Smith 
(1990). What follows is the most basic form of the al- 

gorithm, and we do not examine all possible variations. 
More details can be found in Gelfand and Smith (1990). 
The algorithm is intimately related to the notion of data 
augmentation and substitution sampling (Tanner and 
Wong, 1987). 

We consider, for illustration, the case of three parame- 
ters only (01, 02, 03), and we assume that the three full 
conditional posterior distributions f l  (011 02, 03, y), 
f2(02101,03, y) and f3(03101, 02, y) are available, meaning 
only that random samples can be drawn from them. Here, 
y denotes a vector (y~, Y2 . . . . .  Yn) of n observations. I f f .  
is known in closed form and is a familiar distribution, then 
standard routines are available for drawing random num- 
bers f r o m f .  If  fl ,  say, is not available in closed form, then 
one can obtain f l  up to a proportionality constant by 
evaluating the product of the likelihood and the prior over 
a grid of values for 01, with 02, 03 and y fixed. Then, 
standard numerical techniques can be used to generate an 
observation from fl  without renormalizing the product of 
the likelihood and prior. This is straightforward since 01 is 
one-dimensional. The simplest technique is probably the 
rejection sampling method (DeVroye, 1986). In its crudest 
form, one samples x uniformly on the support of f l  
(assuming the support is compact) and then samples w 
uniformly from 0 to m, where m is the maximum of k(O0. 
Here, k(O~) is the un-normalized product of the likelihood 
and prior (with 02, 03 and y fixed) so that f l  = k/~ k. If 
w <- k(x) we keep x, otherwise we throw away x and draw 
a new x and a new w. We continue until we keep an x. The 
value that results is a random draw from f l .  This can be a 
very inefficient way to generate random draws from f~ and 
many refinements are possible to make the process more 
efficient. 

The Gibbs sampler is a simple way to generate observa- 
tions from the joint posterior distribution so that the 
posterior marginal densities f(O~ l Y), f(o2 l Y) and f(03 l Y) 
can be estimated. To describe the algorithm, we begin by 
considering R groups of arbitrary starting values for the 
three parameters 0;, i = 1, 2, 3: 

{(01) 1 (02)01 (03)1}, {(01) 2 (02) 2(03) 2} . . . . .  

r . . . ,  {(01)0 (02)~) ( 3)0}, {(0l)g (02)g (03)0 R} 

From each of these R groups of starting values we gener- 
ate S sets of random numbers drawn from the conditional 
posterior distributions above. More specifically, consider 
the rth group-- the  first set of random numbers, 
{(01)~, (02)~, (03) ] }, is obtained as follows: 

(0~)~ is drawn from fl(O~](02)~, (03)~,y) 

(02)] is drawn from f2(02[(0~)~1, (03)~, y) 

(03)4 is drawn from f3(031(0~)~, (02)],y) 

The second set of random numbers, {(01)~, (02)~, (03)~}, is 
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obtained as follows: 

(0,)i is drawn from f~(01 [(02)~, (03)~, y) 

(02)~ is drawn from f~(021 0 r , ( 1)2, (03)'1 Y) 
(03)~ is drawn f r o m  f3(031(01)~, (02)-~ , y) 

The procedure is repeated S times to generate the follow- 
ing collection of random numbers: 

(01)~ (02)~ (03)~ 
(01)i (0~)i (0~)i 

(01)~ (0~); (03); 

(0~)~ (0s (03)~ 
The above step is repeated for r = 1 . . . .  , R 
following R collections of S sets of random 

(0,)I (0~)~ O3)I 
(01)~ (0~)~ (03)~ 

(01) ~ (0;)~ (03)~ 
i 

(01)I (0s (0 )i 

to obtain the 
numbers: 

(01)~. (0~)~ (0!)~ r 

(01) ft. (0;)~ (03)ffl'''" 

(01)  

(01)~ (0~)~ (03)~ 
(01)I (02)i (03)I 

(01): (0;): (0;): 

(01)~ (02)~ (03)~ 

(01)f (02)f (03)f[ 
(oi)~ (o~)f (o~)# 

I 
It can be shown (Geman and Geman, 1984) that 
{ (0 , ,02 ,03)~ , . . . , (01 ,02 ,03)~ , . . . , (01 ,02 ,03)~}  is a 
sample of size R drawn from a c.d.f. Fs that converges, for 
large S, to the joint posterior distribution of (01, 02, 03) l Y" 
This sample will be used to estimate the posterior mar- 
ginals. It may not be obvious to the reader that by 
drawing iteratively from conditionals we end up with a 
sample from the joint distribution. None the less, this is 
indeed what happens (see the aforementioned references 
for details). 

The convergence of  the algorithm is discussed in 
Gelfand and Smith (1990). Various techniques have been 
developed to check the convergence to the marginal distri- 
butions (see, for example, Zeger and Karim, 1991; Carlin 
et al, 1991). This remains an area of active research. Our 
experience suggests that R should be fairly large but that 
S need not be large. All the examples in this paper were 
done with S = 15. Typically, we found setting R to 200 or 
400 to be sufficient. We judged this visually by repeating 
the entire process three times and then plotting the esti- 
mated marginals. For the last example of Section 5 we 
used R = 1000. Also, it is worth pointing out that the size 
of the resulting sample can be increased by including the 

last j values {(0i)~_j+ 1, (Oi)"s /+2 . . . .  , (0i)~}. This re- 
sults in a final sample of size jR. Although the elements of 
the sample are not independent, the ergodic convergence 
of the process guarantees that we can still use this sample 
to estimate the posterior marginals. We did not use this 
technique in this paper. 

Two methods can be used to estimate the posterior 
marginals from the samples. If  the conditional posterior 
distributions are in closed form, then we estimate the 
density f(O 1 l Y), say, by f(O, I Y) where 

1 R  0 r 0 r f(Ol ]y) --- ~r~=lfl(01 I( 2) s ,  ( 3 ) s ,  Y) 

~Eoz,%ly(fj(O, [02, 03, Y)) 

= f ffl(OllO2,03,Y)f(O2,03lY)dO2dO~=f(OllY) 
If, instead, the conditional distributions are not specified 
in a closed form, f(011Y) is estimated from the sample 

0 1 {( 1)s . . . . .  (0l)~} using a kernel estimator (Tapia and 
Thompson, 1978). An alternative to the kernel estimator is 
to use the above formula by evaluating the product of the 
likelihood and prior over a grid of values of 0 l and 
normalizing this product by way of  a one-dimensional 
integration. We are currently investigating this approach. 

It is often the case that some of the parameters are 
conditionally independent. For example, it may turn out 
that f(O 1102, 03, y) does not depend on 02, say. This 
usually simplifies the procedure. Zeger and Karim (1989) 
discuss a simple graphical method for quickly identifying 
these instances of conditional independence. 

3. The normal location-scale problem 

We begin by considering the usual Gaussian location-scale 
problem. Let y = (Yl . . . .  , y,)  be a sample with density 

f ( Yi [#, a2, E, Ai ) = (1 - E)dp( y i 112, 0"2) + (-q}( Yi It 2 + Ai, 0"2) 

It is convenient to re-express the model as follows. Let 
6 = (61 . . . .  ,6 , )  be independent Bernoulli trials with suc- 
cess probability E, and let A = ( A 1 , . . . ,  A,). Then, 

Yi l #, a2, A, 6 ,-~ N(12 + 6eA~, ~2) 

Note that each Yi is conditionally independent of e. First, 
consider the case where E is known. We use the standard 
conjugate priors for p and 0"2. That is, we assume that 
12 ~ N(O, v 2) and that 0"2 has an inverted )~2 distribution 
with parameters v and 2. We also consider the A,.s to be 
independent, each with a N(0, z z) prior distribution. 

T o  employ the Gibbs sampler we choose R arbitrary 
starting values for the 2 + 2 n  parameters 12~,a~, 
(0i)~, (A;)~, (i = 1 . . . .  , n; r = 1, . . . ,  R). To generate the 
random numbers, we need the densities f1(12 ] y , a 2, 6, A, E), 
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fz(c~2ly, g ,&A,c ) ,  f3(~ly,#,0.2, A, 0 and f 4 ( A l y , ~ , o  2, 
~, e) where it is understood that f3 is a probability mass 
function. We now derive these conditional distributions. 

First, note that conditional on the data and the other 
parameters, both # and 0.2 are independent of E. In order 
to obtain the distribution of # [0.z ~, A, y we consider 
y* = (y* . . . .  , y*) where y *  = y ~ -  fi~A~. Thus, y* is iden- 
tical to the original data except that the outliers have been 
corrected by subtracting off the location shift A~. This 
correction is possible since both A and ~ are known at this 
step. Now, the y* s are independent samples from a 
N(#, 0.2) distribution, with 0.2 known. Thus, the formula 
for updating a conjugate prior (DeGroot, 1970) can be 
used and we have that # [y, 0.z ,& A is N(a,  b) where 
a = { O / v 2 + n ~ * / 0 . 2 } { 1 / v 2 + n / 0 . z }  -~,  b - l =  1 / v 2 + n / 0 .  2, 

and )7" is the average of the y* s. Standard routines can be 
used to generate the random draw of/~. 

A similar argument is used for fz. We find y* and then 
employ the update formula for 0 .2 with # known. Thus, 
0.2]y, #, ~, A has an inverted Z 2 distribution. Specifically, 
( n s 2 +  v2)/0. 2 has a )~2 distribution with n + v degrees of 
freedom, where s 2 = E ( y *  - #)2/n. 

Now consider f3. It is easy to see that, conditional on 
the data and the other parameters, each 6i is an indepen- 
dent Bernoulli trial with success probability 

(o(( y~ - # - A~) /0.)e 

P' = (o((y~ - # - A~) /0.)E + (o((y i -- #)/0.)(1 -- E) 

where ~b(.) -= ~b(-[0, 1) is the density function for a stan- 
dard normal distribution. 

Finally consider f4. The Ags are conditionally indepen- 
dent given #, 0., e, ~, y. We derive the conditional distribu- 
tion for Ai. If  6 ;=  1, then y~-~t  is a sample from a 
N(A~,0.  2) distribution. Again, the standard conjugate 
update shows that Ag I Y, #, 0.2, 6~ = 1, E has a N(c,  d)  

distribution where 

(y, - #)/0.~ 
C =  

1/z 2 + 1/0. 2 

d - 1  = 1/~ 2 + 1/0. 2 

If, instead, 6i = 0, then we have no information on Az 
(that is, the likelihood for A~ is fiat) so that the conditional 
distribution A~ty, #, a z, 6~ = O, e is simply its prior distri- 
bution, namely, N(0, "c:). If  one wanted to use an im- 
proper prior for A ,  this could be approximated in the 
algorithm by using a large value for z. 

The Gibbs sampler can now be easily implemented. 
Standard routines can be used to generate random num- 
bers from the required distributions. The procedure is 
repeated S times, resulting at the Sth step in samples 

u i , . . .  , . g  

(0.2) 1 (0.2) g 
S , ' ' ' '  

( 3 , ) ~ , . . . , ( 6 ; ) ~ ,  f o r i = l  . . . . .  n 

( A ; ) ~ , . . . , ( A , ) s  R, f o r i = l  . . . . .  n 

The posterior marginal for/~ may be estimated as 

1 R 

f(~ ly) -- ~ ,  0(# I a- br) 

where 

oIv 2 + ny* l (a2 )9  
a,  = 1/v2 + n/(0.2)r ~ 

b 7  ~ = 1/v 2 + n/(0.2)~s 

y .  = y ,  - O,)~s (Ai)~s 

Similarly, the posterior probability that Yi is an outlier is 
estimated by 

1 n e ~ b ( ( y *  - # ~  - ( A i ) ~ ) / ( a ) ~ )  

3r 2 = ~ ed~((y* - #~s - (AYs)/(a)~s) + (1 - c)4((y* - g~)/(a)~) 

The posterior for a is of less interest and we do not bother 
to estimate it. 

As an example, we used the infamous Darwin data 
(Fisher, 1960). The data consist of 15 height differences of 
cross- and self-fertilized plants. The two smallest observa- 
tions ( - 6 7  and -48 )  are usually regarded as possible 
outliers. We used E = 0.05 and v = z = 1000. This value of 
e is typically regarded as being reasonable for these data 
(Box and Tiao, 1968). The large values of v and z are used 
to reproduce the usual fiat priors used in this problem. 
Similarly, we take v - - 0  to produce the non-informative 
prior for a. But note that using informative priors does 
not make the calculations any more difficult. We used 
R = 200 and S = 15. For the purposes of illustration, we 
repeated our entire analysis three times to expose the 
variability of the procedure. 

The estimated posteriors for # and a are plotted in Figs 
l a and lb. When feasible, the plots include the three 
estimated posteriors corresponding to the three repeated 
runs. In some cases, such as Fig. lb, it is difficult to 
distinguish the different runs by eye, so the results of only 
one run are displayed. An informal graphical inspection of 
the three densities in the plot suggests that the process has 
converged. Larger values of R can be used to reduce the 
variability even further. If the possibility of outliers is 
excluded by setting E = 0, the posterior for # will have a 
mode at 20.933 (Box and Tiao, 1968). Allowing for out- 
tiers causes the posterior to be shifted to the right so that 
the effect of the two extreme observations has been down- 
weighted (for similar analyses, see Box and Tiao, 1968; 
Abraham and Box, 1978). The two smallest observations 
are regarded as outliers in this data set and indeed, we see 
that the smallest observation (y = - 6 7 )  has a posterior 
probability of almost 0.40 of being an outlier, while the 
second smallest observation (y = - 4 8 )  has a posterior 
probability of slightly over 0.20 of being an outlier. The 
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Fig. la. Posterior marginals for It based on a contaminated Nor- 
mal model with E = O.05 for the Darwin data, Each o f  the three 
curves corresponds to a complete run o f  the Gibbs sampler. 

remainder of  the observations have relatively small poste- 
rior probabilities of being outliers, with the largest being 
the last observation (y = 75), with probability 0.075. Note 
that the posterior probability that a subset of  observations 
are outliers can be estimated by counting the proportion of  
the corresponding fit s that were ls on the sample from the 
Gibbs algorithm. In particular, to estimate the probability 
that there are no outliers, we need only count the propor- 
tion of  times that all 6is were 0s. This turned out to be 
0.435. Also, the probability that there were one, two, three 
or four outliers is 0335, 0.180, 0.035 and 0.015, respec- 
tively. The program to carry out these calculations is very 
simple and was implemented in New S (Becker et al, 1988). 

We now consider the case where ~ is unknown. To our 
knowledge, this case has not been treated before. We are 
thus adding another parameter to the model. Using the 
Gibbs sampler, this turns out to be extremely simple as 
well. The densities f l ,  f2, f3 and f4 remain unchanged since 
they are conditional on E. But we need a fifth conditional 
posterior, namely, the distribution for e conditional on the 
data and the rest of  the parameters. We take ~ to have a 
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b POSTERIOR PROBABILITY THAT EACH OBSERVATION IS AN OUTLIER 

Fig, lb. Posterior marginal probability that each observation is an 
outlier based on a contaminated Normal model with ~ = O.05 for 
the Darwin data. 

beta(p1, P2) prior distribution. A flat prior is not appropri- 
ate, for, presumably, we would not be conducting the 
experiment if there were an exceedingly large probability 
of  many outliers. As mentioned before, several authors 
have considered a value of  0.05 to be reasonable for E 
(Box and Tiao, 1968). We thus take the mean of the prior 
for E to be 0.05. It seems reasonable to asst~me that an 
observation has less than half a chance of  being an outlier 
with high probability. If we assume that P(E < 0.5) = 0.99, 
then this implies that pl = 0.1842 and P2 = 3.5. Now, since 
we are conditioning on 6, this posterior is straightforward. 
It is readily seen that the conditional distribution for e 
depends only on 6. Let k be the number of 6;s that are 
equal to one. Then we simply have a binomial experiment 
with k successes and a beta prior. Hence the required 
density is beta(p~ + k, P2 + n - k). Again, we can generate 
random numbers from this distribution using standard 
routines. The posterior marginal for E is estimated by 

1 R 
f(~ [y) = ~ ~. B(p~ + k(r), P2 + n - k(r)) 
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Fig. 2a. Posterior marginal for  I ~ and E based on a contaminated 
Normal model with c unknown for the Darwin data. 
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Fig. 2b. Posterior marginal probability that each observation is an 
outlier based on a contaminated Normal model with E unknown for  
the Darwin data. 

where B(pl, P2) is the density for a beta(p1, P2) distribu- 
tion and k(r) is the number of the {( 1)s , - .  (6,)~} that 
are equal to one. 

We repeated the analysis of the Darwin data using this 
prior for ~. The resulting estimated marginals for #, 6 and 
c are shown in Figs 2a and 2b. The posterior for /~ is 
essentially the same as in the case where e is known. 
However, the posterior probability that the first observa- 
tion is an outlier has dropped below 0.4. This suggests that 
our uncertainty about e lowers our certainty that this 
observation is an outlier. Specifically, since small values of 
E are possible, our posterior probability that the observa- 
tion is an outlier is lowered, though this still stands out as 
a likely outlier relative to the other observations. More 
importantly, allowing for the possibility of outliers makes 
the inferences for # robust. Although the actual probabil- 
ity attached to a particular observation being an outlier is 
affected by the prior for e, the inferences for # are stable, 
once the possibility of outliers is included in some way. 
We emphasize that adding in the extra unknown was 
extremely simple and involved adding one extra subrou- 

tine to the algorithm to draw random numbers from fs- 
Thus, increasing the dimension of the problem requires 
only simple changes to the algorithm. Finally, we esti- 
mated the probabilities of there being zero, one, two, three 
or four outliers to be 0.670, 0.110, 0.095, 0.060, and 0.045, 
respectively. 

We point out that going from the c known case to c 
unknown, is like switching from a prior on E that is a 
point mass at one value, to a smooth prior. Although we 
saw that the analysis changes, it does not change drasti- 
cally. This gives us some confidence that the analysis is not 
too dependent on the choice of prior for E. 

4. The t-distribution 

The Student t-distribution has been proposed as an alter- 
native sampling model when extreme observations are 
considered a possibility. Estimates of the location parame- 
ter # are then less affected by extreme observations. We 
show in this section that the Gibbs sampler can be applied 
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for finding the marginal posterior for # in this case. Thus, 
we assume that the density for Yi is 

~ + 1  

f(Yi I#, a2, ~) oc " + a 2 

It is convenient to introduce, for each observation, an 
extra parameter We such that 

Y i I # ,  0"2 '  ;Vi ~ N(#, a2W~ -x) 

and to assume that the W,.s are independently distributed 
as gamma random variables with parameters (a/2, a/2). It 
is straightforward to see that the marginal distribution for 
each observation 

[#, a 2, ~z) = f f (y ,  ]#, aT-, Wi)f(W z f (y ,  I a) dW, 

is then a t-distribution with a degrees of freedom. In this 
way, we have simply rewritten the t-distribution as a 
mixture of normals introducing n extra parameters W,.. 
Note that each Ye is conditionally independent of a given 
Wi. Distributions other than the Student t can be ex- 
pressed as a mixture of normals (see, for example, West, 
1987). Hence, it is trivial to adapt the methods in this 
section to deal with any scale mixture of normals simply 
by replacing the gamma distribution with the required 
mixing distribution. The Gibbs sampler can thus be used 
to develop a complete Bayesian analysis for a large class 
of models. 

The set of parameters that we are going to consider here 
is {p, 0.2, W, a} where W = (Wi, W7-, . . . ,  IV,). Let us as- 
sume, at first, that ~ is known and let the prior distribu- 
tions for # and 0"7- be, as in Section 3, normal and inverted 
chi-squared. Values for e in the range of 1 to 7 have been 
cited as being reasonable (see Fraser, 1979, p. 37; Lange et 
al, 1989). For now, we shall take e = 3. The conditional 
posterior distributions required to implement the Gibbs 
algorithm can be readily derived. That is, it can be seen 
through successive application of the conjugate update 
formulas, together with the fact that Yi ]#, 0.7-, W; has a 
N(p, o -2 W,7 l) distribution, that # [0 -2, W, y,-~N(a, b), 
where 

O/vT- + (:~ yi w,)#rT- 
a =  

U--7- § ( ~  W i ) o  . --2 

1 Y~W,. 
b - ~ = ~  + a2 

Further, we obtain that o-21/~, W, y has an inverted chi- 
squared distribution. More precisely: 

Z IV/(yi -- #) 2 + v2 
2 

0.2 X n + v  

Also, we have the W/.s are conditionally independent and 
W~t:t , o-7-,y is a gamma distribution with parameters 
(a + 1)/2 and [(y~ - #)2/0.7- + ~]/2. 
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Fig. 3. Posterior marginal for # based on a t distribution with 
three degrees of freedom for the Darwin data. 

Therefore, all the required conditional posterior distri- 
butions are available analytically and, as described in 
Section 2, we proceed generating random numbers from 
these distributions using standard routines. After S itera- 
tions of the algorithm we obtain samples of size R for the 
n + 2 parameters considered. 

In particular, the marginal posterior density for ~t for 
the Darwin data, shown in Fig. 3, has been estimated from 
the samples (0.2)~, . . . ,  ( a 2 ) } , . . . ,  (a2)g and (Wi) ~ . . . .  , 
( W , ) s  . . . . .  W R r ( i )s ,  for i = 1,2 . . . .  , n b y  

1 R  1 R  
f (#  lY) =-'~r~lf(# ](O'2)s, (W)~, y) = ~  Z ~b(p lar, br) 

-- r = l  

where 

O/v 2 + ( z  y,(Wi)D/(~7-)r~ 
a r - -  V - -2  _[_ ( ~  r - -2  r (W,-) s)(~ ), 

b ;  1 = ~ +  Y, (Wi)~ 
(GT-)} 

We found that the estimates based on R -- 200 were not as 
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stable as in the contaminated normal case. The estimates 
in Fig. 3 are based on R --400. 

So far, the shape parameter a has been considered as 
known. It is far more realistic to assume that a is un- 
known. We now proceed with a regarded as an unknown 
parameter. 

As e varies from 1 to oe the class of t-distributions 
varies from the Cauchy to the normal. It is convenient to 
define /3 = 1/e and we use a beta distribution for/3 with 
parameters 1.75 and 2.5. In this way, the mode of/3 is 1/3. 
Also we have that P{1/3 </3 < 1/2} = 0.26, P{/3 > 1/3} = 
0.6, P{f i  < 1/10} = 0.06. We tried to choose a prior that 
reflected a fair amount of uncertainty about/3, that had a 
mode at a reasonable value (/3 = 1/3) and not too much 
probability near normality. We do not claim that this is an 
optimum prior in any sense. An interesting topic for luther 
research is to determine reasonable prior distributions for 
parameters that index outlier models. One referee sug- 
gested putting a point mass on the normal model (/3 = 0). 
This would especially be appropriate if one were interested 
in computing a Bayes factor for the hypothesis that the 

normal model is correct. However, since our goal is to 
protect us from outliers by allowing for the possibility of 
extreme observations, rather than model identification, we 
feel that the prior we have chosen is sufficient. 

This is a case in which the conditional posterior distri- 
bution of/3 is not in closed form. In fact, a prior for/3, or 
a, cannot be expressed within a conjugate family; hence we 
only have the kernel of the distribution: 

f(/3 l W, ~, a, y) =f(/3 [VO ocf(/3) f i  f ( W i  1/3) 
i = l  

OC ~ ~ - ( 1 / - / 2 ~  n i = l  fi W/~ exp - - ~  i=1 ~ ~Vi 

Here, f(/3) is the prior density for /3. Note that we are 
dealing here with the distribution of/3 conditional on W, 
since the introduction of the new variables Wi s makes the 
model for the data independent of the shape parameter 
1//3. In other words, /3 is only influenced by W and the 
effect of the data on/3 is through W. 

Random numbers can be drawn from f(/3 Iw) using the 
rejection method (Section 2). Then the marginal posterior 
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Fig. 4a. Posterior marginal for # based on a t distribution with 
degrees o f  freedom ct unknown for the Darwin data. 
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distribution can be estimated from the sample by a kernel 
density estimator. The marginal for # is plotted in Fig. 4a 
using R = 400. We see that the marginal for # is not 
greatly affected by our uncertainty about/?.  We have also 
obtained the posterior for/~ using a kernel density estima- 
tor; see Fig. 4b. As expected, this posterior is very similar 
to the prior since it requires a large amount of data to 
learn about tail thickness. The reason for including/? as an 
unknown parameter is not to learn about/~, but rather to 
lead to a more honest analysis for p. 

It is interesting to consider a different parameterization 
for the shape parameter. Let 7 = log(/~/(1-/~)) be the 
logit of  /L When 7 ~ -  oc the sampling distribution is 
normal and when ~---, + oo the sampling distribution is 
Cauchy. The origin corresponds to e = 2. This suggests 
that values usually employed, namely around e = 2 and 
c~ = 3 are, in some sense, mid-way between the normal and 
the Cauchy distributions. 

5. B inomia l  mode l s  

Winkler and Gaba (1990) considered the following prob- 
lem. We sample w =  ( w ~ , . . . ,  w~) where each wi is an 
independent Bernoulli trial with success probability p. 
Then, each wi is either switched or not switched, where the 
switching takes place with probability E. That is, we ob- 
serve y~ where, conditional on w~, y~=(1-cS~)w~+ 
6 i (1 -w~)  and each 6e is a Bernoulli trial with success 
probability e. We let 6 = (6~ . . . . .  6,). This may be viewed 
as a binomial version of  the outlier problem. In this case, 
an outlier is simply a Bernoulli observation that has been 
switched. The posterior marginals for p and E are derived 
in Winkler and Gaba (1990). As in the Gaussian case, the 
computations are not simple. We point out that p and e 
are not identifiable in this model. We will be using proper 
priors, however, so that the posterior marginals are well 
defined. In this situation, the prior information is quite 
important. 

To use the Gibbs sampler, we need f ( p [ E , y ,  6), 
f(EIp, y, 6) and f(6~lp, E, y). Following Winkler and Gaba 
(1990) we use a beta(s,/~) prior f o rp  and a beta(a, b) prior 
for e. We now derive the three required conditional poste- 
rior distributions. 

Consider p[e, y, 6. Since 6 is given, we can define the 
corrected data vector w = (w~ . . . .  , w~) where 
w e = ( 1 - 6 ~ ) y e + f ~ ( 1 - y z ) .  Then, w is a vector of 
Bernoulli observations so that the required conditional 
posterior is beta(e + Z we,/~ + n - Z wi). Similarly, 
E ]p, y, 6 has a beta(a + Z 6i, b + n - lg 6~) distribution. 
Finally, it is easy to see that fig [p, e, y is Bernoulli with 
success probability q~ where 

ep ~t( 1 -- p) 1 ,'i 
q~ - epW~(1 _p)~-w~ + (1 -- e)pY~(1 --p)~ Y~ 

It is straightforward to generate the required random 
numbers. After S iterations, this leads to samples 

pL...  

6 i . , f i r  ( i ) s , . .  ( i)s,  i = l , . . . , n  

The estimates of  the posterior marginals are thus 

f ( P  lY) = -k r21= n e -J[- ~i (wi)rs' ~ "~ Fl -- ~i (wi)rs ' 

f(EIy)=  B a+  
r ~ I  " ' 

and 

1 R 
-P(cSi -- I I Y) -- ~ r~1 

e(p}) (w~)~(l __p~)l -- (w i)r S 

E(p~) (w,)~(l -p~)~-('~,)~ 
§ I - E)(p~)y,(I -p"s) ~ --Yl 

We applied this to a data set involving self reported 
delinquent behaviour (Gould, 1969) as analysed by Win- 
kler and Gaba. Of 104 college students who were asked if 
they had beaten someone up, 21 said they had. Here, 
Yi = 1 corresponds to an affirmative response. Based on 
information from Clark and Tifft (1966), Winkler and 
Gaba proposed a beta(2, 8) distribution for p and a 
beta(2, 18) distribution for r The resulting posteriors for p 
and E, based on R- -400 ,  are shown in Fig. 5. The 
posteriors are the same as those displayed in Winkler and 
Gaba (1990). The probability that Ye is an outlier is 0.35 if 
y ; - -1  and is 0.01 if y ; - -0 .  It could be agreed that the 
outlier model should be expanded to allow a probability q 
of a 1 being switched to a 0 and a probability r of a 0 
being switched to a 1. It is obvious how to generalize the 
Gibbs sampler to deal with this case; the calculations are 
not any more difficult. We shall not pursue these details 
here. 

We now consider the more interesting case where a 
regressor x is available. Specifically, suppose that each w; 
is Bernoulli with success probability 

exp(e § ~Xi) 
p~ (~,/~) = 

1 + exp(e +/~x;) 

where e and/~ are unknown regression parameters and x~ 
is the observed value of some predictor variable x. This is 
the standard logistic regression model (McCullagh and 
Nelder, 1989, p. 108). 

The problem of  outliers in logistic regression is dealt 
with in Pregibon (1981; 1982) and Copas (1988). In his 
discussion of Copas, O'Hagan (1988) suggests that a 
Bayesian approach is possible, though he acknowledges 
the heavy computational burden that this entails. And 
Davison (1988), discussing the same paper, shows that 
Laplace's method of  approximating integrals can be used 
to approximate the predictive probability of  an observa- 
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tion given the rest of the data and thus he obtains a 
Bayesian method for identifying suspicious observations. 
Here, as in the previous cases, we consider a completely 
Bayesian approach. As before, we assume that there is a 
probability e that w i is switched to 1 - w~. More formally, 
we assume that y~ = (1 - ~ i ) w i  ~- (~i (1  - w i )  where S~ is 
Bernoulli with success probability E. This is the model used 
by Copas (1988). Ekholm and Palmgren (1982) and Palm- 
gren and Ekholm (1987) propose more general models for 
contaminated binary data. We shall not pursue those 
models here, though it should be possible to extend our 
methods to deal with those models. 

The likelihood function based on the uncontaminated 
data w is 

L.(~ , /~ ,  E) = I-I p,(~,  fl)w'( 1 - p i (  ce, fl))l-w, 
i 

Convenient conjugate priors do not exist for this model. 
This does not present a serious problem for our analysis. 
To sample from the col lition~l "~" utions we resort to 

the rejection method described in Section 2. We now 
describe the process in more detail. We took E to be a priori 
independent of  c~ and/~ with a B(a, b) distribution. We let 

and/~ have an arbitrary prior density denoted by rc(~,/3). 
First we consider f ( ~  I fl, E, 3, y, x). Let w; = (1 - 6t)yi+ 

6i (1 - y i ) .  The posterior conditional for ~ is proportional 
to L,,(~, fl, e)n(~, fl, E) where fl and e are fixed. We draw a 
random ~ from this distribution using the rejection method 
described in Section 2. The method for drawing fl is the 
same. 

We can find f(E [ ~,/~, 3, y, x) in closed form. First note 
that E is conditionally independent of ~, /~, y and x. Let 
k = Z 6g. Then obviously, the conditional distribution for E 
is B(a +k ,  b + n  - k ) .  

Finally, consider ~ [~,//, E, y, x. Each 6i is Bernoulli with 
success probability 

Ep] - y i (  l - p i )  y'  

Ep~-Y'(1 -p,)Y'  + (1 - QpY'(I _ p ; ) l - y ,  

where Pi --Pi (~,/~). 
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Fig. 6a. Posterior marginals for ~ and fl for the Challenger data. 
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Fig. 6b. Posterior marginals for E and posterior marginal probabi- 
ity that each observation is an outlier.]'or the Challenger data. 

We illustrate the method with data from Dalai et al 
(1989). They analysed data on 23 launches of the space 
shuttle to estimate the probability of an O-ring failure on 
the day the space shuttle Challenger was launched. The 
data we used was a binary outcome, indicating an incident 
with the O-rings (erosion or blowby) and the regressor 
was joint temperature. Following Dalai et al, we used a 
logistic model but we allowed for outliers. We used uni- 
form priors for a and/Y and a beta(0.1842, 3.5) prior for 
c as in Section 3. Posterior marginals were estimated from 
the samples by kernel density estimation, as suggested in 
Gelfand and Smith (1990). Because we relied on kernel 
density estimators, we increased R to 1000 but kept 
S = 15. We used FORTRAN since S was too slow in this 
case. 

The estimated posteriors are in Figs. 6a and 6b. The 
O-ring failure at 75~ is an outlier with probability 0.22. 
This is consistent with the Dalai et al analysis. Similarly, 
the failures at 70~ each have probability 0.14 of being 
outliers. The failure of 63~ has probability 0.05 of  being 
an outlier. While this is not very large, it is interesting to 

note that the Dalai et al analysis does not seem to flag the 
observations at 63~ at all. This may be a masking effect. 
As O'Hagan (1988) remarks, masking is not a problem in 
the Bayesian approach since we are computing the mar- 
ginal probability that each observation is an outlier. This 
averages over the possibilities that there are simulta- 
neously other outliers. 

6. Discussion 

Our emphasis has been on demonstrating the simplicity of 
the Gibbs sampling approach to the computation of poste- 
rior marginals in outlier problems. Other approaches may 
well provide faster, more efficient routines for doing the 
same task, but what the Gibbs approach has to offer is 
greater flexibility and less programming effort. That is, less 
computer efficiency is traded for more human efficiency. 

The conceptual simplicity of the approach makes it 
easy to write the necessary programs and, having written 
the programs, it is easy to change them to handle new 
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problems. For example, to go from ~ known to e unknown 
in the e contamination model, we needed only add one 
new subroutine, namely a routine to draw from the condi- 
tional distribution for c. In S, this involved adding one 
new function of  four lines of  code. Similarly, to replace the 
t-distribution with a different mixture of  normals would 
involve replacing the gamma function with the appropri- 
ate mixing distribution. Thus, one small part of the pro- 
gram would be modified: instead of drawing random 
gammas we would draw from a different distribution. 

The methods in Section 3 and 4 can easily be extended 
to the regression case. Instead of drawing p from a normal 
distribution, for example, we would draw fl from a multi- 
variable normal distribution, where • = ( i l l , . . . ,  tip) are 
the regression parameters. Similarly, the other conditional 
distributions would be adapted in the obvious way. In the 
case of logistic regression, sampling from the posterior 
conditionals of the regressors i l l , . . - ,  tip would best be 
done one at a time. But the sampling method would be 
exactly the same as that used in Section 5 so we would 
essentially just repeat that part of the program p times. 
The point is that increasing the dimension of the problem 
increases the execution time of the program but it does not 
increase the complexity of the program. There is no need 
to deal with high-dimensional grids, for example. In a 
sense, the Gibbs sampler replaces a difficult high-dimen- 
sional problem with a series of  simple one-dimensional 
problems. 

It is easy to adapt the Gibbs sampler to deal with 
outliers for other sampling models. For example, Pettit 
(1988) considers sampling from an exponential when out- 
liers are possible. He derives an insightful approximation 
to find the Bayes factor for a particular observation being 
an outlier. Using the Gibbs sampler for this problem is 
essentially the same as the contaminated normal case in 
Section 3. In particular, at most steps in the algorithm, we 
are conditioning on the vector ~ = (61, . . . ,  fin) that tells 
us which observations are outliers so that the outliers can 
be corrected and the usual Bayesian conjugate distribu- 
tions can be used. And the distribution of 6 given the 
other parameters is straightforward. Thus, a fully 
Bayesian analysis is possible and the posterior probability 
that a particular observation is an outlier can be esti- 
mated, as can the posterior probability that a set of 
observations is an outlier. 
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