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Splines in Statistics 
EDWARD J. WEGMAN and IAN W. WRIGHT* 

This is a survey article that attempts to synthesize a broad 
variety of work on splines in statistics. Splines are pre- 
sented as a nonparametric function estimating technique. 
After a general introduction to the theory of interpolating 
and smoothing splines, splines are treated in the nonpar- 
ametric regression setting. The method of cross-valida- 
tion for choosing the smoothing parameter is discussed 
and the general multivariate regression/surface estima- 
tion problem is addressed. An extensive discussion of 
splines as nonparametric density estimators is followed 
by a discussion of their role in time series analysis. A 
comparison of the spline and isotonic regression meth- 
odologies leads to a formulation of a hybrid estimator. 
The closing section provides a brief overall summary and 
formulates a number of open/unsolved problems relating 
to splines in statistics. 

KEY WORDS: Smoothing splines; Functional estima- 
tion; Nonparametric regression; Cross-validation; Iso- 
tonic estimation. 

1. INTRODUCTION 

Modern statistical theory began with the fitting of par- 
ametric models to data. Various principles for making 
inferences were developed and refined until efficiencies 
very nearly reached their asymptotic limits. Such prin- 
ciples include maximum likelihood and likelihood ratio, 
unbiased and minimum variance estimation, least 
squares, and more recently decision-theoretic and max- 
imum entropy procedures. As asymptotic limits to effi- 
ciency were approached, attention returned to basic 
models and there has appeared a growing realization that 
not all the parametric structure was needed to make in- 
ferences. From this insight arose the techniques known 
as distribution-free or nonparametric. At the cost of some 
loss of efficiency, these methods prevented model vio- 
lations from being reflected in false inferences. 

In a real sense, splines are an evolution of classical 
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parametric inference and bridge the gap between para- 
metric and nonparametric methods. While splines are not 
parametric in functional form, in most cases they may be 
written as a linear combination of basis functions that 
usually have a polynomial representation. Thus there is 
certainly a parametric flavor. However, the set of ad- 
missible functions that may be splines has the cardinality 
of RR. Thus there is an extremely rich class of admissible 
functions with the added benefit of using smoothness 
properties of increase efficiency. 

Our present discussion is organized as follows: Section 
2 deals with the fundamentals of interpolating splines. 
The third section focuses on a general description of 
smoothing splines. The next four sections focus on 
splines and regression analysis. The fourth section is a 
description of regression splines, the fifth section deals 
with splines as univariate nonparametric regression es- 
timators, and the sixth section deals with the cross-val- 
idation method for selection of the smoothing parameter. 
In Section 7 we discuss nonparametric surface estimation 
via multivariate splines and in Section 8 we discuss 
splines as nonparametric density estimators. In Section 
9 we discuss the use of splines in time series and in Sec- 
tion 10 we discuss the role of splines in statistical infer- 
ence under order restrictions. The article closes with a 
section of general concluding remarks. 

We close this section with some notational conven- 
tions. We shall reserve the symbol D for the differentia- 
tion operator and L2 for the set of measurable square 
integrable functions on [0, 1]. The symbol W,t, will denote 
the set of functions, f, on [0, 1] such that Dif, j c m - 
1, is absolutely continuous and D'nf is in L2. When we 
occasionally consider functions with domain other than 
[0, 1], the relevant domain will be shown after the func- 
tion space symbol, for example, W,,(-oc, oc). 

2. CLASSICAL SPLINE THEORY 

The dictionary definition of a spline is "a thin strip of 
wood used in building construction." This in fact gives 
us insight into the mathematical definition of spline. His- 
torically, engineering draftsmen used long thin strips of 
wood called splines, much like French curves, to draw 
in a smooth curve between specified points. The splines 
were anchored in place by attaching lead weights called 
ducks at points along the spline. By altering the position 
of the ducks and the position of spline and ducks relative 
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to the drafting surface, the spline could be made to pass 
through specified points provided a sufficient number of 
ducks was used. 

If one regards the draftsman's spline as a thin elastic 
beam, a simple physical demonstration shows that the 
draftsman's spline is a cantilevered beam that minimizes 
the energy of deflection subject to the constraint of in- 
terpolating the specified points. In the most general set- 
ting, then, a mathematical spline is the solution to a con- 
strained optimization problem. In a more elementary 
setting, the draftsman's spline is replaced by a piecewise 
cubic polynomial (normally a different one between each 
pair of ducks) with certain discontinuities permitted 
where the polynomials join. The piecewise polynomial is 
chosen to minimize the mean square curvature (corre- 
sponding to the deflection energy). The join points in 
mathematical spline theory are called knots. 

It should be emphasized that, as presented thus far, the 
spline is purely interpolatory in nature, and explicit ref- 
erence to the optimality character does not usually appear 
in elementary discussions. The interpolation problem is 
to fit a curve through points (xi, yi), i = 1, 2, . . . , n, in 
the plane. A mesh A = {11(= xl) < " . < N (=Xn)} 

is chosen with the points ~i being the knots. For com- 
putational reasons, the mesh will frequently coincide with 
{xi, i = 1, 2, . . . , n}. A cubic interpolating spline with 
mesh A, written s,(x), is a function with continuous de- 
rivatives up to and including order 2 that coincides ex- 
actly with a possibly different cubic polynomial on each 
interval [ci, (i+ 1 ], i = 1, 2, . . . , N - 1 and that inter- 
polates {(xi, yi), i = 1, 2, . . . , n}. 

Let the mesh coincide with {xi, i = 1, 2, . . , n} and 
let hi = xi+ - xi and Mi = s]'(xi), i = 1 2, .. ., n. 
Suppose the polynomial interpolating (xi, yi) and (xi+ i, 
Yi+i) is as follows: 

y = ai (x - xi)' + bi (x - X,)2 + C (X - Xi) + di. (2.1) 

By taking various order derivatives and evaluating at the 
knot points, it may be shown that 

bi = Mi/2 

ai= (Mi+1 - Mi)/6hi 

Yi+i - Yi 2(hiMi + hiMi+ ) 
z hi 6 

di= yi. (2.2) 

Thus our curve fitting problem reduces to that of finding 
the values of Mi. The equations relating the Mi are ob- 
tained by using the continuity of the first derivative of 
the spline, along with the relations 2.2 to give 

hi_ 1 Mi -1 + (2hi -1 + 2hi)Mi + hiMi+ I 

Yi+ i Yi Yi - Yi-I n 

system of linear equations for M2i . . . , . . This sys- 

tem can easily be solved by Gaussian elimination so that 
fitting a cubic interpolating spline is feasible with a hand 
calculator. 

As mentioned earlier, it may be shown that the cubic 
interpolating spline is the solution to the following prob- 
lem: 

minimize f (D2f(x))2dx 

subjectto Dif eL2(-oo, ??), j = O, 1,2 

and f(xi) = yi, i = 1,2, . . ,n. (2.3) 

This simple problem can be generalized. Let L be a dif- 
ferential operator of order m with constant coefficients. 
The following problem, 

minimize f (L f(x))2dx 

subject to Dif E L2 ( - ?, ?), j= O,1 ,. . ., m 

and f(xi) = Yiy i= 1,2, ... . ,n, (2.4) 

has a solution s(x) that satisfies L*L s(x) = 0 in the in 
tervals between knot points, where L* is the adjoint op- 
erator to L. The solution, s(x), is called the interpolating 
L spline. If, in fact, L = DI, then s(x) must satisfy D2, 
s(x) = 0 so that s(x) is a piecewise polynomial of order 
2m - 1. In the special case L = D2, then s(x) is a piece- 
wise polynomial of order 2m - 1 = 3. It is to be em- 
phasized, therefore, that the polynomial character of 
splines is a result of the choice of the operator L and that 
the concept of a spline is more general than just a 
smoothly joined piecewise polynomial. 

General accounts of interpolating splines may be found 
in the books by Ahlberg, Nilson, and Walsh (1967), Gre- 
ville (1969), and Prenter (1975). The literature in this area 
is vast, but representative papers include Anselone and 
Laurent (1968), Copley and Schumaker (1978), Daniel 
and Schumaker (1974), and Mangasarian and Schumaker 
(1969). The latter paper is found in a conference pro- 
ceedings, Schoenberg (1969), which is one of the most 
useful such volumes published. The paper by Schultz and 
Varga (1967) contains an extensive bibliography on L 
splines. An excellent resource for implementing splines 
is De Boor (1978). 

3. SMOOTHING SPLINE THEORY 

Interpolating splines are predicated on nonnoisy data. 
As such they have limited use in a statistical setting, al- 
though in several circumstances they do make an ap- 
pearance. More to the point, it is desirable in a statistical 
framework to create a type of smoothing spline that could 
pass near, in some sense, to the data but not be con- 
strained to interpolate exactly. There are three main ap- 
proaches to spline fitting methods corresponding to dif- 
ferent points of view in dealing with the " noise" in the 
data. Because stochastic data do not constrain the fitted 
function nearly as firmly as in the interpolating spline 
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case, the fitting sometimes requires a genuine optimiza- 
tion routine, not just a simple solution of a linear system 
of equations as with a cubic interpolating spline. 

The first, more frequently used method parallels the 
least squares curve-fitting procedure by minimizing a cri- 
terion that depends on a least-squares-like term plus a 
term penalizing roughness. This method is an appropriate 
one to use when the error shocks have an infinite or semi- 
infinite support. In contrast, when data are, for example, 
direct readings from a calibrated instrument, it is some- 
times possible to set fairly narrow 100 percent confidence 
limits for each data point. The second method is used in 
this circumstance. The third method is also a least squares 
procedure, but takes a somewhat different perspective. 
We mentioned earlier that the polynomial character of 
the spline was a result of the formulation of the optimi- 
zation problem. In the third method one assumes a piece- 
wise polynomial form for the splines and thence uses 
a least squares procedure to estimate the appropriate pa- 
rameters. This approach, while somewhat less organic, 
has received a fair amount of attention in the statistics 
literature. We discuss all three approaches in some detail. 

3.1 First Method of Fifling Smoothing Splines: 
Penalized Least Squares 

Suppose that the x values of the data lie in a finite 
interval. Without any loss of generality, we assume the 
interval is [0, 1] and that we have 0 < xi < x2 < < Xn 
< 1. The fitted spline is the solution to the optimization 
problem: 

nI 
Minimize > (f(xi) - yi)2 + A (L f(x))2dx 

subject to f E W,l, X fixed > 0. (3.1) 

This is clearly a generalization of (2.4) with the inter- 
polating conditions, f(xi) = yi, replaced with a least 
squares term in the objective function. The least squares 
term is augmented by the "curvature" term, fd (L 
f(x))2dx. This latter term is, as before, a penalty term for 
lack of smoothness. Notice that the parameter X > 0 in 
3.1 controls the amount of smoothing. If X is too small, 
the spline will overfit, in the limiting case as X -O 0, be- 
coming an interpolating spline. This lowers bias, but in- 
creases variance. As X -* o, the smoothing term domi- 
nates and removes not only noise but also "signal." The 
correct choice of X is of considerable importance. As sam- 
ple size n approaches oc, X should become smaller. 
Asymptotic rates for X to approach 0 needed to guarantee 
consistency have been given by several authors. This will 
be discussed later. The method of cross-validation for 
choosing X has also been offered as an option for choosing 
X. This, also, will be discussed in a later section. 

In many settings, the choice of L -D'" is appropriate. 
In such a case, the solution is given explicitly in Kimel- 
doff and Wahba (1970a,b) and as before it turns out to 
be a polynomial spline of degree 2m -- 1 with possible 

knots at the data points. This characterizing solution does 
not turn out to be a particularly useful computational al- 
gorithm. Cogburn and Davis (1974) demonstrate some- 
what easier computational algorithms for the case in 
which the x values are evenly spaced and f is periodic. 
In other circumstances, more difficult algorithms must be 
developed. Questions of the computation of such splines 
can be approached by quadratic programming algorithms. 
The work of Kimeldorf and Wahba (1971) is of prime 
interest here. Also of interest are the papers of Ritter 
(1969), Anselone and Laurent (1968), and Wahba (1978a). 

3.2 Second Method of Fifling Smooth Splines: 100 
Percent Confidence Intervals 

The penalized least squares splines were a generalized 
version of the interpolating splines because the interpo- 
lating constraints were replaced by a least squares term 
in the objective function. An alternative approach is to 
leave the objective function untouched but loosen the 
specification of the interpolating constraints. This fitting 
technique is also known as (the solution for) the Gener- 
alized Hermite-Birkhoff (GHB) interpolation problem. 

Let [oti, i] be a 100 percent confidence interval for the 
ordinate at xi with coi < i. The GHB problem is as fol- 
lows: 

Minimize 1 (Lf(x))2dx 

subject to f E Win ,Oti ' f(ti) ' Pi, 

i = 1, 2, . . ., n, (3.2) 

The statistical interpretation can be seen by considering 
the following model 

Yi = f(xi) + Ei, i = 1, 2., n, (3.3) 

If Ei are iid with finite support, say [ - eI, e2], then since 
Ei > - eI, it is clear that yi + e1 > yi - Ei = f(xi). Sim- 
ilarly, since Ei < e2, yi - e2 < Yi - Ei = f(xi). Thus (yi 
- e2, Yi + el) is a 100 percent confidence interval and 
we may identify cx; with yi - e2 and P with yi + el. 

Various recent contributions have been made by sev- 
eral authors. Atteia (1968) demonstrates the existence of 
such splines while Laurent (1969) gives a characterization 
theorem. Once again the solution to (3.2) is a polynomial 
spline of degree 2m - 1 with knots at those data points 
where the constraints are active. Ritter (1969) and others 
discuss computational algorithms. 

3.3 Third Method of Fifling Smoothing Splines: 
Regression Splines 

While the piecewise polynomial result falls out of the 
optimization problems (3.1) and (3.2) yet another ap- 
proach to splines is to assume the form of a smoothly 
joined piecewise polynomial of degree m. The pieces join 
smoothly and fulfill continuity conditions on the function 
and the first m - 1 derivatives. This type of spline is thus 
a continuous function with m -- 1 continuous derivatives. 
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Obviously while it satisfies the continuity conditions sim- 
ilar to our previous splines, it does not necessarily min- 
imize the curvature norm. Since there are obviously many 
such polynomial splines which could satisfy the other re- 
quirements, there are in general a number of free param- 
eters which must be determined. The parameters at the 
user's disposal are 

1. The degree of the spline function, m. 
2. The number of knots, N. 
3. The positions of the knots, (X. 
4. The free coefficients in the spline function, m + N 

+ 1 in number. 

The degree and number of knots are usually fixed by the 
experimenter. The number of knots in (3.1) and (3.2) is 
usually the same as the number of observations, while in 
this third case, however, the number of knots is consid- 
erably smaller. The knots may be either fixed or free. In 
the latter case the locations, Ai, must also be estimated. 
The free coefficients of the spline function are those po- 
lynomial coefficients left over after the continuity con- 
ditions have been satisfied. These free parameters then 
may be estimated by an ordinary least squares procedure 
to uniquely identify the spline function. Review papers 
on this third type of spline are found in Wold (1974) and 
Smith (1979). We discuss these splines in more detail in 
the next section. 

4. REGRESSION SPLINES 

Regression splines (as opposed to spline regressions) 
are splines that have been computed according to a 
regression model. In particular, all splines discussed in 
this section will follow the model 

Yi = sA(xi) + Ei, i = 1, 2,... ,n, (4.1) 
where sA(x) is a piecewise polynomial spline with mesh 
A and the Ei are a white noise sequence. The problem then 
is to compute sA(x) based on a least squares approach. 
Given the mesh of knots, / = {11 < 2 < ... < ~N} Smith 
(1979) shows (see also Greville 1969) that a piecewise or 
segmented polynomial may be represented in the Heav- 
iside function notation; that is, if we let u + = u if u > 0 
and u + = 0 if u < 0, then the general form of a segmented 
polynomial regression model, (4.1), with N knots in the 
mesh A having N + 1 polynomial pieces each of degree 
m may be rewritten as follows: 

m N m 

Yi = Oj Xij + 0 f3, kj (Xi - 4k)?W + Ei. (4.2) 
j=O k= I j=O 

As we shall see later, the polynomial spline is a special 
case of this model. This representation is clearly a very 
useful one since it casts the spline (or segmented poly- 
nomial) problem into an ordinary multiple regression con- 
text. In fact, the coefficients, rkj, may be determined by 
ordinary least squares routines commonly available on 
statistical computing packages. Moreover, many of the 

F-, t-, and nonparametric test procedures for deter- 
mining whether the 13j are 0 carry over directly. 

The issue of whether 3kj = 0 is of some substantial 
interest. The presence of the term 1kij (x - Z;k)+i allows 
a discontinuity at (4k in the jth derivative of sA and its 
absence forces continuity of DisA at (k. Thus, sA can be 
made continuous at Zk by omitting from (4.2) the term 
1kO(X - Wk)+0 and similarly DisA can be made continuous 
at (k by omitting 13kj(x - k)+?i. Different sorts of con- 
tinuity conditions can be made to hold at different knots 
by imposing conditions that selected 1ki be 0. The classic 
spline of degree m, which requires continuity up to and 
including D'" -'sA has the representation, 

in N 

Yi = E 130 Xij + k 3km (Xi - Ek) i ? i; (4.3) 
j =0 k = I 

thus the number of free coefficients in the spline to be 
estimated is m + N + 1 as mentioned earlier. The treat- 
ment of Smith (1979) has an excellent discussion of model 
(4.2), in general, and of testing for Pkj = 0 in particular. 
We strongly recommend the Smith paper for someone 
interested in applying regression splines. 

The paper by Wold (1974) reflects a lot of experience 
with fitting regression splines. Based on his practical ex- 
perience Wold made some useful recommendations for 
knot point selection, which we summarize below. These 
recommendations are based on the assumption of fitting 
a cubic spline, the most popular case, and may need some 
modification for m > 3. 

1. Knot points should be located at data points. 
2. A minimum of four or five observations should fall 

between knot points. 
3. No more than one extremum and one inflection 

point should fall between knots (because a cubic 
could not fit more). 

4. Extrema should be centered in intervals and inflec- 
tion points should be located near knot points. 

The papers of Smith (1979) and Wold (1974) address 
the major choices, listed in our Section 3.3; that is, the 
estimation of the free coefficients and the number and 
position of knots. The degree of the spline function, m, 
depends on what is a realistic assessment of the number 
of derivatives available in the regression function. Ob- 
viously, this knowledge is frequently not available. Often 
the choice is simply m = 3, which yields a cubic spline 
and which is the smallest m yielding visual smoothness. 
The choice m = 2 or m = 1 will yield, respectively, 
piecewise quadratics or piecewise lines (i.e., quadratic 
and linear splines). There are a number of papers that 
address these cases as well. See, for example, Agarwal 
and Studden (1978), Ertel and Fowlkes (1976), Derek 
(1966), Park (1978), Gallant and Fuller (1973), and Fuller 
(1969). 

A problem of regression closely related to spline regres- 
sion is the design problem. At each xi, i = 1, 2, . . ., n, 
n, observations are to be taken. The probability measure 
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assigning mass Xi to point xi is referred to as a design 
measure. Even more generally, the design problem is to 
choose the locations of the xi. Several authors have stud- 
ied the problem of finding optimal designs for regression 
splines including Agarwal and Studden (1978), Studden 
and Van Arman (1969), Park (1978), Draper, Guttman, 
and Lipow (1977), and Murty (1971). 

Other papers of considerable interest are those of 
Poirer (1973), Gallant and Fuller (1973), Buse and Lim 
(1977), and Lenth (1977). Poirer has an excellent discus- 
sion of the basic theory of cubic regression splines. Ar- 
guing from an economic point of view, he develops the 
idea that structural change occurs in a smooth fashion so 
that splines form a natural tool for analyzing structural 
changes. He argues that knots should occur at a point in 
time near the point of structural change. Poirer illustrates 
his point with an example based on Indianapolis 500 data. 
Buse and Lim (1977) follow up Poirer's paper, arguing 
that cubic spline regression is a special case of restricted 
least squares and that the latter approach offers a richer 
menu of procedures. Gallant and Fuller (1973) treat the 
join points (knots) as unknown parameters and develop 
procedures for estimating their location. Finally, An- 
derssen, Bloomfield, and MacNeil (1974) argue that the 
spline procedures can be robustified (against heavy-tailed 
errors, E) by using the M estimate procedures of Huber 
(1964) instead of the usual sum of squares. Lenth (1977), 
apparently independently of Anderssen, Bloomfield, and 
MacNeil, puts forward a similar argument. 

5. NONPARAMETRIC REGRESSION 

Whereas in the previous section we were concerned 
with the use of regression models and least squares to fit 
splines, it is equally clear that in the most general setting, 
the spline solutions to (3.1) and (3.2) are solutions to the 
nonparametric regression problem or more prosaically, 
the curve fitting problem. 

Statisticians and applied mathematicians are contin- 
ually faced with the problem of recovering a smooth func- 
tion when only noise measurements of it are available. 
In fitting a parametric model, the residuals are made up 
of the noise as well as deviations due to lack of fit. Pe- 
nalized least squares smoothing splines are good solu- 
tions to the estimation of the true function (known only 
to be smooth) for two reasons. First, they are flexible 
enough to respond to local variation without allowing 
pathological behavior, and second, the actual degree of 
smoothing is controllable. Even when the correct degree 
of smoothing is unknown, these features together with 
the method of cross-validation allow a nonparametric, yet 
optimal, fit. 

The model we assume is 

Yi= f(xi) + Ei, xi E [0, 1], i = 1, 2, . . ., n. 

where 

f E Win, EEi = 0 

and 

EEiE= c2 i = j 

-0 i:Xj. (5.1) 

The solution, sA, to the optimization problem (3.1) with 
L -D'" serves as an estimator for f in (5.1). If m n 2, 
the optimal solution (Greville 1969; Reinsch 1967,1971) 
is known to be a cubic spline with knots at x,, i = 1, 2, 

n. As X -X x, the solution, S\(X), converges to its 
smoothest possible form, the least squares straight line 
through the data. As X -> 0, SA(X) converges to the in- 
terpolating spline through all of the data points. Thus X 
is a parameter determining the degree of smoothing. 
Wahba (1975c) shows that in order to have S, -> f as n 
x-* o we must also have X -O 0. These papers by Wahba 
are sources of other asymptotic results as well. 

We have already pointed out in Section 3 that the 100 
percent confidence interval method for fitting smoothing 
splines corresponds to the nonparametric regression 
problem (3.3), in which the errors have bounded support. 
This is in contrast to the penalized least squares case, 
which corresponds regression with "normal-like" (un- 
bounded) errors. Generally speaking, results on these two 
types of smoothing splines can be thought of as falling 
into three major classes: (a) Results on existence and 
characterizations, (b) results on statistical aspects in- 
cluding asymptotics, and (c) results on computational as- 
pects. Important papers in the first category include pa- 
pers of Atteia (1968,1970), which give existence results, 
and the work of Laurent (1972) and Anselone and Laurent 
(1968), which gives results characterizing solutions to 
(3.1) and (3.2) with L D"'/ as 2m - 1 degree polynomial 
splines. 

There are several closely related papers including those 
of Mangasarian and Schumaker (1969), Daniel and Schu- 
maker (1974), and Copley and Schumaker (1978), which 
consider the related optimization problem 

Minimize f (Lf(x))2dx subject to 

(i) f E Wn 
(ii) oi < Ff(xi) ?< pi, i = 1, 2, . . ., r, (5.2) 

where F is a bounded linear functional on Wn. Copley 
and Schumaker give existence and characterization re- 
sults. The related paper of Wahba (1973) considers finite 
constraints and investigates conditions for convergence. 
Generally speaking, results on existence and character- 
izations are function theoretic in character frequently ap- 
pealing to the theory of reproducing kernel Hilbert 
spaces. See Aronszajn (1950) and Parzen (1961). We shall 
not attempt to detail these mathematical foundations in 
this article, but we do remark that the group at the Uni- 
versity of Grenoble including Professors Laurent, Atteia, 
Duchon and their students, and the group at the Uni- 
versity of Wisconsin-Madison, notably Professor Wahba, 
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have been very productive in this area. See also the work 
of Speckman (1983). 

Statistical interpretation of splines as nonparametric 
regression estimators have received somewhat less at- 
tention. Gamber (1979b), for example, discusses penal- 
ized least squares splines as the basis for generating con- 
fidence regions. Wegman (1980b) discusses the 
relationship of both penalized least squares splines and 
100 percent confidence interval splines to nonparametric 
and isotonic regression and gives consistency results for 
100 percent confidence interval splines. The related work 
of Clark (1977) discusses some solutions to the nonpar- 
ametric regression problem including the penalized least 
squares smoothing spline. 

Clark and also Schoenberg (1964) point out that the 
spline solution sx to (3.1) has the property that it mini- 
mizes 

Jo 
n 
f (X))2dX 

subject to 
n 

E (yi - f(xi))2 ? Uo, 
i = 1 

and similarly it minimizes 
n 

(yi -(Xi))2 

subject to 

1 (D'nf(x))2dx c go (5.3) 

for some X depending on U( and go, respectively. This 
latter condition establishes connection with the least 
squares regression splines discussed in Section 4. This 
follows since the least squares polynomial spline will sat- 
isfy (5.3) for some go and hence (provided m and the knots 
are chosen properly) will be a penalized least squares 
spline for some X depending on go. 

Questions of the computation of the penalized least 
squares and confidence interval smoothing splines may 
be addressed through a quadratic programming approach. 
The work of prime interest here is the paper of Kimeldorf 
and Wahba (1971), but also of interest are the papers of 
Ritter (1969), Anselone and Laurent (1968), Amos and 
Slater (1969), Lyche and Schumaker (1973) and Wahba 
(1977a, 1978a). Kimeldorf and Wahba (1971) give explicit 
although rather complicated algorithms for constructing 
both interpolating and smoothing splines. In fact they give 
not only algorithms, but a general approach based on re- 
producing kernel Hilbert spaces, for developing such an 
algorithm. In Section 6 of their paper, they show that 
problems of the type (3.2) with linear inequality con- 
straints may be solved as a quadratic programming prob- 
lem. Their set of basis function is not particularly easy 
to use computationally and a more favorable set of basis 
functions is found in Wahba (1978a). As mentioned in 

Section 3, Cogburn and Davis (1974) demonstrate easier 
computational algorithms in the periodic spline case. 
Cogburn and Davis will be treated in more detail in Sec- 
tion 9. 

The books by Schoenberg (1969) and Karlin et al. (1976) 
are particularly relevant to the spline types discussed in 
this section. Finally we note an excellent general discus- 
sion of optimal curve fitting by Weinert (1980), which 
unfortunately is published in an out-of-the-way place. 
Weinert's paper expands the treatment given in the pres- 
ent section and is commended to the attention of readers 
particularly interested in problems of nonparametric 
regression or curve fitting. 

6. CROSS-VALIDATION 

In the penalized least squares method for fitting 
smoothing splines (i.e., problem (3.1)), the choice of 
smoothing parameter, X, is of substantial importance. To 
a lesser extent the choice of m as a free parameter de- 
termines the final appearance of the smoothing spline. 
The method of cross-validation has been advocated for 
choosing X (and m) by Wahba and Wold (1975a,b), Wahba 
(1976,1979c,1980b), Golub, Heath, and Wahba (1979), 
Craven and Wahba (1979), Wahba and Wendelberger 
(1980), Gamber (1979a) and Utreras-Dias (1979). In an 
excellent expository paper, Wahba (1979b) discusses the 
method of (generalized) cross-validation for choosing X. 
We summarize that discussion here and recommend the 
full paper for details. 

The parameter, X, to be chosen is the smoothing pa- 
rameter in problem (3.1) with L chosen as D'71. We let 
SX(k) be the solution to problem (3.1) with the kth data 
point, (Xk, Yk), omitted. Of course, sA(k) (Xk) is an esti- 
mator of Yk and X is appropriately chosen if sx(k) (Xk) is 
a good estimator of Yk. To measure goodness of fit, we 
choose the average squared error; that is, 

i n 

CV(A) n- (SA) (Xk) - Yk), 
n k1t= 

which is called the cross-validation function. The param- 
eter X is chosen to minimize CV(X). 

For certain technical reasons, it is desirable to compute 
a weighted least squares cross-validation function, 

I n 
GCV(X) = - E (SX(k) (Xk) - Yk)'Wk(X) 

n k=1 

where the {Wk(A)} are weights chosen to reflect unequally 
spaced data, end effects and other effects. The papers by 
Golub, Heath, and Wahba (1979) and Craven and Wahba 
(1979) detail the choice of Wk(A). This function, called the 
generalized cross-validation function, has a particularly 
simple matrix representation: 

2 
1 (I - A(X))y 
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where A(X) is the n x n matrix uniquely determined by 

S,\(Xi) 

= A(A)y. 
sx(xi) 

The GCV estimate of X is obviously the choice of X min- 
imizing GCV(X). 

The generalized cross-validation function resembles in 
some sense the mean squared error, and one may suspect 
some asymptotic relation. Indeed Craven and Wahba (see 
also Golub, Heath, and Wahba), give the following 
asymptotic result. If 

I n 

MSE(X) = - E (SX(Xk) - f(xk))2 
n k=1 

where f is the true function being estimated in (5.1), then 
both MSE(X) and GCV(X) can be regarded as random 
functions of the {Ei}. If X* is the minimizer of expected 
MSE(A), EMSE(A) and X + is the minimizer of expected 
GCV(X), EGCV(X), then 

lim EMSE(X(A) 4 19 
n EMSE(X*) 

or the mean squared error with estimated X tends in ex- 
pectation to the minimum mean squared error achievable 
with any X. 

The choice of m by means of cross-validation has more 
recently received attention. See Gamber (1979a). Trans- 
portable computer code does not yet exist for this latter 
problem, but at least three sources (Fleisher 1979, Merz 
1978, and Paihua-Montes 1979) provide a computer code 
for the computation of penalized least squares smoothing 
splines using generalized cross-validation. 

7. SURFACE ESTIMATION AND KRIGING 

The nonparametric regression problem formulated as 
(5.1) can be extended to the more general setting 

zi= Lif + Ei, i = 1, 2, . . . , n (7.1) 

where the [Ei] are independent, zero mean random vari- 
ables with common unknown variance U2. The Li are as- 
sumed to be continuous linear functionals on W,,. In the 
regression setting (5.1), Lif is simply defined as f(xi). 
Other cases of interest are 

Lif = fK(ti, s) f(s)ds, 

which is applicable for the solution of ill-posed problems 
(see Wahba 1980) and 

Lif = I u(s)ds 

where the data functionals are regional averages (see 
Wahba and Dyn 1982). Perhaps the most interesting ap- 
plication from the statistical point of view is the esti- 
mation of (hyper) surfaces. Let f be a smooth function 
on a closed and bounded subset, say Q~, of d-dimensional 

Euclidean space, Rd. We choose Lif = f(ti) where ti E 
fQ, i = 1, 2, . .. , n. Here t is a d-dimensional vector. 
The (d + 1)-dimensional vector, (zi, ti) is observed and 
we desire to estimate f, nonparametrically from (zi, ti), 
i = 1, 2, . .. , n. In analogy with (3.1), our smoothing 
spline is the solution to the problem: 

in 
Minimize - n (f(tj) - zj)2 + X Jm(f) 

j= 1 

subject to f E Wm*, X > 0. (7.2) 

Here Wm* is the obvious generalization of Wm to d-di- 
mensions and J,,(f) is chosen as 

in in in 'f 2 
Jmn(f) = dx * dxd (7.3) 

i,,...,i i R'd daXil .. axijd 

In the particular case, d = m = 2, the smoothness penalty 
team becomes 

J(f) = 7 7, a 2f 2a2f a2f,dxd, J1 1 X 
ax12 2aXIaX2 

+ 
aX22 

dXldX2, 

which corresponds to the bending energy of a thin plate 
(the two-dimensional analog of a thin elastic beam). For 
this reason, the general class of solutions to (7.2) is known 
as the set of thin-plate smoothing splines. Duchon 
(1976a,b) has given an explicit representation for the so- 
lution to (7.2) and related work of Meinguet (1978,1979) 
has further characterized these solutions in a reproducing 
kernel Hilbert space setting. A more easily accessible 
description and proof of these characterization results 
may be found in the appendix of Wahba (1979b). 

Wahba (1979b) is also an excellent source for the de- 
scription the generalized cross-validation method for es- 
timating X in the multidimensional setting of (7.3). In par- 
ticular the algorithms for d = 2 are described and some 
numerical results are described. In a related paper, 
Wahba (1980b) discusses two-dimensional thin-plate 
splines and gives some interesting meteorological ex- 
amples. Wahba (1979a,1981) discusses convergence rates 
for multidimensional splines. In particular, the earlier 
study contains some heuristic arguments and conjectures, 
which suggests that thin-plate splines using generalized 
cross-validation can achieve mean squared error con- 
vergence rates comparable to the best obtainable rates in 
a nonparametric regression setting. See Stone 
(1980,1982). Following the meteorological motivation fur- 
ther, Wahba (1981) discusses splines on the surface of a 
sphere. Solutions to the analog of (7.2) on a sphere have 
an infinite series representation that is computationally 
inconvenient. Wahba also proposes an alternate quad- 
ratic functional for Jm(f) which gives rise to a practical 
pseudo-spline on the sphere. 

Geological, specifically mine engineering, applications 
have inspired techniques closely related to thin-plate 
splines. In attempting to estimate the quantity of ore in 
a deposit, core samples are taken at various points and 
surfaces are estimated. Estimates of the top and bottom 
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ore surfaces are made using a certain form of minimum 
variance unbiased estimation on homogeneous random 
fields, see Matheron (1973). Two-dimensional interpo- 
lation and smoothing methods based on Matheron's ho- 
mogeneous random fields are called kriging in the mining 
industry. Delfiner (1978) discusses the kriging estimates. 
By comparing the estimates in Delfiner (1978) and Du- 
chon (1976a), one can see that the kriging estimates, 
loosely speaking, solve the minimization problem (7.2) 
with d = 2 and m = 3/2, 5/2, .... The main difference 
between kriging as described by Delfiner (1978) and the 
thin-plate splines is the choice of X and m and how they 
are estimated. The books, Guarascio, David, and Hu- 
ijbregts (1976) and Rendu (1978) contain more extended 
discussions of kriging. In particular, D.G. Krige offers a 
historical perspective in Guarascio, David, and Huij- 
bregts. 

A somewhat different approach to surface estimation 
using splines is found in Friedman, Grosse, and Stuetzle 
(1980). The approach is based on projection pursuit al- 
gorithms (see also Friedman and Stuetzle 1981). An op- 
timal one-dimensional projection of the explanatory var- 
iable is sought and, using this one-dimensional projection, 
an ordinary one-dimensional spline fit is made. The pro- 
jection is optimal in some sense such as maximum ex- 
plained variance by the one-dimensional spline fit. The 
residuals from this optimal are then treated as a new data 
set and a second projection is sought. The second spline 
fit is added to the first and the residuals from this sum 
are treated as a third data set. The process is repeated 
until some appropriate stopping criterion is met. The re- 
sulting sum of splines is then the fit to the surface. This 
approach, while not optimal in the sense of (7.2), has the 
advantage of avoiding the "curse of dimensionality" in 
the sense that only one-dimensional splines are being fit- 
ted in every case. 

We close this section by noting that Wegman (1981) 
discusses vector-valued splines, that is, the case in which 
the range (as opposed to the domain) of f is Rd. So far 
as we know, no one has addressed the problem of esti- 
mating f when both range and domain are higher-dimen- 
sional (or non-Euclidean). 

8. SPLINE DENSITY ESTIMATION 

The nonparametric estimation of probability densities 
has received considerable attention in the last 25 years. 
See, for example, Rosenblatt (1971) or Wegman (1972a,b) 
for expository work in this area. Perhaps the most in- 
novative development in nonparametric density estima- 
tion since those papers has been the development of 
spline methods. Three essentially independent efforts oc- 
curred in 1971: the works of Boneva, Kendall, and Ste- 
fanov (1971), Wahba (1971), and Good and Gaskins 
(1971). We shall discuss each of these papers and their 
spinoffs in turn. In our discussions we will confine our- 
selves to density estimation based on an independent 
identically distributed sample. Spline estimation provides 

a very satisfying method for density estimation because 
of the following result: 

The solution f of the problem 

Minimize j (D..lf(x))2dx with f c WI 

and f(xi) = yi, i = 1, 2, ...,n 

and the solution g of the problem 

Minimize f (D"7-1 g(x))2dx with g E Wn 

and (D -'g)(xi) = yi, i = 1, 2,..., n 

are related by Df = g. 
This means an interpolating spline-fitted density may 

be obtained by differentiating the interpolating spline-fit- 
ted distribution. 

In an invited paper with discussion, Boneva, Kendall, 
and Stefanov (1971) laid out the fundamental theory of 
their histosplines, empirical densities that are smooth an- 
alogs of a histogram based on interpolating splines. 

Although the theory of histosplines is somewhat in- 
volved, a histospline is, in essence, an interpolating spline 
fitted to the usual histogram. Rather than viewing the 
histogram as a function on the real line, however, it is 
regarded as h, a sequence on the integers. More details 
may be found in Boneva, Kendall and Stefanov, whose 
paper also describes much empirical material on histo- 
spline behavior. 

It must be emphasized that since histosplines are in- 
terpolating splines based on the sample histogram, and 
not smoothing splines, we cannot expect this method in 
the presence of noise (sampling error) to be much better 
at filtering the noise than the histogram from which it is 
derived. 

This assertion is supported by the results of Wahba 
(1975b) who shows for her variant of the histospline that 
for the true density f E W,n and fn. the histospline cor- 
responding to a sample of size n 

E(fn(X) - f (X))2 = 0 (n -(2nl- )/21n) (8.1) 

In a companion paper Wahba (1975a) shows that the ex- 
pected mean square error at a point t has that same order 
of magnitude for all of the following estimation methods: 
the polynomial algorithm (Wahba 1971), kernel type es- 
timation, certain orthogonal series estimates and the or- 
dinary histogram. However, the constants covered by the 
O may be larger in these latter cases. 

The polynomial algorithm mentioned above was de- 
scribed in Wahba (1971), the second of the 1971 papers. 
An algorithm is described based on ordinary polynomial 
(Lagrange) interpolation. The empirical distribution is lo- 
cally interpolated by an mth-degree polynomial passing 
through the empirical distribution evaluated at m + 1 
adjacent order statistics. The density is the derivative of 
this interpolating polynomial. Mean squared error con- 
vergence rates are then discussed as above in (8.1). 
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The third of this trio of landmark 1971 papers was that 
of Good and Gaskins (1971), a paper on maximum pe- 
nalized likelihood estimators (MPLE). To consider this 
in detail we let H(a, b) be a manifold in LI(a, b). (Man- 
ifold = set of reasonably similar functions.) Suppose xi, 
. . . , xn is an iid sample from an unknown density f E 
L1 (a, b). Unfortunately, the following problem 

n 
Maximize L(f) = H f(xi) subject to 

i = 1 

(i) f E H(a, b) 
rb 

(ii) f(x)dx = 1 

(iii) f(x) - 0 for all x E (a, b), 

will not have a solution for most manifolds of interest (the 
unimodal or monotone functions are an exception). Spe- 
cifically, any manifold that contains an approximating se- 
quence to any linear combination of 8 functions has no 
maximum likelihood estimator for the density f. 

From heuristic Bayesian considerations, Good and 
Gaskins (1971) suggested adding a penalty term to the 
likelihood which would penalize unsmooth estimates. 
They chose a manifold and penalty function that leads to 
polynomial splines. Good's and Gaskin's results were re- 
fined and made rigorous by de Montricher, Tapia, and 
Thompson (1975). We can now describe the current state 
of the art. 

It will normally be the case that the manifold H(a, b) 
is contained in Wm(a, b) and that the penalty function 
,(f) = fb (Dmf(X))2dx. Let 

n 
L(f) = H f(xi)exp(- D(f)) 

i = 1 

and consider the following optimization problem: 

Maximize L(f) subject to 
(i) f E H(a, b) 

rb 
(ii) f(x)dx = 1 

(iii) f(x) - 0, x E (a, b) (8.2) 

The solution to (8.1) is the MPLE of the underlying den- 
sity. 

The task of computing the MPL Estimate of the density 
is greatly simplified by knowing the form the optimum 
must take. The following existence theorem is proved in 
the paper by de Montricher, Tapia, and Thompson (1975). 

Theorem. For m - 1, the MPLE corresponding to Wm 
exists, is unique, and is a polynomial spline of degree 2m 
- 1. Moreover, if the estimate is positive in the interior 
of an interval, then in this interval it is of degree 2m - 
1 and of continuity class 2m - 2 with knots at the sample 
points. 

From (Fisher) information-theoretic considerations, as 
well as a desire to avoid the awkward nonnegativity con- 
straint f(x) - 0, Good and Gaskins (1971) also considered 
the MPLE problem with manifold 

H(- oo, oo) = {f: f"l2 E WI ( - oo, oo)} 

(DI (f) Jot (Df(x))2 dx 

- 4 a f (Df(x)"12)2dx, (x > 0, (8.3) 

where f = (f 12)2 is to be the (necessarily positive) den- 
sity. After noting that the reformulation trick (8.3) is stan- 
dard in the literature, de Montricher, Tapia, and Thomp- 
son (1975) record conditions for its valid use. The authors 
go on to establish that the price of using the nonnegativity 
trick is to lose the polynomial spline form of solution, the 
solution being an exponential spline instead, with knots 
at the sample points. 

The paper of Good and Gaskins (1971) shows how one 
might prove that MPLE's are weakly consistent and also 
gives algorithms and some empirical material. In a much 
more recent paper, Good and Gaskins (1980) have fol- 
lowed up the 1971 paper and used the penalized likelihood 
methods in an exploratory data analysis mode as a 
method for bump-hunting. It is, of course, natural to ex- 
pect that the use of penalized likelihood methods and pe- 
nalized least squares splines are intimately related. In a 
very nice expository tract on this topic, Tapia and 
Thompson (1978) discuss the general problem of non- 
parametric penalized likelihood density estimation. 

We close this section by noting the papers by Lii and 
Rosenblatt (1975) and Lii (1978). These papers focus on 
cubic spline interpolators of the empirical distribution 
function. They show in some cases that tail behaviors of 
the spline interpolators are not as well behaved as some 
more standard density estimators. This behavior is re- 
lated to the specification of the boundary conditions. 

9. SPLINES IN TIME SERIES ANALYSIS 
Time series analysis is perhaps one of the richest dis- 

ciplines from the point of view of having many functions 
to estimate nonparametrically. The most obvious of these 
functions is the spectral density which, of course, bears 
many analogies to the probability density. A distinctive 
feature of the spectral density is its periodic character 
with period 2ir. This relatively inconspicous character- 
istic allows a somewhat more extensive spline theory to 
be developed. 

Cogburn and Davis (1974) in another landmark paper 
develop the theory of periodic smoothing splines with 
application to spectral density estimation. They assume 
a model of the form 

h(w) = f(wo) + e(wo), w E (0, 2'n) 

with 

f E Wm(0, 21T), E e(Xt) = 0, Xa E (0, 21T) 
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and 
E(E(WI) E(W2)) = (12 WI =W2 

=0 (i1 W2 

where h is observed either on a lattice of points or con- 
tinuously and the noise variance 0.2 is unknown. The 
asymptotic solution devised by Cogburn and Davis is 
very convenient to handle, and easy to compute since it 
avoids explicit optimization. 

In analogy with problem (3.1), Cogburn and Davis set 
out to solve the following problem: 

Minimize 1- 2 h + xf )Lf) 
nj=I nn 

subject to f E Wm(O, 21r) (9.1) 

The solution s to this problem is called the periodic lattice 
smoothing spline (LSS). When h is known for all w E (0, 
2'r), problem (9.1) is replaced with 

1 r2-f W)d r2T'f()d Minimize - (f(w) - ho))2dw + (Lf(w))2dw Tr 2O JO 

subject to f E Wm(O, 27T). (9.2) 

The solution to (9.2) is called the periodic continuous 
smoothing spline (CSS). Cogburn and Davis discuss al- 
gorithms for fitting the LSS and CSS. We summarize the 
final form. 

Let P(u) be the characteristic polynomial of L, say, P(u) 
= um + y1-y I um + +m and let Q(k) = I P(ik) 12, i 
= \/_i. Take A = 1/&m2m, qnJ = 1 + Q(j) [I,o 1IQ(j 
+ 2nl)], and let 

ot2m 

an, otJ (Q(j + .2in ) |j|'n 2n ~~~qn,,r I Ki 
and an,= - (Q(j)IQ(l)) an,a for I E{j 2n,j + 4n,.. 
| j | c n. Then the LSS to h is given by the (discrete) 
convolution 

h* Sn ,(W) = > h (tn ) sn,j io) 

where Sn,a(W) = I?k'=-x an,o, k eikw. Letting 

x2m 
aotj = lim n ant, =2 + k2m) 2(Q(l)+ 2) 

and s,(w) = (1/rr) E a,,, eikw, we can closely approximate 
n Sn(,(w) by 7r s,(w). The CSS to h is given by the con- 
volution 

r2' 

h *s(w) = h(x) s,(w - x)dx. (9.3) 

If it is known that the function f to be estimated has 
derivatives of order m, but no specific operator L is 
known, a natural choice is L = Dm; in which case s,(w) 
becomes 

1(() 2 E 2 +0 2 n eIw (9.4) 

Writing 
1 c ot 2m 

ei d 
2(? 

= 2 2 2m + y2m eiY dy 

and 

tot(W) = ~ tot((i) + 2kT), 

it is shown that h *s.,(w) = h *tot(w) = f> h(y)t.(w - 
y)dy. 

These results of Cogburn and Davis are particularly 
valuable because they are computationally easy and they 
facilitate further theoretical investigation by giving the 
LSS and CSS in a closed form. The remainder of Cogburn 
and Davis is devoted to using the periodic spline structure 
to estimate spectral densities. 

Let Xi, X2, X3, . . . be a second-order stationary sto- 
chastic process with EXk = 0 and EXjXj?k = Uk. The 
Uk are Fourier coefficients of a symmetric (spectral) dis- 
tribution function, F, on (- -7, 7i). When F is absolutely 
continuous, it is completely determined by its spectral 
density 

f(w) = DF(w)= E arje'j, X E (--, IT) 
j= -_ 

The statistical problem is to estimate f(w) on the basis of 
a time series X1, . . ., X,. The periodogram 1(w) is de- 
noted by 

n-I 

1(wt) - E ake, w E (- _X, r) 
k= -n+ I 

with 
1 n-k 

=f k = Xjxi+kg k = 0, 1, 2, . .. , n - 1. 
n j=, 

Since the periodogram is not a statistically consistent es- 
timator of f, some modification is required. Smoothed 
estimators of f(w) are obtained by smoothing the perio- 
dogram 

f(w) IJ (x)K(w - x)dx (9.5) 

or by weighting the covariances by a lag window k,e(j) 
giving 

1x 
f(w) = j- k(j) r1eii, w E (-Er, r) (9.6) 

2,a j= O 

where 
1 

K(w) = y k(j)eiJw, w E (-r, ir). 

The parallels of (9.3) with (9.5) and of (9.4) and (9.6) 
make clear the connection of periodic splines with kernel 
smoothers. In fact, (9.4) shows that the optimal lag win- 
dow (measured against the criterion in (9.2) is, in fact, 

k(j) 2 rn m ? + +2, 2 (9.7) 
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where, of course, A = a - 2m is the smoothing parameter. 
We note parenthetically that Parzen (1958) some 16 years 
prior to the Cogburn and Davis article had suggested the 
kernel in (9.7) as one having asymptotic efficiency of one. 
In a personal communication, Parzen indicated that he 
did not realize the connection with splines and had dis- 
missed it then because of computational limitations. 

The periodic smoothing splines, as we have seen, have 
an intimate connection with window estimators. Unfor- 
tunately, they do not fit well into the linear model, h(w) 
= f(w) + E(w), as initially posited in this section. In fact, 
it is well known that 

2I(w) - 
f(w) 

say, is asymptotically chi-squared with two degrees of 
freedom for w E (-r, '), w $X 0. Thus a multiplicative 
model is more appropriate, or equivalently, a linear, ad- 
ditive model in logarithms 

log I(w) = log f(W) + E * (w) 

The log f(w) is the so-called cepstrum. Wahba and Wold 
(1975b) and Wahba (1979c) discuss the use of periodic 
splines and cross-validation methods for estimating the 
cepstrum. Wahba, in particular, shows that an unbiased 
estimate of the expected integrated mean squared error 
can be obtained as a function of the smoothing parameter, 
X. Results of Monte Carlo experiments are given as well. 

In Wegman (1980a, 1981), the periodic splines of Cog- 
burn and Davis are extended to the estimation of a vector- 
valued function. The results are applied not only to the 
estimation of spectral density matrices, but to a variety 
of other time series functions including phase, gain co- 
herency, cepstrum, transfer function, and impulse re- 
sponse functions. 

The estimation of time series functions was explored 
in a different direction by Peele and Kimeldorf (1977,1979) 
in a pair of papers we think are too little appreciated. If 
T C I are sets of real numbers, then we let X, t C I be 
a real time series whose mean function is unknown but 
whose covariance kernel is assumed known. For each i 
E I, Xi is predicted by a minimum mean squared error 
unbiased linear predictor Xi based on {X,: t E I}. If xi is 
the evaluation of Xi based on a set of observations, the 
function X is called the prediction function. Mean esti- 
mation functions are defined by the authors in a similar 
way. For certain prediction and estimation problems, 
Peele and Kimeldorf characterized these functions in 
terms of the covariance structure of the process. In par- 
ticular X is shown to be a spline function interpolating a 
convex set. 

We believe the results of Peele and Kimeldorf are im- 
portant ones. Box and Jenkins (1970) have widely pop- 
ularized an approach to time series analysis based on the 
autoregressive-moving average (ARMA) model. For 
(mean) nonstationary time series, they find it useful to 
repeatedly difference the time series until apparent non- 
stationarities are removed. 

The Peele-Kimeldorf procedure of fitting a spline is an 
interesting alternative to this differencing procedure. 

The papers of Peele and Kimeldorf are extensions of 
a very important paper by Kimeldorf and Wahba (1970a). 
In an L-spline setting they take B = [bjk] to be a positive 
definitive matrix with inverse B - 1 _ [bjk]. 

Problem I: Find f E W -? o, o?) which minimizes 

E (f(tj) - yj) bik (f(tk) - Yk) + f (Lf (t))2 dt. 
j,k - 

Problem II: Find f with f(t) = E(X, I Y,, * Ytn) 
where Yj = Xtj +Ej with E j- n(O, B) and Xt is a stationary 
Gaussian autoregressive process of order m. 

Kimeldorf and Wahba show that the solution f of Prob- 
lems I and II is the same function. They then go on to 
give a Bayesian interpretation. 

A somewhat different time series/regression problem 
is addressed by Sacks and Ylvisaker (1966,1968,1970) and 
later by Eubank, Smith, and Smith (1981). They consider 
a stochastic process 

Y, = f(t) + Xt, t E [0, 1] 

where 3 is an unknown parameter, f is a known regres- 
sion function, and Xt is a zero mean stochastic process 
with covariance function u(s, t). For finite sampling 
schemes, the regression design problem (cf Section 4) for 
estimating 3 has been addressed by Sacks and Ylvisaker 
(1966). They consider the problem of selecting a set of n 
distinct design points, {t1, . . ., tn, in the interval [0, 1] 
so that f3(y.,, . ..., yt,,) is the best linear unbiased esti- 
mator of 3 obtained by taking observations in the design 
set. For certain functions f and covariance functions o(s, 
t) they show the existence of optimal designs. There are 
difficulties constructing optimal designs and the authors 
are led to the construction of asymptotically optimal de- 
signs. Eubank, Smith, and Smith (1981) draw on some 
uniqueness results (see Barrow and Smith 1978), which 
show that the best L2 approximation of a certain class of 
functions by piecewise polynomials with variable knots 
is unique. Eubank, Smith, and Smith show that solving 
the approximation problem is equivalent to finding the 
optimal design. 

We note in closing this section that the literature in 
system theory and control has many parallels to time se- 
ries analysis. Splines have become quite fashionable in 
that literature. 

10. ISOTONE AND RELATED SPLINES 

The theory of isotonic regression, also known as sta- 
tistical inference under order restrictions, has received 
some attention over the years, but, we believe, has not 
fulfilled its full promise, partly because isotone estimators 
have disappointing continuity properties. However, be- 
cause they share a fairly similar theoretical structure, the 
marriage of isotonic estimators with splines provides a 
nice vehicle for improving the continuity properties of 
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isotonic estimates. A general exposition of the theory of 
isotonic regression may be found in Barlow et al. (1972). 

To summarize briefly, we let < be a partial order (re- 
flexive, transitive and antisymmetric) or a quasi-order 
(reflexive and transitive only) and let be the natural 
order on the real line. A function f: R R is said to be 
isotone if it preserves the order; that is, if Xl, X2 E R with 
xI < X2, then f(xI) ? f(x2). The general statistical problem 
is to estimate f from data in such a way that the estimator 
preserves the order; that is, the estimator is isotone. The 
set of isotone functions (call it W,) is a closed, convex 
subset of L2, and plays a role very analogous to W,n in 
spline theory. The penalized least squares spline is the 
(penalized) projection of the "data" onto W,n while the 
isotone estimator is the projection of the "data" onto W,. 
The parallels between isotonic inference and spline the- 
ory are described at some length in Wegman (1980b). 

The most frequently used examples of isotonicity in- 
clude ordinary monotonicity and unimodality although, 
of course, there are many other examples as well. Wright 
and Wegman (1980) characterize isotonic functions by a 
continuous linear map, F, which maps W,n into L2 and 
which commutes with D; that is, D(Ff) = F(Df). A par- 
tial order, >, on W,m is defined by f > 0 if and only if 
(Ff) (x) - 0 for every x E [0, 1]. The authors go on to 
show that a number of isotonic conditions on f can be 
characterized in this manner including nonnegativity, 
monotonicity, convexity, unimodality, and other com- 
pound order requirements. They then consider optimi- 
zation problems of this sort: 

Minimize f (Dmf(x))2dx subject to 

(i) f E W,I? 

(ii) f > 0 

(iii) oi ' f (xi) 'f3i, i = 1, 2, ... , n. (10.1) 

The main thrust of these authors is to show existence and 
a characterization of the solution to problem (10.1) as a 
2m - 1 degree polynomial spline. The latter paper goes 
on to give a statistical interpretation as a regression 
model, to give statistical consistency results and to make 
some remarks on computational algorithms. The recent 
paper of Laurent (1980) speaks in more detail to the prob- 
lem of computation of restricted splines. 

It is, in general, not too hard to believe that such is- 
otonic splines should exist, since Wm n W1 forms an ideal 
set over which to optimize. Computational algorithms are 
clearly the stumbling block in further development of the 
theory of isotone splines. When such algorithms become 
available we believe that smooth, order-preserving non- 
parametric estimators will substantially enhance the ef- 
ficiency of estimation procedures currently in use. 

The work of Wright and Wegman frames the isotonic 
spline problem in a general setting, but a number of pa- 
pers attacking more limited problems in other settings 
have been published. Passow (1974) proves the existence 

of piecewise monotone spline interpolators. In a follow- 
up paper, Passow and Roulier (1977) focus on monotone 
and convex spline interpolation existence and character- 
ization. All of these papers describe solutions to parts of 
the general optimization problem: 

j-I 

Minimize J (Dmf(x))2dx subject to 

(i) f E Wm 

(ii) f > 0 

(iii) f(xi) = yi, i = 1, 2, ... , n. 

In work more closely related to the regression splines of 
Section 4, De Vore (1977) describe monotone approxi- 
mation by splines and Chui, Smith, and Ward (1980) de- 
scribe techniques for the calculation of spline approxi- 
mations to monotone nondecreasing functions using 
equally spaced knots. 

11. GENERAL CONCLUDING REMARKS 

We have attempted in this article to survey some of the 
uses of splines in statistics. In particular, splines may be 
regarded in some sense as optimal, nonparametric func- 
tion estimators. The richness and diversity of points of 
view are evident by the extent of our list of references. 
Summarizing all of these references adequately is a task 
whose scope was not at first evident to us, but became 
clearer as we attempted to digest all of this material. No 
doubt in many respects we have failed, but we hope our 
perspective will stimulate interest and research in this 
very interesting and useful area. 
There is no doubt that many interesting research prob- 

lems abound. The computational issues, for example, are 
still largely undetermined. We have mentioned connec- 
tions with isotonic methods and robust methods. The de- 
velopment of the theory of isotonic splines and of robust 
splines is still wide open. We mention the possibility of 
estimating functions in a reliability, a demographic, and 
a biomedical setting. The applications are completely un- 
touched as far as we know. The applications to geology, 
geography, meteorology, and remote sensing at this stage 
are almost mere speculations made by a few knowledge- 
able persons. Even in the more well-exploited areas such 
as regression, there are many problems. The multidi- 
mensional surface estimation work, for example, has 
been developed largely in the last few years and has been 
largely the work of a handful of investigators. Generally 
speaking, statistical properties of any type of splines are 
not well developed. This is particularly true in terms of 
small-sample properties. Their use as smoothers in an 
exploratory data analysis context is, as far as we know, 
completely unexploited. We note also that McClure and 
Geman in a personal communication report that splines 
are a special case of nonparametric estimation by the 
method of sieves. (See Geman and Hwang 1982). They 
are currently exploring this new methodology, but it also 
is not yet developed. We believe the time is ripe for the 
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study of splines and we hope this article will help crys- 
tallize thoughts in this direction. 

[Received June 1981. Revised August 1982.] 

REFERENCES 
AGARWAL, G.G., and STUDDEN, W.J. (1978), "Asymptotic Design 

and Estimation Using Linear Splines," Communications in Statistics: 
Simulation and Computation B, 7, 309-320. 

AHLBERG, J.H., NILSON, E.N., and WALSH, J.L. (1967), The The- 
ory of Splines and Their Applications, New York: Academic Press. 

AMOS, D., and SLATER, M. (1969), "Polynomial and Spline Ap- 
proximation by Quadratic Programming," Communications of the As- 
sociation for Computing Machinery, 12, 379ff. 

ANDERSSEN, R., BLOOMFIELD, P., and McNEIL, D. (1974), 
"Spline Functions in Data Analysis," Technical Report 69, Princeton 
University, Department of Statistics. 

ANSELONE, P.M., and LAURENT, P.J. (1968), "A General Method 
for the Construction of Interpolating or Smoothing Spline Functions," 
Numerische Mathematik, 12, 66-82. 

ARONSZAJN, N. (1950), "Theory of Reproducing Kernels," Trans- 
actions of the American Mathematical Society, 68, 337-404. 

ATTEIA, M. (1968), "Fonctions (Spline) Definies Sur un Ensemble 
Convexe," Numerische Mathematik, 12, 192-210. 

(1970), "Fonctions Spline et Noyaux Reproduisants d'Aronszajn 
et Bergman," Revue Frangaise d'Informatique et de Recherche Op- 
erationelle, R3, 31-43. 

BARLOW, R.E., BARTHOLOMEW, D.J., BREMNER, J.M., and 
BRUNK, H.D. (1972), Statistical Inference Under Order Restric- 
tions, New York: John Wiley. 

BARROW, D.L., and SMITH, P.W. (1978), "Asymptotic Properties of 
Best L2 (0, 1) Approximation by Splines with Variable Knots," Quart- 
erly of Applied Mathematics, 36, 293-304. 

BONEVA, L., KENDALL, D., and STEFANOV, I. (1971), "Spline 
Transformations: Three New Diagnostic Aids for the Data Analyst," 
Journal of the Royal Statistical Society, Ser. B, 33, 1-70. 

BOX, G.E.P., and JENKINS, G.M. (1970), Time Series Analysis, Fore- 
casting and Control, San Francisco: Holden-Day. 

BUSE, A., and LIM, L. (1977), "Cubic Splines as a Special Case of 
Restricted Least Squares," Journal of the American Statistical As- 
sociation, 72, 64-68. 

CHUI, C.K., SMITH, P.W., and WARD, D.J. (1980), "Degree of Lp 
Approximation by Monotone Splines," SIAM Journal of Mathe- 
matical Analysis, 11, 436-447. 

CLARK, R.M. (1977), "Nonparametric Estimation of Smooth Regres- 
sion Function," Journal of the Royal Statistical Society, Ser. B, 39, 
107-113. 

COGBURN, R., and DAVIS, H.T. (1974), "Periodic Splines and Spec- 
tral Estimation," Annals of Statistics, 2, 1108-1126. 

COPLEY, P., and SCHUMAKER, L.L. (1978), "On pLg-Splines," 
Journal of Approximation Theory, 23, 1-28. 

CRAVEN, P., and WAHBA, G. (1979), "Smoothing Noisy Data With 
Spline Functions: Estimating the Correct Degree of Smoothing by the 
Method of Generalized Cross-Validation," Numerische Mathema- 
tick, 31, 377-403. 

DANIEL, J.W., and SCHUMAKER, L.L. (1974), "On the Closedness 
of the Linear Image of a Set With Application to Generalized Spline 
Functions," Applicable Mathematics, 4, 191-205. 

DELFINER, P. (1978), "The Intrinsic Model of Order k," Ecole des 
Mines De Paris, Summer School Notes. 

DEREK, J. (1966), "Fitted Segmented Curves Whose Joint Points Have 
to be Estimated," Journal of the American Statistical Association, 
61, 1097-1129. 

DE VORE, R. (1977), "Monotone Approximation by Splines," SIAM 
Journal of Mathematical Analysis, 8, 891-905. 

DRAPER, N.R., GUTTMAN, I., and LIPOW, P. (1977), "All-Bias De- 
signs for Splines Joined at the Axes," Journal of the American Sta- 
tistical Association, 72, 424-429. 

DUCHON, J. (1976a), "Interpolation des Fonctions de Deux Variables 
Suivant le Principe de la Flexion des Plaques Minces," R.A.I.R.O. 
Analyse Numerique, 10, 12, 5-12. 

(1976b), "Fonctions Spline du Type 'Plaque Mince' en Dimen- 
sion 2," No. 231, Seminaire d'analyse Numerique, Mathematiques 
Appliquees, University Scientifique et Medicale de Grenoble. 

ERTEL, J.E., and FOWLKES, E.B. (1976), "Some Algorithms for 

Linear Spline and Piecewise Multiple Linear Regression," Journal 
of the American Statistical Association, 71, 640-648. 

EUBANK, R., SMITH, P.L., and SMITH, P.W. (1981), "Uniqueness 
and Eventual Uniqueness of Optimal Designs in Some Time Series 
Models," Annals of Statistics, 9, 486-493. 

FLEISHER, J. (1979), "Spline Smoothing Routines," Reference Man- 
ual for the 1110, Academic Computer Center, The University of Wis- 
consin, Madison. 

FRIEDMAN, J., GROSSE, E., and STUETZLE, W. (1980), "Multi- 
dimensional Additive Spline Approximation," SLAC PUB-2504, 
Stanford University. 

FRIEDMAN, J., and STUETZLE, W. (1981), "Projection Pursuit 
Regression," Journal of the American Statistical Association, 76, 
817-823. 

FULLER, WAYNE A. (1969), "Grafted Polynomials as Approximating 
Functions," Australian Journal of Agricultural Economics, 13, 35- 
46. 

GALLANT, R., and FULLER, W. (1973), "Fitting Segmented Poly- 
nomial Regression Models Whose Join Points have to be Estimated," 
Journal of the American Statistical Association, 68, 144-147. 

GAMBER, H. (1979a), "Choice of an Optimal Shape Parameter When 
Smoothing Noisy Data," Communications in Statistics: Theory and 
Methods, 14, 1425-1435. 

(1979b), "Confidence Regions for Periodic Functions," Com- 
munications in Statistics: Theory and Methods, 14, 1437-1446. 

GEMAN, S., and HWANG, C.R., (1982), "Nonparametric Maximum 
Likelihood Estimation by the Method of Sieves," Annals of Statistics, 
10, 401-414. 

GOLUB, G., HEATH, M., and WAHBA, G. (1979), "Generalized 
Cross Validation as a Method for Choosing a Good Ridge Parameter," 
Technometrics, 21, 215-224. 

GOOD, I.J., and GASKINS, R.A. (1971), "Non-Parametric Roughness 
Penalties for Probability Densities," Biometrika, 58, 255-277. 

- (1980), "Density Estimation and Bump-Hunting by Penalized 
Likelihood Method Exemplified by Scattering and Meteorite Data" 
(invited paper with discussion), Journal of the American Statistics 
Association, 75, 42-73. 

GREVILLE, T.N.E. (ed.) (1969), Theory and Application of Spline 
Functions, New York: Academic Press. 

GUARASCIO, M., DAVID, M., and HUIJBREGTS, C. (eds.) (1976), 
Advanced Geostatistics in the Mining Industry, D. Reidel, Dordrecht- 
Holland. 

HUBER, P.J. (1964), "Robust Estimation of a Location Parameter," 
Annals of Mathematical Statistics, 35, 73-101. 

KARLIN, S., MICHELLI, C.A., PINKUS, A., and SCHOENBERG, 
I.J. (1976), Studies in Spline Functions and Approximation Theory, 
New York: Academic Press. 

KIMELDORF, G.S., and WAHBA, G. (1970a), "A Correspondence 
Between Bayesian Estimation on Stochastic Processes and Smooth- 
ing by Splines," Annals of Mathematical Statistics, 41, 495-502. 

(1970b), "Spline Functions and Stochastic Process," Sankhya 
(A), 32, 173-180. 

(1971), "Some Results on Tchebycheffian Spline Functions," 
Journal of Mathematical Analysis and Application, 33, 82-94. 

LAURENT, P.J. (1969), "Construction of Spline Functions in a Convex 
Set," Approximation with Special Emphasis on Spline Functions (ed. 
I.J. Schoenberg), New York: Academic Press, 415-446. 

(1972), Approximation et Optimisation, Paris: Hermann. 
(1980), "An Algorithm for the Computation of Spline Functions 

with Inequality Constraints," Laboratorie de Mathematiques Appli- 
quees, Universite de Grenoble. 

LENTH, R.V., (1977), "Robust Splines," Communications in Statis- 
tics: Theory and Methods, 6, 847-854. 

LII, K.S. (1978), "A Global Measure of a Spline Density Estimate," 
Annals of Statistics, 6, 1138-1148. 

LII, K.S., and ROSENBLATT, M. (1975), "Asymptotic Results on a 
Spline Estimate of a Probability Density," Stochastic Processes and 
Their Applications, 2, 77-86. 

LYCHE, T., and SCHUMAKER, L.L. (1973), "Computation of 
Smoothing and Interpolating Spline via Local Basis," SIAM Journal 
Numerical Analysis, 10, 1027-1038. 

MANGASARIAN, O.L., and SCHUMAKER, L.L. (1969), "Spline via 
Optimal Control," Approximations with Special Emphasis on Spline 
Functions (ed. I.J. Schoenberg), New York: Academic Press, 119- 
156. 

MATHERON, G. (1973), "The Intrinsic Random Functions and Their 
Applications," Advances in Applied Probability, 5, 439-468. 



364 Journal of the American Statistical Association, June 1983 

MEINGUET, J. (1978), "Multivariate Interpolation at Arbitrary Points 
Made Simple," Report No. 118, Institute de Mathematique Pure et 
Appliquee, Universite Catholique de Louvain, to appear ZAMD. 

(1979), "An Intrinsic Approach to Multivariate Spline Inter- 
polation at Arbitrary Points," Proceedings of the Nato Advanced 
Study Institute on Polynomial and Spline Approximation, Calgary, 
1978. 

MERZ, P. (1978), "Spline Smoothing by Generalized Cross-Validation, 
a Technique for Data Smoothing," Chevron Research Company, 
Richmond, CA. 

DEMONTRICHER, G.F., TAPIA, R.A., and THOMPSON, J.R. 
(1975), "Non-Parametric Maximum Likelihood Estimation of Prob- 
ability Densities by Penalty Function Methods," Annals of Statistics, 
3, 1329-1348. 

MURTY, V.N. (1971), "Optimal Designs with a Single Multiple Knot 
at the Center," Annals of Mathematical Statistics, 42, 952-960. 

PAIHUA-MONTES, L. (1979), Quelques Methodes Numeriques Pour 
le Calcul de Fonctions Splines a Une et Plusiers Variable, Thesis, 
Universite Scientifique et Medicale de Grenoble. 

PARK, S.H. (1978), "Experimental Designs for Fitting Segmented 
Polynomial Regression Models," Technometrics, 20, 151-154. 

PARZEN, E. (1958), "On Asymptotically Efficient Consistent Esti- 
mates of the Spectral Density Function of a Time Series," Journal 
of the Royal Statistical Society, Ser. B, 20, 303-322. 

(1961), "An Approach to Time Series Analysis," Annals of 
Mathematical Statistics, 32, 951-989. 

PASSOW, E. (1974), "Piecewise Monotone Spline Interpolation," 
Journal of Approximation Theory, 12, 240-241. 

PASSOW, E., and ROULIER, J.A. (1977), "Monotone and Convex 
Spline Interpolation," SIAM Journal Numerical Analysis, 14, 904- 
909. 

PEELE, L., and KIMELDORF, G. (1977), "Prediction Functions and 
Mean Estimation Functions for a Time Series," Annals of Statistics, 
5, 709-721. 

(1979), "Time Series Prediction Functions Based on Imprecise 
Observations," Annals of Statistics, 7, 801-811. 

POIRER, D.J. (1973), "Piecewise Regression Using Cubic Splines," 
Journal of the American Statistical Association, 68, 515-524. 

PRENTER, P.M. (1975), Splines and Variational Methods, New York: 
John Wiley. 

REINSCH, C.H. (1967), "Smoothing by Spline Functions I," Numer- 
ische Mathematik, 10, 177-183. 

- (1971), "Smoothing by Spline Function II," Numerische Math- 
ematik, 16, 451-454. 

RENDU, J.-M. (1978), An Introduction to Geostatistical Methods of 
Mineral Evaluation, South African Institute of Mining and Metal- 
lurgy, Johannesberg. 

RITTER, K. (1969), "Generalized Spline Interpolation and Non-Linear 
Programming," Approximation w,ith Special Emphasis on Spline 
Functions, (ed. I.J. Schoenberg), New York: Academic Press, 75- 
118. 

ROSENBLATT, M. (1971), "Curve Estimates," Annals of Mathe- 
matical Statistics, 42, 1815-1842. 

SACKS, J., and YLVISAKER, D. (1966), "Designs for Regression 
Problems with Correlated Errors," Annals of Mathematical Statis- 
tics, 37, 66-89. 

(1968), "Designs for Regression Problems with Correlated Er- 
rors: Many Parameters," Annals of Mathematical Statistics, 39, 49- 
69. 

(1970), "Designs for Regression Problems With Correlated Er- 
rors: III," Annals of Mathematical Statistics, 41, 2057-2074. 

SCHOENBERG, I.J. (1964), "Spline Functions and the Problem of 
Graduation," Proceedings of the National Academy of Sciences of 
the U.S.A., 52, 947-950. 

SCHOENBERG, I.J. (ed.) (1969), Approximnations wvith Special Em- 
phasis on Spline Functions, New York: Academic Press. 

SCHULTZ, M., and VARGA, R. (1967), "L-Splines," Numerische 
Mathematik, 10, 345-369. 

SMITH, PATRICIA (1979), "Splines as a Useful and Convenient Sta- 
tistical Tool," The American Statistician, 33, 57-62. 

SPECKMAN, P. (1983), "Splines Smoothing and Optimal Rates of Con- 
vergence in Nonparametric Regression Models," to appear Annals 
of Statistics 

STONE, C. (1980), "Optimal Rates of Convergence for Nonparametric 
Estimators," Annals of Staltistics, 8, 1348-1360. 

(1982), "Optimal Global Rates of Convergence for Nonpara- 
metric Regression," Annals o)f Statistic s, 10, 1040-1053. 

STUDDEN, W., and VAN ARMAN, D. (1969), "Admissible Designs 
for Polynomial Spline Regression," Annals of Mathematical Statis- 
tics, 40, 1557-1569. 

TAPIA, R.A., and THOMPSON, J.R. (1978), Nonparametric Proba- 
bility Density Estimation, Baltimore: Johns Hopkins University 
Press. 

UTRERAS-DIAS, F. (1979), "Cross-Validation Techniques for 
Smoothing Spline Functions in One or Two Dimensions," Smoothing 
Techniques for Curve Estimation (eds. T. Gasser and M. Rosenblatt), 
Berlin: Springer-Verlag, 196-232. 

WAHBA, G. (1971), "A Polynomial Algorithm for Density Estima- 
tion," Annals of Mathematical Statistics, 42, 1870-1886. 

(1973), "On the Minimization of a Quadratic Functional Subject 
to a Continuous Family of Linear Inequality Constraints," SIAM 
Journal of Control, 11, 64-79. 

(1975a), "Optimal Convergence Properties of Variable Knot, 
Kernel and Orthogonal Series Estimates for Density Estimation," 
Annals of Statistics, 3, 15-29. 

(1975b), "Interpolating Spline Methods for Density Estimation 
I, Equi-Spaced Knots," Annals of Statistics, 3, 30-48. 

(1975c), "Smoothing Noisy Data by Spline Functions," Nu- 
merische Mathematik, 24, 383-393. 

(1976), "A Survey of Some Smoothing Problems and the 
Method of Generalized Cross-Validation for Solving Them," Appli- 
cations of Statistics (ed. P.R. Krishnaiah), North Holland, 507- 
524. 

(1977), "Practical Approximate Solutions to Linear Operator 
Equations When the Data are Noisy," SIAM Journal Numerical 
Analysis, 14, 651-667. 

(1978), "Improper Priors, Spline Smoothing and the Problem of 
Guarding Against Model Errors in Regression," Jouirnal of the Royal 
Statistical Society, Ser. B, 40, 364-372. 

(1979a), "Convergence Rates of 'Thin Plate' Smoothing Splines 
When the Data are Noisy," Smoothing Techniques for Curve Esti- 
mation, (eds. T. Gasser and M. Rosenblatt), Berlin: Springer-Verlag, 
233-245. 

(1979b), "How to Smooth Curves and Surfaces with Splines and 
Cross-Validation, " Proceedings of the 24th Conference on the Design 
of Experiments, U.S. Army Research Office, Report 79-2. 

(1979c), "Automatic Smoothing of the Log Periodogram," Jour- 
nal of the American Statistical Association, 75, 122-132. 

(1980a), "On Mildly, Moderately and Severely Ill-posed Prob- 
lems," Proceedings of the International Symposiumn Ill-posed Prob- 
lems (ed. M.Z. Nashed). 

(1980b), "Spline Bases, Regularization, and Generalized Cross- 
validation for Solving Approximation Problems with Large Quantities 
of Noisy Data," Proceedings of the International Conference on Ap- 
proximation Theory in Honor of George Lorenz, Jan. 8-10, Austin, 
TX, (ed. Ward Cheney), Academic Press. 

(1981), "Spline Interpolation and Smoothing on the Sphere," 
SIAM Journal of Scientific and Statistical Compuiting, 2, 5-16. 

WAHBA, G., and DYN, N. (1982), "On the Estimation of Functions 
of Several Variables from Aggregated Data," SIAM Journal of Math- 
ematical Analysis, 13, 134-152. 

WAHBA, G., and MICCHELI, C. (1981), "Problems for Optimal Sur- 
face Interpolation," Approximation Thleoty and Applications, ed. Z. 
Ziegler, New York: Academic Press. 

WAHBA, G., and WENDELBERGER, J. (1980), "Some New Math- 
ematical Methods for Variational Object Analysis Using Splines and 
Cross-validation," Monthly Weather Reviev, 108, 36-57. 

WAHBA, G., and WOLD, S. (1975a), "A Completely Automatic 
French Curve: Fitting Spline Functions by Cross-Validation," Com- 
munications in Statistics, 4, 1-17. 

(1975b), "Periodic Splines for Spectral Density Estimation: The 
Use of Cross-validation for Determining the Degree of Smoothing," 
Communications in Statistics, 4, 125-141. 

WEGMAN, E.J. (1972a), "Nonparametric Probability Density Esti- 
mation, I. A. Summary of Available Methods," Technometrics, 14, 
533-546. 

(1972b), "Nonparametric Probability Density Estimation, II. A 
Comparison of Density Estimation Methods," Journal of Statistical 
Computation and Simulation, 1, 225-245. 

(1980a), "Optimal Estimation of Time Series Functions," IEEE 
Transactions on Acoustics, Speech, - nd Signal Processing, ASSP- 
28, 763-767. 

(1 980b), "Two Approaches to Nonparametric Regression: 
Splines and Isotonic Inference," RecXent Developments in Statistical 



Wegman and Wright: Splines in Statistics 365 

Inference and Data Analysis (ed. K. Matusita), North-Holland, 323- 
334. 

(1981), "Vector Splines and the Estimation of Filter Functions," 
Technometrics, 23, 83-89. 

WEINERT, H.L. (1980), "Statistical Methods in Optimal Curve Fit- 
ting," Advanced Concepts in Ocean Measurements for Marine Bi- 

ology (eds. F.P. Diemer, F.J. Vernberg, D.Z. Mirkes), Columbia, 
S.C.: U. of South Carolina Press. 

WOLD, S. (1974), "Spline Functions in Data Analysis," Technorne- 
trics, 16, 1-11. 

WRIGHT, I.W., and WEGMAN, E.J. (1980), "Isotonic, Convex and 
Related Splines," Annals of Statistics, 8, 1023-1035. 


	Article Contents
	p. 351
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358
	p. 359
	p. 360
	p. 361
	p. 362
	p. 363
	p. 364
	p. 365

	Issue Table of Contents
	The Journal of Wildlife Management, Vol. 44, No. 4 (Oct., 1980), pp. 773-990+i-xiv
	Front Matter [pp. ]
	Applications
	Combining Historical and Randomized Controls for Assessing Trends in Proportions [pp. 221-227]
	An Estimation Procedure for the Contaminated Normal Distributions Arising in Clinical Chemistry [pp. 228-237]
	Reproductive Response to Child Mortality: A Maximum Likelihood Estimation Model [pp. 238-248]
	Evaluating a Hospital Cost-Containment Program in a Paired Experiment [pp. 249-256]
	Evaluating a Hospital Cost-Containment Program in a Paired Experiment: Comment [pp. 256-257]
	Small-Sample Properties of Predictions from the Regression Model with Autoregressive Errors [pp. 258-263]
	A Reanalysis of the Stanford Heart Transplant Data [pp. 264-274]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 275-277]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 277-281]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 282-285]
	A Reanalysis of the Standford Heart Transplant Data: Comment [pp. 286-287]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 288]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 288-290]
	A Reanalysis of the Stanford Heart Transplant Data: Comment [pp. 290]
	A Reanalysis of the Stanford Heart Transplant Data: Rejoinder [pp. 291-292]

	Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species [pp. 293-308]
	Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species: Comment [pp. 308-310]
	Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species: Comment [pp. 310-311]
	Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species: Comment [pp. 312-313]
	Bayes Methods for Combining the Results of Cancer Studies in Humans and Other Species: Rejoinder [pp. 313-315]
	Theory and Methods
	Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation [pp. 316-331]
	Testing for Random Pairing [pp. 332-336]
	Estimating the Relative Risk with Censored Data [pp. 337-341]
	On Testing Monotone Tendencies [pp. 342-350]
	Splines in Statistics [pp. 351-365]
	The Hunter Method of Simultaneous Inference and Its Recommended Use for Applications Having Large Known Correlation Structures [pp. 366-370]
	Low Median and Least Absolute Residual Analysis of Two-Way Tables [pp. 371-374]
	A Unified Treatment of Locally Most Powerful Rank Tests Under Type II Censoring [pp. 375-381]
	Nonparametric Estimation for a Scale-Change with Censored Observations [pp. 382-388]
	On Sequential Detection of a Shift in the Probability of a Rare Event [pp. 389-395]
	Sequential Allocation and Optimal Stopping in Bayesian Simultaneous Estimation [pp. 396-402]
	A Frequentistic Approach to Sequential Estimation in the General Linear Model [pp. 403-407]
	Information Measures and Bayesian Hierarchical Models [pp. 408-410]
	Statistical Tests Based on Transformed Data [pp. 411-417]
	Priors and Likelihood Ratios as Evidence [pp. 418-423]
	Don't Bet on It: Contingent Agreements with Asymmetric Information [pp. 424-426]
	A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables [pp. 427-434]
	On Obtaining Permutation Distributions in Polynomial Time [pp. 435-440]
	On the Accuracy of Simulated Percentage Points [pp. 441-444]
	Maximum Likelihood Estimation for a Discrete Multivariate Shock Model [pp. 445-448]
	Prediction of Future Random Events with the Condensed Negative Binomial Distribution [pp. 449-456]
	Estimating the Parameters of a Convolution by Maximum Likelihood [pp. 457-460]
	A Note on the Modified Likelihood for Density Estimation [pp. 461-463]
	On the Small-Sample Properties of the Olkin-Sobel-Tong Estimator of the Probability of Correct Selection [pp. 464-467]
	Linear Estimation with an Incorrect Dispersion Matrix in Linear Models with a Common Linear Part [pp. 468-471]
	Distributions of a Class of Statistics Useful in Multivariate Analysis [pp. 472-475]
	A Method for Calculating MINQUE Estimators of Variance Components [pp. 476-477]
	Kernel Estimators of the Failure-Rate Function and Density Estimation: An Analogy [pp. 478-481]

	Review: untitled [pp. 482-490]
	Book Reviews
	[List of Book Reviews] [pp. 491]
	Review: untitled [pp. 492-496]
	Review: untitled [pp. 496]
	Review: untitled [pp. 496-497]
	Review: untitled [pp. 497]
	Review: untitled [pp. 497]
	Review: untitled [pp. 498]
	Review: untitled [pp. 498-499]
	Review: untitled [pp. 499-500]
	Review: untitled [pp. 500]
	Review: untitled [pp. 500-501]
	Review: untitled [pp. 501]
	Review: untitled [pp. 501]
	Review: untitled [pp. 501]
	Review: untitled [pp. 501-502]
	Review: untitled [pp. 502]
	Review: untitled [pp. 502-503]
	Review: untitled [pp. 503]
	Review: untitled [pp. 503-504]
	Review: untitled [pp. 504]
	Review: untitled [pp. 504-505]
	Review: untitled [pp. 505-506]
	Review: untitled [pp. 506]
	Review: untitled [pp. 506-507]
	Review: untitled [pp. 507]
	Review: untitled [pp. 507]
	Review: untitled [pp. 507-508]
	Review: untitled [pp. 508]
	Review: untitled [pp. 508-509]
	Review: untitled [pp. 509-510]
	Review: untitled [pp. 510]
	Review: untitled [pp. 510]
	Review: untitled [pp. 510-511]
	Review: untitled [pp. 511]
	Review: untitled [pp. 511-512]
	Review: untitled [pp. 512-513]

	Publications Received [pp. 513-514]
	Back Matter [pp. ]



