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Monotonic transformations to additivity using splines
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SUMMARY

A class of monotonic integral transformations derived from U-splines is fitted to the
independent and dependent variables in multiple regression so that the resulting additive
relationship is optimized. The fit is achieved by maximizing a log likelihood criterion with
inequality constraints on the parameters. Some examples of the analysis of artificial and real
data are offered. An algorithm which works reliably is outlined.
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1. INTRODUCTION

In a typical multiple regression analysis one assumes that there is a linear relationship
between dependent and independent variables. Sometimes there is reason to doubt this
assumption when the relationship is stated in terms of the original observations, and a non-
linear transformation of the variables may help to produce a linear relation among the
transformed variables. Moreover, it is often the case, particularly in the behavioural sciences,
that some of the variables in the analysis are not measured on an interval scale and, con-
sequently, there is no reason to exclude possible nonlinear transformations.

Transformation of only the dependent variable has received much attention. Anscombe
(1961) and Anscombe & Tukey (1963) discussed the analysis of residuals to detect useful
transformations. Box & Cox (1964) and Schlesselman (1973) treated one- and two-parameter
power transformations. Kruskal (1965) used only rank order information in the dependent
variable to transform to additivity in two-way factorial designs. Ramsay (1977) fitted
generalized power transformations to both the independent and dependent variables in mul-
tiple regression to optimize the resulting additive relationship. In this paper we shall extend
Ramsay's (1977) work by considering a class of smooth monotonic transformations which
have a more flexible shape than is possible with generalized power transformations.

The data consist of N observations xit (i = 1, ...,N; j = 0 L) on a dependent variable
and on each of L independent variables. A dependent variable observation is taken to be xt0.
The problem is to find a set of transformations ft and possibly a constant term such that an
objective function Q is optimized with respect to/^(xw), subject to monotonicity constraints
on these transformations. Other constraints may also be required. For example, a theoretically
inspired fixed transformation or no transformation at all may be applied to a subset of the
variables, or a subset of the transformations may be constrained to be identical.

Since a general nonlinear transformation is not necessarily invariant with respect to changes
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of scale and location, one might specify that all variables be normalized in some way before
analysis begins. We shall assume that each variable enters the regression equation with a
positive weight so that only monotonic increasing transformations need be considered.

2. INTEGRATED B-SPLINES

For a transformation of the form

f(x) = \* v
Jxo

(t)di,

for v(t) > 0, the problem of choosing a monotone function reduces to the problem of finding
a suitable nonnegative kernel v(t). A desirable feature of the integral transformation is that
the monotone function will be smooth even when the corresponding kernel is not. We are
looking for a simple family of nonnegative functions which depend on a relatively small
number of parameters. The parameters can then be chosen to optimize some fitting criterion.

Linear combinations of B-splines, defined as the divided differences of truncated power
functions, make an attractive choice for defining v(t) (de Boor, 1978, p. 108; Smith, 1979).
The resulting curve has a very flexible shape, and does not depend on an excessive number of
parameters. A spline of the order k is a piecewise polynomial of degree less than k; that is,
it is a set of polynomials of degree less than k joined at values of their arguments called knots.
The choice of the knot sequence determines the smoothness at a knot. The location of the
interior knots is relatively unimportant if the curve to be fitted is reasonably smooth, although
it is helpful to have more knots in regions where the nonlinearity is most severe. This in-
sensitivity to knot choice implies that in practice the knots may be chosen a priori and held
fixed during the analysis. Afterwards one may use some fairly crude technique to improve
the choice of knots.

The sequence Bv •..,Bm of .B-splines of order k for knot sequence tlt ••.,tm+1 is a basis for
the piecewise polynomials considered as functions on (tk, tm+x). In order to evaluate the kernel
v(t) at a point $£(tp,tp+1), where k^p^m, one must calculate the k numbers Bnk(t)
(n = p — k+1 p) by a recursion formula. It should be noted that Bnlc(t) is positive for
tn < t < tn+k and zero otherwise. It follows that only k .B-splines have any interval (tp, tp+1) in
their support.

Thus, for tp < {<, tp+1,

•n
anBnk-

Prom the positivity of .B-splines and their limited support it follows that they are a well-
conditioned basis for approximation. They are also invariant with respect to scale transfor-
mations, provided that the knot sequence is similarly transformed. Of particular interest in
this application is the ease with which linear combinations of B-splines can be integrated and
differentiated.

3. ESTIMATION

In fitting integrated .B-splines to the variables in a regression problem, it will be assumed
that each variable has a knot sequence t}1, ...,^>m}+l. The transformed dependent variable
observations fo(xio) are assumed to be independently distributed with probability density
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function p{fo(xio) 12y/j(a;y) + c}. This implies a log likelihood of the form

Q = 2 , logp{f0(xi0)\I,ifi(xii)+c} + i:i logD{/0(x(0)}.

I t is necessary to fix the scale of the transformations by requiring an equality condition
such as /0(l) = 1. The maximization of Q is then a nonlinear programming problem with
mo + . . . + m i + l parameters, subject to one linear equality constraint and M-\ linear in-
equality constraints of the form aim ^ 0.

When comparing the log likelihood for this model against that achieved by some special-
ization such as the conventional linear regression model, it is necessary to settle how many
parameters are actually being fitted. At most, this would be M— 1. As a rule, some of the
parameters will be at the boundary, and they can be thought of as at least partially estimated
because the data determined whether or not they were at the boundary. A conservative
decision would be to set the number of estimated parameters to M — 1 when computing the
chi-squared statistic from the two log likelihoods. The asymptotic variance-covariance
matrix for the parameter estimates can be computed by the use of the Moore-Penrose inverse
as described by Ramsay (1978). For a fixed value of the argument, the asymptotic variance
for the transform is given by

var{/(a;)|a;} =
dx

T
2

where 2 is the variance-covariance matrix of the parameter estimates. This relation can be
extended to yield a variance-covariance matrix for a set of function values as well. The
resulting ^-values would be rough because of failure of the usual regularity conditions.

One way to solve the nonlinear programming problems with constraints is the penalty
function approach described by Fiacco & McCormick (1968, p. 40), in which one solves a
sequence of unconstrained problems. The penalty function we chose was

P{<hn « W . r) = - 2-12, S9 log aiq (aiq > 0).

Generally after a few steps in r, changes in the parameter estimates become negligible. An
obvious procedure for improving the values of the knots tiq given a solution for the parameters
aiq is to carry out a few steepest descent iterations with respect to the knot values, computing
the optimal values of the o^'s after each iteration. Only the interior knots need be considered.

4. EXAMPLES

The first example indicates the algorithm's ability to recover a set of monotone continuous
functions observed with error. The test problem is

log -r^— = 3 sin {̂ (Xj - £)} + 6a;| - 3 + et.l—x0

The data consist of 50 independently generated random values of xt and x2 sampled uniformly
between 0 and 1. The values of x0 were then generated by applying the appropriate inverse
transformation of the sum of the transformed values of x1 and x2 and a random Gaussian deviate
£{ was added, having a standard deviation of 20% of the standard deviation of the unper-
turbed sum of the two transformations. Only a single run was carried out for these data and
it was assumed that residuals were N(0, a2). We chose to use order two B-splines for this
analysis because this choice usually produces a good fit while requiring a minimal number of
parameters for a given number of interior knots. The knots used for all three variables were
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the values 0-0, 0-0, 0-2, 0-5, 0-8, 1-0 and 1-0. The penalty parameter was given values 2, 4, 6
and 8; at which point the change in the log likelihood was less than 0-05.

The estimated transformations are compared to the true transformations in Fig. 1, and
conditional asymptotic confidence intervals for each transformation are also shown. The
squared multiple correlation coefficient was 0-9952. The log likelihood was 83-1 as compared
to a log likelihood of 39-1 when the data were analysed by means of multiple regression. The
chi-squared statistic was 88*0 with 12 degrees of freedom, and this is significant atp < 0*001.
The value of all of the transformations at the origin is precise by definition. In each case the
true transformation lies within the confidence interval. The confidence intervals are fairly
tight, apart from some ballooning near the first interior knot for the independent variables.

The second example deals with data presented by Durbin & Watson (1951) in which the
dependent variable was the log consumption of spirits per capita from 1870 to 1938, and the
independent variables were log real income per capita and log relative price of spirits. Both
of these variables entered the regression equation with negative coefficients, and as a con-
sequence we changed the sign for each of these. In this example the origin of the scale for
each variable was arbitrary, so the minimum and maximum values for each variable were
set to zero and one, respectively. Order two splines were used with the knots shown in Table 1.

Table 1. Knots used with order two splines, for example in Fig. 2

Dependent variable
1st independent variable
2nd independent variable

The squared correlation coefficient was 0*9838 compared with a squared multiple corre-
lation coefficient of 0*9558 for the case of no variables transformed. The log likelihood was
119*9 compared with a log likelihood of 86*5 obtained for no transformation. The appropriate
chi-squared at 12 degrees of freedom was 66*8 which is significant a t j x 0*001. The transfor-
mations for the dependent and independent variables are shown in Fig. 2 along with con-
ditional asymptotic confidence intervals for each transformation.

The plateau in the transformation for the log consumption of spirits occurs at values
corresponding to the period just before and during the First World War. An examination of
the transformations for the independent variables reveals a nonlinear transformation for log
real income and some need to transform log price of spirits. These transformations indicate
that decreasing income by a fixed factor will have more of an effect when the log real income
per capita is high than when it is low. They also indicate that the effect of decreasing relative
price of spirits is greater when the relative price is high. The confidence intervals are fairly
tightly defined throughout the domain of each variable. These data have been analysed ex-
tensively in terms of their linear model residuals without noting the need to transform the
variables.

5. DISCUSSION

In general this algorithm has proceeded to solutions reliably, and improvements in the log
likelihood were minimal after only a few steps. Although the performance can depend on the
choice of knots, it is usually not difficult to make a reasonable initial selection of knots.
Moreover, the shape of the solution is usually only slightly affected by the choice of knots.

The need to transform variables to additivity in linear models has been recognized for some
time, and practical algorithms have been developed for the dependent variable. Although
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Fig. l(a). Dependent variable Fig 2(a). Dependent variable
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Fig. 1 (left). Fitted transformations of variables for the analysis of artificial data with error;
N = 50.

Fig. 2 (right). Transformations of variables for spirits data.
T% true transformation; H'B, upper bound of 95% conditional asymptotic confidence interval;
L'B, lower bound. Vertical dashed lines, position of knots.
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Ramsay (1977) developed an algorithm for monotonic transformation for some or all of the
variables to a linear relation, its use introduces bias when the dependent variable is trans-
formed, and it cannot accommodate some types of transformations. The present paper
describes a procedure which can be used with confidence when some or all of the variables
are transformed, and can accommodate a much wider range of monotone transformations.
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