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Pairwise preference data are represented as a monotone integral transformation of difference 
on the underlying stimulus-object or utility scale. The class of monotone transformations con- 
sidered is that in which the kernel of the integral is a linear combination of B-splines. Two types of 
data are analyzed: binary and continuous. The parameters of the transformation and the underly- 
ing scale values or utilities are estimated by maximum likelihood with inequality constraints on the 
transformation parameters. Various hypothesis tests and interval estimates are developed. Exam- 
ples of artificial and real data are presented. 
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The purpose of this communication is to propose a general method of scaling pairwise 
preference data that may be used without prior knowledge of the monotone function which 
best represents the relationship between a datum and the process giving rise to it. We 
represent choice data as an empirically determined monotone transformation of difference 
on the underlying stimulus-object or utility scale. The approach here is similar to the 
B-spline procedure used by Winsberg and Ramsay [1980] for monotone transformation of 
all or some of the variables in the regression model so as to maximize additivity. Other 
general methods have been proposed for analyzing choice data with general monotone 
functions [Kruskal, 1965; Young, de Leeuw & Takane, 1976; Takane, Young & de Leeuw, 
1980], but a feature of this approach is that the response function, although empirically 
determined, can have the properties of a cumulative distribution function, and in any case is 
differentiable. This method should also be useful in a wide variety of problems where the 
form of a response function is unknown, and in particular applications of this approach to 
additive models is straightforward. 

We are considering two types of pairwise preference data. We define binary data as 
observations of frequencies Xij indicating the number of times stimulus j is chosen over 
stimulus i. We shall denote the number of stimuli by n and the number of replications as N. 
Various models have been proposed to analyze binary data. These models, all of which 
specify a particular response function, include those of Thurstone [1927], Bradley & Terry 
[1952], Ford [1957], and Luce [1959]. We define continuous data as observations of 
pairwise preference strengths X~j indicating the degree to which stimulus j is preferred to 
stimulus i by a given subject or group of subjects. Bechtel [1976] has used a linear trans- 
formation of the pairwise preference strengths to develop a unidimensional scale of utility. 

Our problem is to find the set of stimulus or utility values sj j = 1 . . . . .  n and a 
transformation F of differences sj - sl on the underlying utility difference scale, such that an 

This investigation was supported in part by a research grant from the Natural Sciences and Engineering 
Research Council Canada. 

Requests for reprints should be sent to S. Winsberg, Section Mesure et l~valuation, Facult6 des Sciences de 
rl~ducation, Universit6 de Montr6al, Montr6al, P. Qu6bec, Canada. H3C 3T3. 

0033-3123/81/0600-3013500.75/0 
© 1981 The Psychometric Society 

171 



172 PSYCHOMETRIKA 

objective function Q is optimized with respect to the s t and F subject to monotonicity 
constraints on the transformation. Other constraints may also be required. For  example, 
one may be looking for a transformation whose derivative is symmetric about a given point 
such as the origin on the difference scale. 

Integrated B-Spline Monotone Transformations 

We propose that F be a monotone transformation of the difference (s i - st) for both 
binary and continuous data. In the former case F(s~ - s~) is the probability that stimulus- 
object j is chosen over stimulus-object i and in the latter case F(sj - s~) is the degree to 
which object j  is preferred over object i. Consider monotone transformations of the form 

f sj-$i 
Fi j=  F ( s j -  s i)= Fo + Jxo v(x) dx (1) 

where s~ and sj are scale values assigned to objects i and j, Xo is a fixed point on the 
difference scale such that 

Xo < min(sj - si), 
~J 

and F0 is a constant. 
For binary data F0 must be nonnegative and 0 < Fi~ ~ 1, while for continuous data 

the constant F0, which may be negative, is needed to preserve the natural origin of the 
scale. An advantageous feature of an integral transformation is that the monotone function 
F(s~ - s~) will be smooth even when v(x) is not. Moreover the monotonicity constraints will 
be satisfied provided that v(x) is nonnegative. We are therefore looking for a family of 
nonnegative functions to define t~x), which are extremely flexible in shape and depend upon 
a limited number of parameters. 

Spline functions have many useful properties and have found much use as approxi- 
mating functions since they are very flexible and do not depend on an excessive number of 
parameters. Moreover B-splines have the added feature of being nonnegative, and it is these 
that we have chosen to define v(x). Spline functions are piecewise polynomials of a given 
degree joined at values of their arguments called knots, and it is useful to refer to their order 
k defined as the maximum degree of the polynomials plus one. Splines or their derivatives 
may have discontinuities at the knots. The choice of the number and location of the knots 
can be made a priori or post hoc. 

Let T knots forming a nondecreasing sequence span a specific interval {xx, x~). Then 
any spline of order k on this interval can be represented as an m = T + k term linear 
combination of B-splines, or basis splines of that order. This family forms a basis for spline 
functions which is well-conditioned evaluated easily, and nonnegative. Curry and Schoen- 
berg [1947, 1966] introduced B-splines and demonstrated their positivity. Computational 
algorithms for easy evaluation were developed by Cox [1972] and de Boor [1972], whose 
book [de Boor, 1978] contains a good description of the properties of B-splines. 

The choice of knot sequence determines the desired amount of smoothness at any 
point: the number of continuity conditions at the point plus the number of knots at the 
point is always equal to k. For example if there are no knots at a point, the function and its 
first (k - 1) derivatives are continuous. If there is one knot at a point, the function and its 
first (k - 2) derivatives are continuous. If there are k knots at a point the function is 
discontinuous at that point. In addition to the m - k interior knots t~(q = k + 1, . . . ,  m) 
there are k initial and k final knots which must not lie within the domain of interest. In 
many cases a convenient choice is to let the first k knots equal min{x} and the last k knots 
equal max{x}. In this way one imposes no continuity conditions at the end points of the 
interval of interest. 
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The curve tends to be insensitive to knot choice provided there are no discontinuities 
and the curve is smooth in the sense of a small bound on the modulus of its second 
derivative. In any case we will only attempt to apply B-splines with fixed knots in this 
paper. Nevertheless techniques exist for improving knot choice [de Boor, 1978, Ch. XII; 
Ramsay, t977; de Boor & Rice 1968, Note 1]. We will consider sensitivity to knot choice in 
a small way in this paper and more seriously in future work. 

In order to be parsimonious with respect to the number of transformation parameters 
and to obtain a reasonably good fit, two guidelines should be used for the a priori place- 
ment of knots: first, have as few knots as possible, while ensuring that there are at least four 
or five values of x between any two knots; and second, locate more knots where the 
nonlinearity of the function is expected to be more pronounced. Afterwards a fairly crude 
technique may be used to improve knot choice. 

Once the knots have been fixed the value of a B-spline function of order k can be 
generated from the following recursion formula [de Boor, 1972]: 

Bql (x )  = 1 for tq < x _< tq+l 

Bql(x  ) ---- 0 o t h e r w i s e  

(x - tq) Bq k-l(x) + (tq+~ - x) B~-I k-,(x) (2) 
Bqk(X) = ( tq+k-1  --  tq) ' (tq+k " t .+ l ' 

for (tq+ k - tq+l) , (tq+k_ 1 - tq) > 0 

B~k(x) = 0 otherwise. 

It should be noted that Bqk(x) is positive for tq _< x _< tq +k and zero otherwise. It follows 
that only k of the B-splines are positive at any point x ,  tk < X < tin+ r For example, the five 
order two B-splines which form the basis for the knot sequence {0, 0, .2, .5, .8, 1.0, 1.0} are 
illustrated in Figure 1 (above). Note that only two B-splines are positive between any pair 
of knots. Since only k of the B-splines are positive in any interval we may write 

P 
1)(X) = ~ aq Bqk for tp _< x _< tp+ 1. (3) 

q=p-k+l  

An example of a particular linear combination of order two B-splines defined by the 
knot sequence 0, 0, .2, .5, .8, 1.0, 1.0 is shown in Figure 1. Although the function v(x),  shown 
in Figure 1, is not smooth the integral ~ v(u) du also shown in Figure 1 is quite smooth. 

Of particular interest in many applications is the ease with which linear combinations 
of B-splines can be integrated and differentiated [de Boor, 1978, Ch. X]. The integral of a 
linear combination of B-splines of order k is a linear combination of B-splines of order 
k + 1 ; the derivative of a linear combination of B-splines of order k is a linear combination 
of B-splines of order k - 1. Thus, for t l  <<- x <<_ tL, 

aqBqk(u) du = ~ CqBq, k+l(x), (4) 
1 q = l  q = t  

where Cq = ~ = 1  ap(tp+k --  t y k ,  and 

aqB~(x) = ( k - 1 )  F~ w~B~,~_~(x), 
X q 1 q = l  

where wq = (aq - aq-  l ) / ( tq+k-1  --  tq) and ao = aL+l = 0. 
Finally B-splines are iffvariant with respect to scale transformation provided that the 

knot sequence is similarly transformed. In conclusion splines are more flexible than pa- 
rametric families such as the normal and the logistic, more parsimonious and almost as 
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FIGURE 1 
Upper: The order two B-splines for the knot sequence {0, 0, .2, .5, .8, 1.0, 1.0}. 

Lower: A linear combination v(x) of the B-splines shown at the left, and'the integral S~ v(u) du, where a~ = 0.03, 
a2 = 1.96, as = 3.40, a. = 1.96 and a5 = 0.02. Vertical dashed lines indicate knot positions. 

flexible as m o n o t o n e  functions without  further restrictions, more  flexible than m o n o t o n e  
polynomials  of  low degree, and  more  pars imonious  than and  just  as flexible as polynomials  
of  high degree. 

Point Estimation, Interval Estimation, and Hypothesis Tests 

Two types of choice data  are under  considerat ion:  binary da ta  and cont inuous  data. A 
similar approach  to the analysis of  both  types of  data  will be presented first, and then 
aspects of  the approach  particular to each type of  data  will be discussed. In fitting integra- 
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ted B-splines, we assume that the choice data are independently distributed with probabil- 
ity density function 

l l  p X i j ]  F(s  i - si) , (5) 
i=1  j = i + l  

which implies a log-likelihood of the form 

Q = ~ log V(sj  - si) • 
i=1 j = i + l  

The log-likelihood Q is a function of J = n + m + 1 parameters 0q q = 1 . . . . .  J, these are n 
scale value parameters s i, m transformation parameters aq and the location parameter F 0 . 

An equality condition is needed to fix the location of the stimulus parameters. A scale 
constraint although in principal not strictly necessary for fixed knots is in fact very helpful 
for computation. For  example the location may be fixed by requiring that the mean value of 
the stimulus parameters be zero and the scale may be fixed by fixing the maximum range of 
the stimulus parameters. 

Inequality conditions aq >_ 0 (q = 1 . . . . .  rn) are also needed to ensure that the integral 
transformation remains monotone. Additional inequality constraints are needed for binary 
data, to ensure that 0 < F u < 1. The number and the nature of the inequality constraints 
appropriate for each type of data will be further discussed in the section dealing with that 
specific type of data. The maximization of Q is thus a nonlinear programming problem 
subject to two linear equality constraints and a number of linear inequality constraints. 

In the penalty function approach to solving the nonlinear programming problem with 
constraints, a sequence of unconstrained problems is solved. Each constraint can be ex- 
pressed by requiring that a function g of the parameters to be estimated be nonnegative. To 
minimize - Q subject to a set of M constraints, a penalty function U is chosen which is a 
function of the constraints gq(01 . . . . .  Os), q = 1 , . . . ,  M and a penalty parameter r. One type 
of penalty function has the following properties: 

(a) if the constraint g ~ ( 0 1 , . . . ,  O j )  is positive, U must tend to infinity as 9q tends to zero; 
(b) for positive values ofgq U must tend to zero as r tends to infinity. 

Then the values of Oq q = 1 . . . . .  J that minimize the composite function 

0(01  . . . . .  Os, r) = - Q(01 . . . . .  Os) + U[Ol(01 . . . . .  Oj) . . . .  , gM(O , . . . ,  Os), r] (6) 

are determined using an algorithm for unconstrained optimization for each of an increasing 
sequence of values of r. Starting values ofgq(0~ . . . . .  Os) for q = 1 . . . . .  M must be positive. 
The particular penalty function chosen for each of the two types of data under consider- 
ation will be presented in the section dealing with that specific type of data. 

Other approaches are possible and may prove superior. Among these are Newton 
Raphson and Scoring algorithms modified to allow for constraints. However, the generality 
and ease of programming the penalty function method makes it attractive, at least in early 
stages. 

To compare the log-likelihood for the proposed integrated B-spline model for binary 
data against a more general model of which it is a special case one must make some 
decision as to how many parameters are actually being fit. At most, this would be 
n + m - 1. However, some constraint functions may take values on the boundaries. While 
these "tight" constraints may be viewed as reducing the number of mathematically indepen- 
dent parameters, it is also the case that these constraints may be considered as at least 
partially estimated from the data since the data determined their location at or away from 
the boundary. A conservative decision is to set the number of estimated parameters to 
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J = m + n - 1 when computing degrees of freedom. The asymptotic variance-covariance 
matrix for the parameter estimates may be computed using the Moore-Penrose inverse 
[Ramsay, 1978]. For a fixed value of the argument, the asymptotic variance for the trans- 
formation conditional on a fixed argument is given by 

F(x, 0 6F t 6F var 0)] = ~ Z - ~  (7) 

where 0 is the vector of parameters and ~ is the variance-covariance matrix of the par- 
ameter estimates. This relation can be extended to yield a variance-covariance matrix for a 
set of function values. It should be stressed, however, that our approach to interval esti- 
mation and hypothesis testing should be considered as giving only rough results. The usual 
asymptotic theory upon which it is based does not hold when parameters lie on the 
boundary of the parameter space [Chernoff, 1954; Feder, 1968] and is of very limited value 
when they lie close to it. This and better methods will undoubtedly require justification by 
Monte Carlo sampling, rather than .faith alone. 

Binary Data 

For binary data X~j is an observation of a random variable with a binomial probability 
function with parameters N and F~j (assuming F o 4: 0, 1). When all pairs of stimuli are 
presented for judgment (3) independent binomial variables are observed, and the log- 
likelihood excluding constant terms for the entire set of observations is 

n - 1  

Q = ~ ~ {X,j  log Fij + (N - X01og(1 - -  Fij)}, ( 8 )  
i - 1  j = i + l  

where N is the number of times a particular pair of stimuli with subscripts i and j is 
presented for comparison. The log-likelihood Q is maximized subject to the two equality 
conditions defining the location and scale of the stimulus parameters, and the m inequality 
conditions aq > 0 (q = 1, m). In addition (3) + 1 inequality constraints F o < 1 and Fo > 0 
are needed to insure that 0 < Pij < 1, so the number of inequality constraints are M = m 
+ 1 + (3). 

We chose the following penalty function to satisfy these inequality constraints: 

U(Ol, Os, r ) =  log Po ~ log a q _ " ~ l  ~ log(1 -- F 0 
. . . .  r q=x /~ i = 1  j = i + l  lOaf (9) 

In this case a reasonable test of the integrated B-spline model would be to test a 
completely general model 

~: 0 < P~j < 1 

against the special model 

o~: Pij = F(sj - -  s i )  , 0 < Pij < 1 

under the alternative hypothesis that 0 < F~j < 1. Assuming all pairs are presented for 
choice the likelihood ratio for testing the integrated B-spline model is 

2 = i=1 1=i+1 i~ (10) 

[-I z X'J(1 -- --,J,Z" .~N - x,j 
i = 1  j = i + l  X i j  

where Zij is a maximum likelihood estimator of the discrimination probability for stimuli i 
and j  and it is the observed proportion ofjudgmcntsj  over i. 
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The statistic 

.-1 I (1 - z,)- 1 Y = - 2  log ). = 2N E ~ Zij log Z~ _ (1 - Zij)log (11) 
i=1  j = i + l  Fij  (1 Fij) .  j 

has a distribution which converges in probability with N--* ~ to the chi-square distri- 
bution with degrees of freedom equal to the number of independent parameters in f~ minus 
the number in co. For  the integrated B-spline model a conservative choice is to set the 
number of independent parameters equal to n + m - 1. Thus the number of degrees of 
freedom associated with Y for testing the proposed model are n(n - 1)/2 - (n + m - 1). 
For testing the Thurstone model or the BTL model the number of parameters is n - 1. 
Hence the appropriate number of degrees of freedom associated with Y is (n - 1)(n - 2)/2. 

Continuous Data 

For continuous data one may assert that the preference strengths X~j are independent- 
ly normally distributed with constant variance a 2 and expectation Fij. The log-likelihood 
then takes the form 

Q = - log a -  e~j (12) 
2a2, 

where 

eij ---- X i j  --  Fij. 

Maximizing the likelihood in this case is equivalent to a least squares minimization. This 
model may be compared with the linear model. Since one model is not a specialization of 
the other the AIC statistic may be used to compare the two [Aikaike, 1974]. The AIC 
statistic is essentially the log of the likelihood L corrected for the number of parameters 
being estimated and is given by 

AIC = log L --  N p  

where Np is the number of free parameters. It is a measure of quality of fit per parameter 
used in fitting. Two AIC statistics are compared in terms of magnitude, with the fit produc- 
ing the larger AIC statistic being preferred. An alternative to the AIC statistic, has been 
proposed by Schwarz [1978]. The alternative is to choose the model that gives the largest 
value of 

BIC = log L - ½Nn log N o 

where No is the number of observations. Qualitatively both the BIC and AIC procedures 
give a mathematical formulation of the principle of parsimony in model building. The BIC 
procedure, which is based on the asymptotic behavior of Bayes estimators under priors 
which specify that the correct model is one of the models under consideration, leans more 
than the AIC procedure towards lower-dimensional models. Thus AIC is less conservative 
than BIC, and in cases of disagreement (and in any case) other considerations should be 
allowed to have their say. Steiger and Lind [1980, Note 3] have done some Monte Carlo 
comparisons of these statistics for tests of the number of common factors in factor analysis. 
Since the maximum likelihood estimation process for this model can be viewed as a nonlin- 
ear regression problem, one may also compute and compare the multiple correlation 
coefficient for each model. The multiple correlation coefficient is the correlation between 
the data and the fitted values on the basis of the model. 
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Examples 

The first set of examples demonstrates the algorithm's ability to recover a set of 
underlying stimulus values and a transformation observed with error. A set of n stimuli with 
values equal to the quantiles of the standard normal distribution were chosen with n = 7, 
10,14. These values of n double the number of observations (~) for each subsequent value of 
n. The stimuli were ordered randomly and both types of data were generated for each 
stimuli set. For the binary data population values F o were generated using the logistic 
function, 

1 
Fi~ = 1 + exp[ - ( s j  - si)]" (13) 

A random binomial observation Xij was then generated for each Fii for a sample of size 
N = 100. 

For continuous data, population values Fi~ were generated using the monotone trans- 
formation 

1 1 
FiJ = - - 2  - -  1 + exp[ - ( s j  - si)]" (14) 

An observation Xij was then generated by adding a random normal deviate with the 
standard deviation 20% of the F~Tvalue. 

Order-two splines with one interior knot were used in each case. This choice was made 
because we found that it produces a good fit while requiring a minimal number of trans- 
formation parameters. For the first run the single interior knot was always located at zero. 
The exterior knots were located so as to ensure that all pairwise differences would lie within 
the exterior knots. Exterior knots were always located such that after the first penalty 
iteration, all iterated values of (s~-  s~) lay between the exterior knots. During the first 
iteration (r = 1), if (s i - s~) lay outside the boundary the monotone transformation of 
(sj - s~) was set equal to its value at the boundary. If these conditions were violated new 
exterior knots were chosen and the entire analysis was redone with new knots. In general it 
was not necessary to readjust the exterior knots, although some familiarity with the algo- 
rithm was required in order to choose values. To improve conditioning and performance of 
the algorithm a second run was often performed moving either the first or last two knots 
closer to the origin since the particular series of differences generated by the ordering of the 
stimuli was often not symmetric about the origin. Very occasionally if the distribution of 
differences about the origin was extremely assymmetric, it was desirable to move the 
interior knot away from the origin to improve conditioning. Moving the knots in this way 
had little effect on the log-likelihood in our experience, but it improved performance of the 
optimization procedure. It should be noted that the starting values for the stimulus-object 
values were randomly assigned. The results for the log-likelihood for the binary data are 
displayed in Table 1. Also included in the Table are the values of the Wilks test statistic Y 
and the knots. The results for the continuous data are displayed in Table 2. Shown in Table 
2 are the log-likelihood, the squared multiple correlation coefficient, the AIC statistic and 
the BIC statistic for both the integrated B-spline model and the linear model. 

A comparison of the input and estimated stimulus-object parameter values for the 
cases n = 7 for binary data and n = 10 for continuous data are presented in Figure 2. These 
results are fairly typical. The resultant transformations with upper and lower 95% con- 
ditional asymptotic confidence bounds and the input transformations are displayed in 
Figure 3. The important features of the transformation are recovered. Some improvement 
in the conditioning and the log-likelihood could be achieved by readjusting the knots. In 
our experience the improvement was minor. Part of the discrepancy between "true" and 
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TABLE i 

179 

Binary data Artificial Cases 

n = 7 n m i0 n = 14 

Goodness-of-fit 
statistic 15.0 38.5 71.6 

df 12 33 75 

P .i0<p<.25 p < .i0 p < .25 

Average absolute 
discrepancy 
observed-d er ived 
pro port ion s 0.031 0.030 O. 030 

Knots -2.0,-2.0,0.0, -4.5,-4.5,0.0, -4.0,-4.0, 0.0, 

4.0,4.0 6.5,6.5 5.5,5.5 

"fitted" transformation is due to the fact that the estimated scale values have a somewhat 
greater range compared with the "true" ones in the binary data case, and a somewhat 
smaller range in the continuous data case (see Figure 2). The "true" transformation shown 
in Figure 3 is the "true" transformation of the estimated difference between a pair of stimuli 
values. One might also compare F ( s j  - st) estimated with "true Pu" for each pair of stimuli. 
The discrepancy between "true" and estimated values is somewhat less in this last compari- 
son than that shown in Figure 3. 

The effect of increasing the number of parameters was also investigated for n = 10 for 
the continuous data treated above. The number of parameters was increased both by 
increasing the number of interior knots and the order. The results are displayed in Table 3. 
Some improvement is obtained by adding one more parameter. The change seems to be 
about the same whether one adds a parameter by means of adding an interior knot or 
increasing the order by one. 

The next example deals with two of the sets of binary data analyzed by Hohle [1966]. 
The first consists of preference judgments obtained from 148 observers for each pair of nine 
common vegetables [Guilford, 1954]. In the second set seven weights weighing from 185 to 
215 grams were used as stimuli. A single subject was presented each pair of weights 100 
times and was asked to judge which was heavier [Guilford, 1931]. Again order-two splines 
were used with one interior knot located at zero. The results for the integrated B-spline 
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TABLE 2 

Continuous data - Artificial Cases 

n = 7 n = I0 n = 14 

IBSM LM IBSM LM IBSM LM 

Log L 60.5 56.6 115.3 102.1 234.9 207.7 

R 2 .986 .948 .974 .947 .970 .937 

AIC Statistic 51.5 50.6 103.3 93.1 218.9 194.7 

BIC Statistic 46.8 47.5 92.5 85.0 206.9 177.4 

Knots -3.5,-3.5,-0.5, -2.25,-2.25,0.5, 

2.5,2.5 3.5,3.5 

-3.0,-3.0,0.0, 

3.5,3.5 

Note: IBSM denotes integrated B-spline model 

LM denotes linear model 

model, the Thurstone model, and the Bradley, Terry, Luce model are presented in Table 4. 
None of these models offers a satisfactory fit for the vegetable data as all of the chi-square 
values are significant at the 0.05 level or less. The proposed model seems to fit the vegetable 
data better than the Thurstone model and as well as the BTL model. All of the models fit 
the weights data since none of the chi-square values are significant. The BTL model seems 
to offer the best fit. Mosteller [1958] analyzed the vegetable data using the following 
distributions: the uniform on the interval 0 to 1, arc sin ~ ,  case V (normal), the double 
exponential (21- exp [ - I xl ]), and tlo. Although the double exponential gave the best fit, 
Mosteller found that the scale values did not differ appreciably. 

The third example presents continuous data for different leisure time activities. A set of 
ten and set of fifteen activities were presented pairwise to each of fifteen subjects. The set of 
ten is a subset of the set of fifteen. Order two splines were used with one interior knot. The 
results for each subject are presented in Table 5. Included are the squared multiple corre- 
lation coefficient R 2 for the integrated B-spline and the linear model, and the difference 
between the AIC and BIC statistics for the two models. 
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I 

I 

I I 
1 ,o 2,o 

V A L U E  

TABLE 3 

Comparison of Integrated B-Spline Models 

wlth Different Numbers of Parameters 

Continuous Data Artificial Case n-lO 

Case Number of Order Number of 
A I C B I C 

Number Spline of Interior R2 
Parameters B-Splines Knots Log L Statistic Statistic 

1 3 2 1 117.1 i05.i 94.3 .974 

2 4 2 2 121.4 108.4 96.7 .978 

3 4 3 1 121.0 i08.0 96.3 .978 

4 5 2 3 121.3 107.3 94.7 .978 

Note: Case 1 

Case 2 

Case 3 

Case 4 

Knots -2, -2, 0.5, 3.4, 3.4 

Knots -1.9, -i.9, 0.25, 1.25, 3.4, 3.4 

Knots -2, -2, -2, 0.5, 3.4, 3.4, 3.4 

Knots -1.9, -1.9, -.25, .5, 1.25, 3.4, 3.4 
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FIGURE 3 
Fitted transformations for the analysis of artificial data with error. The upper graph is based on continuous data, 

with n = 10. The lower graph is based on binary data with n = 7. Legend: + ,  fitted transformation; H, upper 
bound of 95% conditional asymptotic confidence interval; L, lower bound; vertical dashed lines, position of 

interior knots. The solid curve is the true transformation. 
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TABLE 4 

Goodness-of-fit Data Comparing 

the Thurstone, the BTL, and the Integrated B-Spline Models 

183 

Vegetable Data Lifted Weights Data 

n'- 9 n--7 

Y df Error Y df Error 

Thurstone Model 52.91"* 28 .034 10.18 15 .017 

BTLMOdel 46.76* 28 .032 9.84 15 .017 

Integrated 
B-Spline Model 42.95* 25 .030 12.04 12 .019 

Note: ** 

Error ,, 

significant at the 0.01 level 

significant at the 0.05 level 

average absolute discrepancy derived-observed proportions 

The transformations and the utility scales obtained for two subjects are presented in 
Figure 4. Figure 4a presents the results for a typical subject and Figure 4b presents the 
results for a rather atypical subject. Upper and lower conditional asymptotic 95% confi- 
dence bounds are shown. The results indicate that in general the monotone transformation 
is an improvement over the linear transformation, but that the respective fits vary from 
subject to subject. 

Discussion 

One of the problems encountered in these analyses was that of locating the exterior 
knots. This problem arises from the transformation of a function whose domain depends on 
the parameter values being estimated. For continuous data this problem may be circum- 
vented in the following way. One may assert that difference on the utility scale is monot- 
onically related to the pairwise preference strengths. That is 

fxi '~v(x) sj - si = F(X  O) = + F o . (15) 

In this case we are fitting the inverse of the transformation defined in (1). One could then 
assert that the transformed pairwise preference strengths are independently normally dis- 
tributed with constant variance tr 2 and expectation (sj - si). The log-likelihood then takes 
the form 

( 2 )  e2 dF(X°)  
Q = - log tr - (-~a2) + log dXii  
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TABLE 5 

Comparison of Two Models Used to Analyze 

Continuous Data for Leisure Activities 

n=10 n =15 

Subject R2(LM) R2(IBSM) fi AIC A BIC R2(LM) R2(IBSM) fi AIC A BIC 

1 .529 .810 14.0 11.3 .835 

2 .588 .674 -0.4 -3.1 .806 

3 .776 .810 -i,0 -3.7 .899 

4 .780 .799 -1.7 -4.4 .929 

5 .792 .852 2.5 -0.2 

6 .817 .834 -2.8 -5.5 .861 

7 .843 .865 0.i -2.6 .823 

8 .863 .914 6.1 3.4 .894 

9 ,867 .914 6,5 3,8 ,841 

i0 .876 .897 0.5 -2.2 .885 

ii .876 .885 -2.0 -4.7 ,821 

12 .885 .941 12.0 9.3 .880 

13 .887 .925 5,4 2.7 .882 

14 .891 .920 2.7 0.0 .887 

15 .914 .916 -3.1 -5.8 .876 

.843 -1.2 -5.2 

.812 -1.9 -5.9 

.903 -3.0 -7.0 

.939 4.8 0.8 

.872 1.4 -2.6 

.837 -1.7 -5.2 

.924 12.0 8.0 

.884 13.5 9.5 

.931 23.7 19.7 

.846 4.8 0.8 

.910 11.6 7.6 

.906 8.0 4.0 

.918 12.7 8.7 

.910 13.2 9.2 

Note: * No data were available for this subject for n=15 

LM denotes linear model 

IBSM denotes integrated B-spline model 

A AIC = IBSM AIC statistic - LM AIC statistic 

A BIC ~ IBSM BIC statistic - LM BIC statistic 

where 

e u = F ( X u )  - -  (Sg - -  s,).  

The advantage of this alternative model is that the first k knots tq q = 1 . . . . .  k can be 
set equal to min{Xu} and the last k knots t~ q = m + 1 . . . . .  m + k can be set equal to 
max{X~j}. However, if one is planning to analyze both continuous and binary data the use 
of the proposed model allows the two types of data to be treated in a similar manner. 

The algorithm generally proceeded to a solution reliably. Improvements in the log- 
likelihood were minimal after only a few steps in the penalty parameter. Performance did 
depend on the choice of knots; however the likelihood and the shape of the transformation 
were only slightly affected by this choice. Moreover, it was usually not difficult to make a 
reasonable initial selection of knots. 

Integrated B-splines appear to be a useful tool for representing monotone transform- 
ations. In the past in many applications ranging from the estimation of item characteristic 
curves to the estimation of survival curves, simple mathematical functions such as the 
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logistic function or polynomials [Lord, 1968, Note 2] have been used to represent an 
unknown response function. For such functions their behavior in one region determines 
their behavior everywhere. Splines do not have this limitation. Since they are everywhere 
simple polynomials, they are computationally convenient, and the resulting curve is 
smooth. Integrated B-splines are also valuable as fixed response functions to replace the 
normal and the logistic functions because of their computational convenience, especially in 
applications like test theory where computation is slow and difficult. Finally integrated 
splines offer the advantage for this application that they can be constrained to have the 
properties of a cumulative distribution function. 
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