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Abstract

This paper presents a modified Euler angles method, dual Euler angles approach, to describe general spatial human joint motions.

In dual Euler angles approach, the three-dimensional joint motion is considered as three successive screw motions with respect to the

axes of the moving segment coordinate system; accordingly, the screw motion displacements are represented by dual Euler angles.

The algorithm for calculating dual Euler angles from coordinates of markers on the moving segment is also provided in this study.

As an example, the proposed method is applied to describe motions of ankle joint complex during dorsiflexion–plantarflexion. A

Flock of Birds electromagnetic tracking device (FOB) was used to measure joint motion in vivo. Preliminary accuracy tests on a

gimbal structure demonstrate that the mean errors of dual Euler angles evaluated by using source data from FOB are less than 11 for

rotations and 1mm for translations, respectively. Based on the pilot study, FOB is feasible for quantifying human joint motions

using dual Euler angles approach.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Studies of three-dimensional joint kinematics are
important to orthopedics and rehabilitation medicine,
which necessitate unambiguous, quantitative descrip-
tions of spatial joint motions. Various methods such as
Euler/Cardan angles (Chao, 1980; Tupling and Pierry-
nowski, 1987) and screw axis or helical axis (Blanke-
voort et al., 1990; Kinzel et al., 1972) have been
proposed in Biomechanics for the description of three-
dimensional joint motions and many attempts on
standardization of joint motion have been made (Cole
et al., 1993; Woltring, 1994).
In the Euler/Cardan angles method, Cartesian co-

ordinate systems are defined in the fixed and moving
segments of a joint. At any joint position, the rotational
motion of the moving segment with respect to the fixed
segment is represented by three ordered rotation angles
about the coordinate axes on the moving segment or on
the fixed segment. The magnitudes of the three rotation

angles depend on the sequence of rotation. Because only
the rotation of the joint can be described by Euler/
Cardan angles, an additional three-dimensional vector
representing the position of the moving segment
coordinate system with respect to the fixed segment
coordinate system is required to describe the general
spatial joint motion completely. Since the rotation
angles are referred to the moving segment coordinate
system, the translation has to be described with different
coordinate system separately, which dose not facilitate
the interpretation of the parameters.
Grood and Suntay (1983) proposed a non-orthogonal

joint coordinate system (JCS) to avoid sequence
dependency by predefining the axes of rotation. The
JCS includes two axes embedded in the fixed and
moving segments, respectively, and a floating axis
perpendicular to two body-fixed axes. Following the
recommended procedure, the rotations about the
defined axes correspond to the clinical motions of
flexion-extension, adduction–abduction, and internal
rotation–external rotation. And the translations along
the defined axes correspond to the medial–lateral shift,
anteroposterior drawer, and distraction–compression.
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As a variant of Euler/Cardan angles, singularity may
occur in the JCS, that is, some joint postures cannot be
defined. Moreover, the JCS is not orthogonal. Non-
orthogonality will present a serious problem when joint
forces and moments are going to be determined
(Zatsiorsky, 1998).
The screw axis method provides the full description of

the general spatial joint motion as a rotation about and
a translation along an axis (screw axis) in space. Though
the screw axis method can represent the general three-
dimensional joint motion completely, it is hardly
compatible for describing the clinical motion, so it does
not facilitate communication between engineers and
clinicians.
In this study, a modified Euler angles method—dual

Euler angles approach, which has been used in studying
mechanical systems (Yang, 1969; Fischer, 1999)—is
introduced to describe exact three-dimensional joint
motions. A general spatial joint motion is considered as
three ordered screw motions with respect to the
coordinate axes of the moving segment. These three
screw displacements with respect to the coordinate axes
are represented by three dual angles, called dual Euler
angles, accordingly. The proposed method that is based
on the two Cartesian coordinate systems can describe
full six-degree-of-freedom joint motion in a way similar
to that of the JCS. Motion represented by the dual Euler
angles method can also be interpreted in clinical motion
pattern as the JCS does. Moreover, the use of Cartesian
coordinate system can overcome disadvantages such as
non-orthogonality in the JCS.

2. Kinematics background

2.1. Dual Euler angles and dual transformation matrix

Consider a rigid body moving from the initial
position, where the local coordinate system M on the
rigid body coincides initially with the global coordinate
system G; to another position in space by rotating about
and translating along the X-axis of G as shown in Fig. 1.
The screw motion displacement of the rigid body
through the X-axis can be expressed in the form #a ¼
aþ ea called dual angle, in which a represents the
rotation angle about the X-axis and a represents the
translation distance along the X-axis (see Appendix A
for algebra).
At the initial position, a vector on the rigid body is

expressed in the form #V0 ¼ V0 þ eW0; where V0

represents the magnitude and direction of the vector
with respect to G; and W0 ¼ r � V0: Here r is a vector
connecting the origin of G to any point on the line, on
which the vector lies. After the screw motion through
the X-axis, the same vector moves to position 2. At the
final position, the vector can be represented similarly as

#V ¼ V þ eW: Then the vector satisfies the following dual
transformation relationship:

#V ¼ ½ #RX ð#aÞ� #V0; ð2:1Þ

where

½ #RX ð#aÞ� ¼

1 0 0

0 cos #a �sin #a

0 sin #a cos #a

2
64

3
75

is the dual transformation matrix.
In the same manner, the dual transformation matrices

for a screw motion through the Y-axis with a dual angle
#b ¼ bþ eb and a screw motion through the Z-axis with
a dual angle #g ¼ gþ ec are

½ #RY ð #bÞ� ¼

cos #b 0 sin #b

0 1 0

�sin #b 0 cos #b

2
64

3
75

and

½ #RZð#gÞ� ¼

cos#g �sin#g 0

sin#g cos#g 0

0 0 1

2
64

3
75;

respectively.
A general spatial motion of a rigid body moving in

space can be considered as three successive screw
motions about the axes of the coordinate system on
the rigid body or the global coordinate system. And any
sequence of screw motions about the axes can be chosen
as long as the same axis is not repeated consecutively.
The resultant dual transformation matrix ½ #R� is the
combination of all three dual transformation matrices.
For successive transformations with respect to the axes
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Fig. 1. Screw motion through the X-axis.
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of the fixed global coordinate system, ½ #R� can be
obtained by successive left multiplication, and for
successive transformations with respect to the axes of
the moving rigid body ½ #R� can be obtained by successive
right multiplication. In this study, screw motions about
the coordinate system fixed on the moving segment are
used to describe joint motion, and the three dual angles
expressing the screw motions about the axes of the
moving segment coordinate system are called dual Euler
angles.
Similar to Euler angles method, the sequence of screw

motions is important in dual Euler angles method. For
example, if the sequence of screw motions is chosen as
first with respect to the z-axis, then with respect to the
new y-axis (y0-axis), and finally with respect to the new
x-axis (x00-axis), the resultant dual transformation
matrix can be obtained by

½ #R� ¼ ½ #Rzð#gÞ�½ #Ry0 ð #bÞ�½ #Rxð#aÞ�: ð2:2Þ

Similar to the ordinary transformation matrix in Euler
angles method, the dual transformation matrix is
orthogonal, that is ½ #R�½ #R�T ¼ I :

2.2. Algorithm for calculating dual transformation

matrix from coordinates of points

At present, the dual Euler angles of a rigid body
moving in space cannot be measured directly. An
approach is developed to obtain the dual transformation
matrix and dual Euler angles from measurement data.
Generally, the coordinates of n points (nX3) on the rigid
body with respect to a global coordinate system can be
obtained from experiments. Because data from experi-
ments contain noise, least-square algorithms are used in
this study to calculate the dual transformation matrix of
the rigid body from the coordinates of points.
Suppose with respect to the global coordinate system

coordinates of n points at the initial position and final
position are measured as r0i and riði ¼ 1; 2; 3;y; nÞ;
respectively. Then the centroids of the points at the
initial and final position are c0 ¼ 1=n

Pn
i¼1 r0i and c ¼

1=n
Pn

i¼1 ri; respectively.
According to the dual transformation relationship as

introduced above, at the final position the vector
connecting the centroid and the ith point can be
estimated by

*#Vi ¼ *Vi þ e *Wi ¼ ½ #R� #V0i; where #V0i ¼ ðr0i �
c0Þ þ ec0 � ðr0i � c0Þ: On the other hand, at the final
position, the same vector can be calculated from
measurement data as #Vi ¼ Vi þ eWi ¼ ðri � cÞ þ ec �
ðri � cÞ: Because of noise, there is difference between
*#Vi and #Vi: In the sense of least squares, the dual
transformation matrix ½ #R� should minimize J ¼
1=n

Pn
i¼1ðjjVi � *Vijj2 þ jjWi � *Wi jj2Þ: Here jj jj is referred

to the norm of a three-dimensional vector. This
optimization problem subjects to the orthogonal con-
strain ½ #R�½ #R�T ¼ I :

This constrain in dual-number matrix form can be
expanded into two functions in ordinary matrix form as
shown in Eq. (A.8) in Appendix A, from which twelve
constrain functions can be obtained. The optimal
estimation of the elements in dual transformation matrix
were determined by solving the above constraint
optimization problem using Sequential Quadratic Pro-
gramming (SQP) method (Fletcher, 1980). Optimization
toolbox in MATLAB (The Math Works, Inc., Natick,
MA, USA) was used as a computation tool in this study.
Furthermore, the dual Euler angles were obtained based
on the relationship between dual Euler angles and dual
transformation matrix.

3. Application and testing

An example should suffice to show how the dual Euler
angles method can be applied to assess human joint
kinematics. In this study the ankle joint complex (AJC)
motion was represented using the proposed method. A
Flock of Birds electromagnetic tracking system (Ascen-
sion Technology, Burlington, Vermont, USA) consisting
of a standard range transmitter and three wired sensors
was used to measure motions of AJC during dorsiflex-
ion–plantarflexion in vivo. Due to the difficulty in
tracking the motion of the talus in vivo, only the overall
motion of the ankle-subtalar joint complex, that is, the
relative motion of the foot with respect to the shank,
was measured in the present study.
Different from other measurement systems, FOB

provides both orientation and position of sensors. A
special method was used in this study to obtain the
coordinates of points on segments.

3.1. Verification of method by Gimbal test

Though some papers have reported the accuracy of
position and orientation of FOB (Bottlang et al., 1998;
Bull et al., 1998; Meskers et al., 1999), the accuracy of
dual Euler angles calculated using source data from
FOB has not been determined yet. As a preliminary step
for investigating the accuracy of results of in vivo AJC
measurements, a gimbal structure as shown in Fig. 2,
which can produce a motion with known dual Euler
angles, was fabricated. By comparing the estimated dual
angles with the prescribed known values, the gimbal
tests indicate the accuracy of dual angles obtained using
measured data from FOB.
The gimbal consists of three square frames and a base

of length 360mm and width 200mm. All parts of the
gimbal are acrylic or plastic to avoid the distortion effect
on the electromagnetic field caused by metallic objects.
Frame 1 is supported by an axis fixed on the base and
the thread was built in with a pitch of 1.2mm along the
axis. By rotating Frame 1 about its own axis, Frame 1
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will move along its axis with the prescribed pitch
simultaneously, that is, the motion of Frame 1 can be
described as a rotation about and a translation along its
axis. In this way, the screw motion can be simulated.
Similarly, Frames 2 and 3 can rotate about and translate
along their own axes fixed on Frames 1 and 2,
respectively. Moving the frames through their axes can
generate three known screw motions. Rotation angles of
the frames about their own axes can be measured by the
three protractors which are attached on the base,
Frames 1, and 2, respectively. And translation distances
of the frames are determined from the rotation angles
and the pitches of threads.
Tests on the gimbal were performed under the default

system configuration of FOB: 103Hz, AC wide filter on,
DC low pass filter on, the output with positional
resolution of 0.01 in and rotation resolution of 0.011.
Before measurements, the transmitter was aligned on
the base and a sensor was mounted on Frame 3. Then
the gimbal was adjusted to the initial position, at which
the three axes were perpendicular to one another and
intersected at a point. At this position, the distance
between the sensor and the transmitter was about
265mm, which was within the optimal range reported
by Bull et al. (1998). The fixed global coordinate system
is defined by the three axes when the gimbal is at the
initial position and the origin is the intersection point of
the axes. At the initial position, the moving coordinate
system on Frame 3 coincides with the global coordinate
system.
The position and orientation of the sensor with

respect to the transmitter at the initial position having
been recorded, the three frames were rotated about their
own axes from �401 to 401 at the uniform interval 51

with the initial translation of 0mm and the position and
orientation of the sensor were recorded at each step. The
gimbal rotations can be performed starting from Frames
1 or 3. Because the hierarchy of the nested gimbal has
been established as shown in Fig. 2, the final displace-
ment does not depend on the temporal order. Then from
the initial position the three frame were rotated about
their own axes with 3601, respectively, that is, along
their own axes the three frames displaced from the
origin with an initial translation of 1.2mm. The
measurements at different rotation angles as described
above were repeated. Then the same procedure with the
initial translation of 2.4, 3.6, 4.8, 6.0, and 7.2mm was
repeated, respectively.
From measured data the three dual Euler angles of

Frame 3 were calculated and compared to the prescribed
values. Table 1 gives the overall mean errors and
standard deviations of three dual Euler angles. Table 1
indicates that the overall mean errors of rotation angle
and translation distance for all three dual angles are less
than 11 and 1mm, respectively.

3.2. Experimental procedure on AJC

After the accuracy of calculating dual Euler angles
from FOB source data was evaluated, AJC motions
were measured. Four adult volunteers without history of
ankle traumas or pathologies served as subjects for this
study. Before measurements were taken, a sensor was
fixed on the shank; a second sensor was fixed on the
lateral side of the heel; the third sensor was attached on
a pen as a stylus for digitizing the anatomical points of
interest. And four landmarks on the shank—the distal
apex of the medial and lateral malleolus (MM, LM), the

Transmitter 

Base

Frame 1

 Sensor

 Axis of Frame 1
(z-Axis)

Axis of Frame 2 
(y-Axis)

 Frame 2

Frame 3

Axis of Frame 3
(x-Axis)

Protractor

Protractor

Protractor

Fig. 2. Experimental setup for accuracy testing.
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apex head of the fibula (HF), and the prominence of the
tibia tuberosity (TT)—were located by manual palpa-
tion and another four non-collinear points on the foot
were also marked.
In the electromagnetic field of the transmitter, the

subject sat on a chair with the shank fixed on the plane
horizontally and the ankle joint in its neutral position
(ankle angle is 901). At this position, the coordinates of
the landmarks and markers with respect to the
transmitter were digitized as follows: placing the stylus
tip at each of the landmarks and markers, then slowly
rotating around its endpoint while recording the
position and orientation of the sensor on the stylus.
The method used in this study is similar to that used by
Meskers et al. (1999). At the neutral position, the
position and orientation of the sensors attached on the
shank and the foot were also recorded.
Following recording the necessary data at the neutral

position, we asked the subject to make a dorsiflexion–
plantarflexion movement from maximum extension to
maximum flexion. During the joint motion, the position
and orientation of the sensors attached on the shank and
the foot were continuously recorded with respect to the
transmitter. The movement was repeated for three times
on each subject.

3.3. Data analysis

The anatomical coordinate system of the shank,
considered to be fixed, is defined by the four landmarks
as follows: the origin is at the midpoint of the line
joining MM and LM; the Y-axis is orthogonal to
the quasifrontal plane defined by the MM, LM and HF;
the Z-axis is orthogonal to the quasisagittal plane
defined by the Y-axis and TT; the X-axis is the cross
product of the Y- and Z-axis (Fig. 3). At the neutral
position, the local coordinate system of the foot
coincides initially with that of the shank.
The coordinates of the non-collinear markers on the

foot with respect to the shank coordinate system during
dorsiflexion–plantarflexion were constructed using co-
ordinate transformations (see Appendix B for details).
Then the dual Euler angles of the foot with respect to

the shank were calculated using the algorithm as
introduced in Section 2.2. The sequence of screw
motions was selected as first moving through the z-axis,

Table 1

Overall mean errors of three dual angles

Mean error

Dual angle about z-axis Rotation 0.4170.061

Translation 0.5270.07mm

Dual angle about y-axis Rotation 0.4770.061

Translation 0.8770.08mm

Dual angle about x-axis Rotation 0.7470.051

Translation 0.3870.03mm

Fig. 3. Anatomical coordinate system of the shank.

N. Ying, W. Kim / Journal of Biomechanics 35 (2002) 1647–1657 1651



then through the new y-axis (y0-axis), and finally
through the new x-axis (x00-axis). Before computation,
the coordinates were filtered using dynamic program-
ming and generalized cross-validation method to reduce
the noise (Dohrmann et al., 1988).

4. Results and discussion

According to the definition of the coordinate systems
along with the selected sequence of screw motions
adopted in this study, the screw motion through the
z-axis can be considered as the flexion–extension and
lateral–medial shift of the foot. Similarly, the screw
motion through the y0 axis reflects the inversion–
eversion and anteroposterior drawer of the foot. Finally,
the screw motion through the x00-axis can be interpreted
as the internal rotation–external rotation and distrac-
tion–compression of the foot (Fig. 4).
Fig. 5 shows the dual Euler angles of the foot during

dorsiflexion–plantarflexion obtained from three trials on
one of the subjects. To compare the parameters
obtained from different subjects, the rotation angle
about the z-axis was chosen as a reference angle, and
the other five parameters—the rotations about the y-axis
and x-axis, the translations along the three coordinate
axes were examined by varying the reference angle
within its range of motion. Fig. 6a demonstrates

the kinematic coupling of rotations during dorsiflex-
ion–plantarflexion. And Fig. 6b demonstrates the kine-
matic coupling of translations. The results show similar
kinematic coupling patterns across the different sub-
jects. In addition, as the foot moves from the maximum
plantarflexion to maximum dorsiflexion it everts and
externally rotates, which agrees with what has been
reported by Siegler et al. (1988).
Compared with rotation angles and translations

described in the JCS, the dual Euler angles are expressed
in orthogonal coordinate systems. If at the neutral
position, the two body-fixed axes of the JCS are defined
as: the first body-fixed axis is perpendicular to the
sagittal plane of the shank, which coincides with the Z-
axis; the second body-fixed axis coincides with the x-axis
on the foot. The three dual angles through the z-axis, y0-
axis, and x00-axis, used in this study, are equivalent to
rotation about and translation along the first body-fixed
axis, the floating axis, and the second body-fixed axis of
JCS, respectively.
But generally at the neutral position, the two body-

fixed axes of JCS are not orthogonal to each other, and
under this situation, dual Euler angles expressed in
cartesian coordinate system cannot be compared
directly with rotation angles and translations expressed
in non-orthogonal JCS.
Moreover, the dual Euler angles method can avoid

the singular position in JCS. As shown in Fig. 7(a), as

plantarflexion 

shift dorsiflexion

Z

Tibia 

X

Y 
y’ 

x”

drawer

inversion 

eversion

y”z”Calcaneus 

compression-distraction

internal rotation

external rotation

Fig. 4. Screw motions of the foot: (a) dual angle through the z-axis, (b) dual angle through the y0-axis, and (c) dual angle through the x00-axis.
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the moving segment rotates from the initial position
to the final position, where the second body-fixed
axis on the moving segment e3 is collinear with the
first body-fixed axis on the fixed segment e1: Because
the cross product of the two vectors cannot be
calculated when the two vectors are collinear,
the floating axis e2 is not defined at this position. Such

situation may occur when the arm is abducted 901
and the length axis of the arm is collinear with
the shoulder frontal axis. The same motion can be
described using dual Euler angles methods as first
about the z-axis with zero then about the y-axis with
�901, and finally about the x-axis with zero as shown in
Fig. 7(b).

Fig. 5. Dual Euler angles during dorsiflexion–plantarflexion.
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Since dual Euler angles is an orthogonal system,
this orthogonal property can facilitate the solving
of problems when joint forces and moments are re-
quired to be determined. The concept of three
screw motions along the three predefined axes is a
convenient way of describing general displacements of
joint motion in three-dimensional space. The three
motion screws, predefined along human segments in
an anatomically meaningful way in this work, can be
naturally applied to describe the joint forces by
extending the concept to three action screws, the wrench
systems (Roth, 1984), which will complete the analysis
of the human joint motion in full six-degrees-of-freedom
of model.
Similar to the Euler angles method, the proposed

method is sequence dependent. The same orientation
and position of a segment in space may be characterized
by different sets of values depending on the selection of
sequence of screw motions. Sequence dependency may
cause trouble in comparing the results from different
researches unless the sequences of rotations are clearly
mentioned.

5. Conclusion

Compared with Euler/Cardan angles and screw axis
methods, dual Euler angles approach provides an
alternative way of describing general three-dimensional
joint movement, which combines the rotation about and
translation along the coordinate axes. The various
relationships, such as the orthogonality of transforma-
tion matrix in Euler/Cardan angles, also hold in dual
Euler angles. Compared with screw parameters, the dual
Euler angle method’s advantage is that its body

Fig. 6. (a) Kinematic coupling of rotations; and (b) Kinematic

coupling of translations.

Fig. 6 (continued).
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coordinates can be easily understood by clinicians. It has
also an advantage over JCS because of its orthogonality.
If the sequence of screw motions is selected appro-
priately, dual Euler angles have the advantage of
following anatomical motion pattern.
The accuracy testing results on the gimbal indicate

that accurate dual Euler angles can be calculated using
source data measured by Flock of Birds electromagnetic
measurement system.

Appendix A. Algebra of dual angles and dual transforma-

tion

A dual number is defined as #a ¼ a þ ea0; where a and
a0 are real numbers, e is a unit having the property e2 ¼
0: In dual number algebra, addition and subtraction is
defined as

#a7 #b ¼ ða þ ea0Þ7ðb þ eb0Þ ¼ ða7bÞ þ eða07b0Þ; ðA:1Þ

multiplication is defined as

#a #b ¼ ða þ ea0Þðb þ eb0Þ ¼ ab þ eðab0 þ a0bÞ ðA:2Þ

and division is defined as

#a

#b
¼

a þ ea0
b þ eb0

¼
a

b
þ e

a0b � ab0

b2
ðba0Þ: ðA:3Þ

For a dual number #y ¼ yþ es representing the screw
motion displacement of a rigid body through a screw
axis called dual angle, y represents the rotation angle

about the screw axis and s represents the translation
distance along the screw axis. The trigonometric
functions of dual angle #y are

sin #y ¼ sin yþ es cos y;

cos #y ¼ cos y� es sin y;

tan #y ¼ tan yþ es sec2 y:

ðA:4Þ

All identities of ordinary trigonometry hold true for
dual angles. For example,

sin2 #yþ cos2 #y ¼ 1;

sin 2#y ¼ 2 sin #y cos #y;

cos 2#y ¼ cos2 #y� sin2 #y;

tan
#y
2

 !
¼
1� cos #y

sin #y
:ðA:5Þ

As introduced in Section 2.1, a vector on a rigid body
satisfies the following dual transformation relationship:

#V ¼ ½ #R� #V0; ðA:6Þ

where #V ¼ V þ eW; #V0 ¼ V0 þ eW0; and ½ #R� ¼ ½R� þ
e½S�:
According to the algebra of dual numbers, the above

dual form equation can be expanded into the ordinary
form as

V ¼ ½R�V0;

W ¼ ½R�W0 þ ½S�V0: ðA:7Þ

e3 

 e2 

e1 

Fixed segment 

Moving segment 

e2 is not defined  

e1 e3 

Fixed segment 

Moving segment 

x 
y 

z 

Fixed segment 

Moving segment 

x” 

z” 

y” 

Moving segment 

Fixed segment 

(a)

(b)

Fig. 7. (a) Joint coordinate system, and (b) dual Euler angles method.
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And the orthogonal property of the dual transformation
matrix can be expressed in the ordinary form as

½R�½R�T ¼ I ;

½R�½S�T þ ½S�½R�T ¼ 0: ðA:8Þ

Appendix B. Coordinates of markers and landmarks

Coordinates of landmarks on the shank and markers
on the foot, which are required to compute the dual
Euler angles of AJC motion, can be calculated using
FOB output as follows.
First, at the neutral position, the coordinates of a

landmark or marker with respect to the transmitter Trmk
were calculated using the algorithm to minimize

J ¼
1

n

Xn

i¼1

eTi ei; ðB:1Þ

where ei ¼ ½TRss�ssi rtip þT rmk �T rss;i: ½TRss�i and Trss;i;
obtained from FOB output directly, is the rotation
matrix and position vector of the sensor on the stylus
with respect to the transmitter. ssrtip is the vector from
the stylus tip to the origin of the sensor’s coordinate
system described in the coordinate system of the sensor.
Fig. 8 graphically shows the symbols used above.
Secondly, once the coordinates of the landmarks at

the neutral position are obtained, at the same position
the rotation matrix ½TNR� and position vector T

Nd of the
shank coordinate system and the foot coordinate system
with respect to the transmitter can be determined. And
the coordinates of a marker on the foot with respect to
the foot coordinate system can be calculated as

Frmk ¼ ½TNR��1ðTrmk �T
N dÞ: ðB:2Þ

Finally, during joint motion, the coordinates of the
markers on the foot with respect to the shank coordinate
system are computed as follows.
At any position the rotation matrix ½TRS�i and

position vector TdS;i of the shank coordinate system
with respect to the transmitter are calculated from

½TRS�i ¼ ½TRss S�i½
T
NRss S��1½TNR�;

TdS;i ¼T dss S;i � ½TRS�i½
T
NR��1ðTNdss S �T

N dÞ; ðB:3Þ

where ½TRss S�i;
Tdss S;i and ½TNRss S�; TNdss S represent the

rotation matrix and position vector of the sensor on the
shank with respect to the transmitter during joint
motion and at the neutral position, respectively. These
data can be obtained from FOB output.
Similarly, the rotation matrix ½TRF�i and position

vector TdF;i of the sensor on the foot with respect to the
transmitter can also be determined. So during joint
motion, at any position the relative orientation and
position of the foot with respect to the shank are

½SRF�i ¼ ½TRF�i½
TRS��1i ;

SdF;i ¼ ½TRS��1i ðTdF;i �T dS;iÞ: ðB:4Þ

Then the coordinates of the markers on the foot with
respect to the shank coordinate system during joint
motion can be calculated using the formula

Srmk;i ¼ ½SRF�Fi rmk þS dF;i: ðB:5Þ
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