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Abstract. Smoothing spline estimation of a function of several variables based
on an analysis of variance decomposition (SS-ANOVA) is one modern non-
parametric technique. This paper considers the design problem for specific types
of SS-ANOVA models. As criteria for choosing the design points, the inte-
grated mean squared error (IMSE) for the SS-ANOVA estimate and its asymp-
totic approximation are derived based on the correspondence between the SS-
ANOVA model and the random effects model with a partially improper prior.
Three examples for additive and interaction spline models are provided for il-
lustration. A comparison of the asymptotic designs, the 2¢ factorial designs, and
the glp designs is given by numerical computation.
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1. Introduction

We are interested in the design problem of estimating a multivariate response
function f(¢), € 7, from observations of f at a discrete set, &,, of n points in
7 (called the design).

In most practical problems, the true response functions f are usually un-
known and may be often very complicated. Then the standard purely para-
metric methods, such as linear models, quadratic models, or even cubic models
are often inadequate for studying the responses. Smoothing spline analysis of
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variance (SS-ANOVA) is one modern nonparametric technique for modelling
or estimating multivariate functions.

In SS-ANOVA methods, suppose that there are observations y; generated
according to the model

y,‘Zf(l,‘l,...,l,‘d)—FS,‘Zf(t,‘)+8,', i=1,...n,
where & = (e1,...,8) ~ (O a*I) is a Gaussian white noise vector, and #; =
(tii, .. ti)in7 =7V @ ... @ 79 the 7 are some measurable spaces.

The function f is assumed to be in some reproducing kernel Hilbert space, /7,
and f has an ANOVA decomposition of the form

= CH+ ) fulta) + ) fupltustp) +

oa<f

where C, f, fup, etc, are the mean, main effects, two-factor interaction effects,
etc. These effects can be determlned in the followmg way: Let du, be a proba—
bility measure on .7 * and du(t) = Ha_ du,(t,) be a product measure on 7.

Letu,v = D = {l,...,d} denote subsets of the axes. We use dy, for integration
with respect to the axes in u, leaving a function defined over the axes in D — u.
That is, dy, =[], du,(t,). Similarly, dyu_, indicates integration with respect
to the complement axes D — u. The general form of an effect is

fu—J{f—Zﬁ}dﬂ_u-

vcu

Thus the mean is C = [ f(¢) du(t). The main effects are

Julty) = J(f —Q)du_,, 1<a<d.

The two-factor interaction effects are

Fipltnntp) = j(f O Sy )y 2P,

and so forth.
The estimate, f, ,, of f is obtained by finding f, ; in an appropriate sub-
space .4 of A to minimize an expression similar to

SRR b Y AVATARES S PR R
i=1

oely o,fely

where I ; is the collection of indices for components to be included in the model,
the J,, J,5 and so forth are roughness penalties, and the series may be truncated
at some point. The scalar A is the main smoothing parameter, and the 6’s are
subsidiary smoothing parameters satisfying an appropriate constraint for iden-
tifiability. The details for fitting these models from given data sets can be found
in Wahba (1990), Gu and Wahba (1993), Wahba et al. (1995) and references
cited therein.
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The SS-ANOVA methods provide the ability to visualize some of the rela-
tionships between the variables not easily observed with use of the standard
parametric methods. They also overcome the “curse of dimensionality” since
estimating a more general function f(f1,...,t,;) will require truly large data
sets for even moderate d. In the last decade, the SS-ANOVA methods have
become popular in the analysis of real data. Recent applications are provided
by Wahba and her collaborators, such as modelling environmental data (Gu
and Wahba (1993)), meteorological data (Wahba and Luo (1997), and Luo and
Wahba (1998)), and epidemiological data (Wahba et al. (1995), and Wang et al.
(1997)).

It is known that the SS-ANOVA estimate of f is determined by observa-
tions of f at n points in 7. As for the traditional parametric models, one may
then ask how to collect the n observations so that the SS-ANOVA estimate of
f is closest to f in some appropriate sense among all designs ¢&,. This problem
arises in many applications. The region . may be a surface, a sphere, or a
rectangle, and f the temperature, the concentration of some air pollutant, or
the outcome of medical experiments. The design problem concerns optimal or
nearly optimal choices of &,.

In this paper, according to the correspondence between smoothing splines
and random effects models with a partially improper prior (Gu and Wahba
(1993)), we define the integrated mean squared error (IMSE) of the SS-ANOVA
estimate. The definition of IMSE is based on the idea of model-robust design
due to Box and Draper (1959). We choose the design so that IMSE is as small as
possible. At this point, our consideration is somewhat similar to that of Stein-
berg (1985), Sacks et al. (1989) and Mitchell et al. (1994). In the asymptotic case
where n/ is assumed to be large enough, we derive an asymptotic approxima-
tion of IMSE which leads to a criterion for choosing nearly optimal designs.

In Section 2 we first briefly review the SS-ANOV A setting and its relationship
to a random effects model with a partially improper prior. We then define the
IMSE and derive its asymptotic approximation. In Section 3 we provide three
examples including an additive spline model with only constant fixed effect, an
additive spline model with constant and linear fixed effects, and an interaction
spline model with constant and linear fixed effects. Several designs are compared
numerically using IMSE and its approximation. Finally, a summary is given in
Section 4.

2. The underlying model and design criteria

2.1 The SS-ANOVA models

Let Jf be a reproducing kernel Hilbert space of real valued functions on

“) with Jro0 fu(ty) du, = 0 for f, € A and let [11] be the one d1mens1ona1
space of constant functions on 7 ) Any f in the space [1] @ #® has a
umque decomposmon f=Pf+(f— Pf) with Pf | fdu, e[1¥] and
(f=Pf)e %’ . We endow the space [1(] @ #® with the square norm
Il.f H = (P.f)* + || f=Pfl> - Consider the tensor product of the ¢ Hilbert
spaces # = @ 1@ e W< ] which can be expanded as

@ny S CANCEADICRE

a<f
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Further, %’ is decomposed mto a parametric part and a smooth part by letting
H = % @ #P, where #? (the parametric part) 1s ﬁmte dlmensmnal
and #*) (the smooth part) is the orthocomplement of #* in #*. Then A
has been decomposed into sums of products of unpenahzed finite d1mens1ona1
subspaces, plus main effects smooth subspaces plus two factor interaction
spaces of the form [#*) @ #P)), [#* @ #P] and [#¥ ® #P], and so on
for the three and higher factor subspaces
Now suppose that we have decided which subspaces will be included into the
model .#. Let #, of dimension ¢ be the collection of all mcluded unpenalized
subspaces and relabel the other included subspaces as ##, f=1,...,p. Let
Z #P. Then the SS-ANOVA estimate Juaof fisin % Jfo @ A to
m1n1mlze

n )4
Ul £+ 2D 6 PP, (1)
i=1 p=1

where P# is the orthogonal projector in .# onto #*. J. is the main smoothing
parameter, and the 03 are subsidiary smoothing parameters with 6z > 0. In a
pract1cal application, £ and the 03 may be chosen by generalized cross-validation
(¢ unknown) or unbiased risk (6> known); see Wahba (1990) and the references
cited therein. Here, for the purpose of choosing design we assume that the sub-
sidiary parameters, 8g, are given.

Let g1, ...,g4 be a basis for #), and let K4(s, ) be the reproducing kernel
for #%, f=1,..., p. It is known from Gu and Wahba (1993) that the SS-
ANOVA estimate Ju., under the selected model .# can be derived from the
following random effects model with a partially improper prior:

4
ass vagv bl/ZZ Hﬂzl,ﬂ(t)

= )
Yi:FaSS(ti)+8ia i:17"'7n7

where 7 = (t1,...,7,) ~ N(0,al) with @ — oo, and the Z, 4 are independent
zero mean Gaussian stochastic processes independent of the 7,, with

E[ZL/;(S)ZL/g(t)} = Kﬂ(s, t).
It follows that Z,(t) = Y, \/0sZ1 4(¢) satisfies E[Z)(s)Z1(2)] = K(s, 1), where

P
= Z QﬁK/g(s, t).
p=1

We call the model (2) the assumed model which we want to fit. Letting

Fa(t):E[ ass()|Y J’ul—l ]a

then for each fixed t € T

Sunlt) = lim Fy(t).
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N0W> let Y= (ylv ey yn)/; g(t) = (gl(t)a ce 7gq(t))/> k(t) = (K(t7tl)a ceey
K(t,t,))". Let X be the n x ¢ matrix whose (i, v)th entry is g,(¢;), and let K be
the n x n matrix whose (i, j)th entry is K(t;,t;). It is always being assumed that
X is of full column rank. Let X = K + nil, y = a/b, and

h(t) = nXg(t) + k(t), A=nXX'+ZX. (3)
Then Fu is given by

F () = h(t)'47'y. (4)

2.2 The integrated mean squared error

Note that the assumed model (2) corresponding to the SS-ANOVA setting
M = Hy @ A is likely to be, at best, only a reasonable approximation to the
true model for the response. In th spirit of model-robust design due to Box and
Draper (1959), we require a design to provide protection against departures
from the fitted model.

Let #, be the orthocomplement of .# in #, and let R(s, t) be the reproduc-
ing kernel for #,. R(s,t) can be taken as follows:

d q P

R(S, t) = H[l —+ K(a)(sm Zl)] - ng(s)gv(t) - ZKp(S, t)' (5)

o=1 v=1 p=1

Let Z, be the difference between the true unknown model and the assumed
model. Then the true model can be expressed by

F(t) = zq: 0,9,(1) +b'/* Zp: O0pZ1,5(t) + Za(1)
=1 B=1 (6)

Y,‘:F(t,‘)—f—é‘,‘, i=1,...,n,

where the 7, and the Z; ;4 are defined as in (2), and Z, is zero mean Gaussian
process independent of the 7, and Z; g, with

E[Z(5)Z>(1)] = bR(s, 1).

We refer to Z, in (6) as a bias or contamination term consistent with the termi-
nology used in the design literature and introduced by Box and Draper (1959).
We now define the integrated mean squared error in the estimation as follows:

.1 A
A(&) = IMSE(E) = lim 1 [ [F(e) ~ Fu(0)" duto), )
a— o g
where F(f) is given in (6), and F,(t) is given by (4). That is, 4(&,) is the squared
expected loss incurred if the design &, = {x,...,x,} and the estimator F,(¢)
are used and F(t) is the true response.
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Lemma 1. Let
Vass = (Fass(t1) + &1, .., Fass(tn) +8n)la ZZ(’) = (t)/A71527

where 7y = (Zy(t1), ..., Za(t,))". Then A(&,) can be expressed as
A(&) = lim 1| {varlFus(tly) + EZ20) - 20P) dut, (®)

where var[Fy ()| v, IS the posterior variance under the assumed model (2).

Proof. Note that y = y,, + z» under the true model (6). Then F,(t) given in (4)
can be expressed as

Fy(t) = E[Fass ()| pass) + Z2(1),

where E[Fys(t)|y,s) 18 the posterior expectation under the assumed model (2).
From the definition of f in the true model (6) and the independence of y, and
Z>, we have

E[F(1) — F,(1)]” = var[Fuss (1) | yos] + E[Z2(1) = Za(0)*.
This immediately completes the proof of the lemma. []

Observe that the integrated squared mean error can be split up into two
parts: one is due to the posterior variance without bias, and another due to
bias. An average posterior variance was used in Steinberg (1985) as a criterion
for finding model-robust designs. Our goal will be to minimize this integrated
squared mean error.

This mean error can be expressed in a closed form. Let r(t) = (R(¢,t1), ...,
R(t,t,))’, and let R be the n x n matrix whose (i, j)th entry is R(;,t;). Define
matrices Iyg, Iy, Iy, T and Iy by

L, = L~ u(t)v(t) du(t).

Theorem 1. Under the model (6) with a partially improper prior assigned to ,
the integrated squared mean error A(&,) can be expressed as

A4(&,) = L[K(t, 1)+ R(t,0)]du(t) + tr{O(RQ — Ty — 20T}
+t{[(X'Z7'X)"" + LRL'|T,y + 2L(RQ — T4y — 2LT,,},  (9)

where

L=X2'xX)'x2! o=x'-3x'xxz'x)'x'z"



Designs for SS-ANOVA models 167

Proof. From the assumptions on the assumed model (2) and on the true model
(6), we have

varFa(0) o) = K(0,0) + 1g(0)g(6) — h(t)'A” (o)

% E[Zy(t) — Z>(1))> = R(t,1) — 2h(t)' A" r(t) + h(t) A" RA"h(¢),

(10)

where h and A are defined as in (3). Upon collecting terms in the right sides of
(10) and using the following formulas (Gu and Wahba (1993))

lim 7 — nX'A7' Xy = (X' 271 x)"!
17— 0

lim yX'A~' =L

n—o

lim A7'=0

n— o0
gives the result (9) from Lemma 1. []

A good design should make the quantity 4(&,) as small as possible. We call
a design optimal for the SS-ANOV A model if it minimizes the functional 4(&,).
Of course, the minimizer of A(£,) depends on the values of the smoothing
parameters 4 and 6 = (0y,...,0,). These parameters reflect the prior belief of
the experimenter as to the nature of the response function. In order to assess the
influence of these parameters on the designs, we define the efficiency of a design,
&7, say, by the ratio

Eff(¢)) :ijT{()é"). (11)

&, may be the design that minimizes 4(&,) for a set of preassigned parameters,
or some other kind of designs.
2.3 Asymptotics

In this section, we allow n4 to be large, and give asymptotic criteria for the
design problem.

Theorem 2. Letting 6 = 1/(nA) and M = X'X, it follows that

04(&,) = 5J [K(t,8) + R(t,0)] du(t) + tr{M~'T,;}

T
+tr{M ' X" (K + R XM "I,y — 2M ' X'(I'y + I4)} + O(%).
Proof. Formally,
2= (K +ni) =61+ 0K)™" =9I — 6K + 0(6%)].
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We then have
(X'2'X)" =6 M + M X' KXM ! + 0(67)],
L=M"'X'+5M'X'KXM~'X' - M~'X'K) + 0(5%),
0=45(I-XM'X")+0(%),
Substituting these expressions into (9) yields the result in the theorem. []

Thus, ignoring terms of order 0(52), minimizing 4(&,) is then equivalent to
minimizing the following functional

Asy (&) = tt(M ' Iy) + 6 te{M'X'(K + R)XM ' T,
—2M X' (T + Iy)} (12)

We call the design minimizing A, (&,) a nearly optimal design.

In the particular case where the parametric part ) in the SS-ANOVA model
is only of constant functions, we may take g(¢) = 1. Then X =1, Iy = I, = 0,
and 4,4 (&,) becomes that

asy én = n2 ZZ t,,t +R t,,t )] (13)

i=1 j=

Recalling the approximate design theory due to Kiefer, we replace a design &,
by a probability measure & on 7. Then the problem corresponding to (13)
becomes minimizing

D) = j (K(s,1) + R(s,1)] d&(s) d(e)

T xT

Note that the positive definiteness of K(s,t) + R(s, ) makes D(¢) > 0. It fol-
lows that the minimizer of D(¢) is & = u, since D(u) = 0. Especially, if x is
Lebesgue measure on 7 then the continuous uniform design on 7 is a nearly
optimal design for the SS-ANOVA model. In this special case, a design of n
points tq, . . ., t, should be uniformly scattered on the experimental region. Such
a design is called a uniform design by Fang and Wang (1994). For details of the
construction of uniform design see the monograph by Fang and Wang (1994).

3. Examples for illustration

We consider the polynomial spline for illustration. Let Tt = [0, 1] with Leb-
esgue measure, and let %, be the Sobolev-Hilbert space

Wy =1{f:f,f ..., /"D absolutely continuous, /" e £2[0,1]}
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equipped with a square norm

2

1717 = Z(jl 7) dx>

v=0

1
+j (£ ()2 dx,
0

which was used in Wahba (1990, Chapter 10). Let B, be the /th Bernoulli poly-
nomial and let [B,] denote the one-dimensional space spanned by B,. The first
few of Bernoulli polynomials which will be used here are as follows:

Bo(t)=1, Bi(t)=t—1/2, By(t)=1"—1+1/6,
By(t) =1 —32/2 + /2.

Then #,, can be decomposed as the direct sum of m orthogonal subspaces [B/],
/=0,. — 1, and 7, Wthh is the subspace (orthogonal to @/ By/]) satis-
fying ff dt O v=0,. — 1. That is

W = [Bo] @ [B1] ® -+ @ [Bu-1] ® K.

Let & be the tensor product of %, w1th itself d times. Then # may be decom-
posed into the direct sum of (m 4 1) fundamental subspaces, each of the form

[|® - ®[] (dboxes), (14)

where each box [ ] is filled with either [B,] for some # or /.. In the following
examples we use the case with m = 1 and let #*) = #, fora = 1,...,d. Then
the reproducing kernel for #* is given by

K (520 ) = Bu(s:) By (1) £ 3 Balfss — 1), (15)

where {¢} is the fractional part of a real number ¢, i.e., {¢t} = ¢ — ||, where |¢] is
the greatest integer less than or equal to ¢.

Example 1. Additive spline model with only constant fixed effect: Let the par-
ametrlc part My be the one-dimensional space of constant functlons on

= [0, 1] ,1.e., g(t) = 1. Let the penalty part #; be given by #] = @y A
where A% is of the form (14) with #, in the ath box and [By] in the other boxes.
Therefore, we have

d

K(S, t) = Z HJK* (SOH la)»

oa=1

where K, is given in (15). The kernel R defined in (5) becomes

d
1+ Ka(sa )] = 1= Y Ki(sa, 1 (16)
1 a=1

R(s,t) =

d
o=
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For any given n points #;,...,t, € [0, l]d we have X =1, Iy, =1,,=0,

I = 0. The (i, j)th entry of I'y is given by

d
2. (1
75 =D O35,
a=1

where
2 2 4 2 .2 2
pl = L Uy Ty Uy — Uy U Uy Uiy Uija
i = 45 24 4

(17)

where u;, = min{t, t;,} and vy, = max{t;, t;,}. For given n and 4, 0, we then
can find numerically the design that minimizes 4(&,) in (9) for the model here.
Shown in Figure 1 are the designs of n = 12 and 24 points in 2-dimensional unit
cube [0, 1)* for different values of 4, where we take 8 = (1,1). We also find 2-
dimensional designs for some other values of #. It turns out that the influence
of the prior parameters, 4 and 6, on the location of design points is slight. All
design points for the additive model with only a constant parametric part should
be uniformly scattered on the design region. For the d > 2 dimensional case, the
designs that minimize 4(&,) in (9) can be also found numerically.

n =12
2=0.01, 8=(1,1) A=0.1, 0=(1,1) A=1, 0=(1,1)
1} . 1 R 1t .
.
. L. : *
08} * 08}: . ‘1 08 :
: . N - . :
: : . o
06}: . 0.6}: 1 06 . :
04l . 04f . 0.4} *
: . : : .
0.2} 0.2} ° . 0.2} .
. .
ot . . Ob i LI Of o IS
0 0.5 0.5 1 0.5 1
n =24
2=0.01 2=0.1 =1
1 . .... 1 e . .......... . 1 PO .
- . ) hd . ) . :
08}: . 0.8 «{ 08}: .
o . g : .
. * : : .
0.6} 0.6} ‘e * 06}" .
. . .
041 o 04 * 1 0.4} *:
: . . : : . .
hd » B
0.2}: . . 0.2 . 0.2}: . R
ot .. A .. of: D o ! A o} * L.
0 0.5 05 1 05 1

Fig. 1. The designs that minimize 4(&,) for the additive spline model with only constant fixed effect

in Example 1, with ; = 6, = 1.
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Here, we compare the following two kinds of designs for the additive model:
&2 — To minimize Ay (&,) in (13) with A=1and 6, =--- =0, = 1;
8P _ A good lattice point (glp) set of n points in [0, l]d.

The definition of a glp set is as follows (Fang and Wang (1994)): Let (n; Ay, . . .,
hq) be a vector with integral components satisfying 1 < h, <n, h, # hg (o # f5),

d < n and the greatest common divisor (n,h,) =1, =1,...,d. Let
2ih, — 1
l,'x:{lx }, i=1,...,n,0=1,....d.
2n

Then the set {t; = (¢;1,...,tq),i = 1,...,n} is called the lattice point set of the
generating vector (n; hy, ..., hy). If this set has the smallest discrepancy among
all possible generating vectors, then it is called a glp set. It is known that the

points of a glp set are uniformly scattered in [0, 1] 4 and they are widely used in
numerical problems. A lot of glp sets are provided in Hua and Wang (1981),
and Fang and Wang (1994)). The generating vectors of the glp sets used in this
section are found by a greedy algorithm described in Hickernell (1996). Specifi-
cally, for each n we set h; = 1 and iteratively search for the /i, /3, . . ., that min-
imize the quantity below

5 1 |4 G+ 1
[Dn] :—1+ﬁ ZZH g‘f‘ 2 —max(ti,.,t_f,) .

This D, is a worst-case quadrature error for a reproducing kernel Hilbert space
of integrands (Hickernell (1996)).

Table 1 provides the efficiencies of the glp designs, fflp, and nearly optimal
designs, £5%, described above, for the additive spline model with constant fixed
effect in Example 1. These efficiencies are computed by the definition in (11),
where the minimum, ming 4(&,), is taken over all sets of # points in [0, l]d for
0, =---=6,=1andeach 4 =0.01, 0.1, 1, respectively. We also compute the
efficiencies for the values of unequal @’s, not listed here. All numerical results
show that the glp designs and nearly optimal designs have high efficiencies for
this additive spline model.

Table 1. The efficiencies, defined in (11), of designs fflp
and &% for the additive spline model with constant fixed

effect in Example 1 with 0, =--- =0, = 1.

2 f,%lp é:’\sy
0.01 0.9812 0.9805

d=2,n=12 0.1 0.9823 0.9815
1 0.9995 0.9994
0.01 0.9817 0.9789

d=3,n=16 0.1 0.9846 0.9844
1 0.9994 0.9993
0.01 0.9811 0.9823

d=4,n=232 0.1 0.9859 0.9860

1 0.9992 0.9992
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Example 2. Additive spline model with constant and linear fixed effects: Let
A% = A, be described as in Example 1. Let #,,, the parametric part of in
H,, be spanned by By, and #,,, the smooth part, be the orthocomplement of
Hr In H,. Then the reproducing kernel for #; is

K*S(SGU t(x) - %BZ({S(X - lm}) (18)

Then the parametric part for the problem is #y = span{l, B, (t,),..., Bi(t4)}.
We take

g(t) = (1,B1([1), .. .,Bl(ld))/.

The smooth part for the problem is /#] = @::1 A#* where #* is of the form
(14) with 4., in the ath box and [By)] in the other boxes. We then have

*V S‘OC? O(

H M&

The kernel R(s, t) is the same as in (16). We find that I,y = 0, I'x = 0, and
I, =diag(1,1/12,...,1/12),

| 0 01Bs(t11) -+ 04B3(t1a)

F e e —— . .
kg 6\/§ . : :
0 9133([,,1) s edB3(tnd)

The (i, j)th entry of Iy is given by

d
2,2
/A Z Hawt('jfx)7
a=1
where

1 1 1
Vi = Wit — 13 Bt Bi(1) + 2 Bi(1) Bs (1) + < Ba(ti) Baltp), (19
where w is defined as in (17).

We numerlcally find the optimal designs that minimize 4(¢,) in (9) and the
asymptotic optimal designs that minimizes 4,4 (&,) in (12) for a given values of
A and 6. Specifically, we take the parameters 6, all to be 1. The number n of
points of a demgn in the d-dimensional unit cube [0, 1] 4 is taken to be a multiple
of 2¢. Shown in Figure 2 are some of the 2-dimensional optimal designs with
multiples of 22 = 4 points in [0, 1]°.

Figure 3 shows the efficiencies of both the designs ¢€P and & for the addi-
tive splme model with constant and linear fixed effects descrlbed 1n this example.
Here, ¢EP is the glp design defined as in Example 1, and &, is the nearly opti-
mal des1gn that minimizes 4,s(&,) in (12) under this model where the param-
eters 6, are still taken to be 1.
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n =3 x 2
1=0.01 2=0.1 r=1
1 . 1te . 1te- .
08}:* 0.8} 0.8}:
. :
. : :
0.6 0.6 . 06}
04f: 04f- 041: :
. : : :
0.2 . 0.2} 02}: :
. . .
ot: . e Ot ® Ot e o
0 0.5 1 0 05 0 0.5 1
n =4 x 22
%=0.01 A=0.1 A=t
] - . R 1te . 1he -
. . : .
0.8} ¢ : 08}" . osl:
. . i .
. . . . . .
. : : :
06}° 0.6 4 o06}:
Lo : :
0.4} o4 o4
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Fig. 2. The designs that minimize 4(&,) for the additive spline model with constant and linear
fixed effects in Example 2, with 6, = 0, = 1.

s=3, n=16
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Fig. 3. The efficiencies of the glp design £8P (dashed line) and the nearly optimal design ¢2% (solid
line) for the additive spline model with constant and linear fixed effects in Example 2, with
0= =0,=1.

We observe from Figures 2—3 that the locations of the design points in the
cube are far more dependent on the parameter 4. When 4 is small, the designs
have a reasonably even distribution of design points. However, as 4 increases,
the designs tend towards the optimal designs under a classical first-order model,
which are 2¢ factorial designs with /29 replicates at each corners of the cube.
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Also, the glp design are better than the nearly optimal design for small 4 close to
0, while as /4 increases, the nearly optimal design are getting better than the glp
design and is of high efficiency. This also indicates that our asymptotic criterion
for selecting the design is efficient for the parameter 4 not too small. On the
other hand, the efficiencies of the two designs change a little as the dimension
d increases.

Example 3. Interaction spline model with constant and linear fixed effects: Let
H) = A, ® H,,, where #., and H,, are described as in Example 2. Let the
smooth part for the problem, 7, be the direct sum of the d + d(d — 1)/2 fun-
damental subspaces of the form (14) with #,, in one box and [By] in the other
boxes for d main effects subspaces, and with . in two boxes and [By] in the
other boxes for two factor interaction subspaces. Then the basis for the para-
metric part # is

g(t) = (1,Bi(t1),...,B(t2)),

and the kernel for the smooth part is

d
K(S, t) = Z HaK*S(Sl, la) + Z Hsz*S(Sa, Z/j)K*S(Sﬂ, lﬁ),
o=1

I<a<fi<d

where K., is defined by (18). The kernel for the subspace not included in the
model is

d

d
R(s,t)=[[(1+K(st:)] = 1= Kilsanta) = > Kusl:12)Kes(5p.1p),
a=1

=1 l<o<p<d

where K, is defined in (15). We find that I',; = 0, I'x = 0, and Iy, and I, are
the same as in Example 2. The (i, j)th entry of I'y here is given by

d
_ 2 (2) 2 2) ()
Vi = 291'/’#« Y O

I<a<f<d

where wﬁfa) is defined as in (19).

As done in Example 2, we find numerically the optimal designs that mini-
mize A(&,) defined in (9), and the nearly optimal designs that minimize A,g (&)
defined in (12). The #’s in the criteria are all taken to be 1 in finding these
designs. Figure 4 shows the plots of 2-dimensional optimal designs where n are
multiples of 2. The efficiencies of the glp designs and the asymptotic designs
are shown in Figure 5. The behaviours of these designs for the interaction spline
model with constant and linear fixed effects are similar to those designs for the
additive spline model with the same fixed effects in Example 2.

4. Summary

The design problem for specific smoothing spline ANOVA models has been
considered in this paper based on the relationship between SS-ANOVA models
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Fig. 4. The designs that minimize 4(&,) for the interaction spline model with constant and linear
fixed effects in Example 3, with 6, = 6, = 01, = 1.

s=2, n=12 s=3, n=16

08
5 ST T T T--4 Zos Tt - -
s 2

2 5

504 504

<)
[N
o
N

(o] 0
(o] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Smoothing parameter: A Smoothing parameter: A

Fig. 5. The efficiencies of the glp design £8P (dashed line) and the nearly optimal design &% (solid
line) for the interaction spline model with constant and linear fixed effects in Example 3, with the
0, =0, = 1.

and random effects models with a partially improper prior. Designs are com-
pared numerically using the integrated mean squared error and an asymptotic
approximation of IMSE assuming that n/ is large. Three examples are provided
for illustration for the designs in the d-dimensional unit cube, namely:
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i. An additive spline model with only constant fixed effect;
ii. An additive spline model with constant and linear fixed effects; and
iii. An interaction spline model with constant and linear fixed effects.

Our conclusions on the design problem can be summarized as follows: If
the model only includes constant fixed effect, the design points should be evenly
distributed in the design region, whatever the size of the parameter 4 is. We
suggest to use a glp set of n points for the design, since the glp set is relatively
simple and has high efficiency for the design problem. If the smoothing spline
model includes constant and linear fixed effects, the design for small 1 has a
reasonably even distribution of design points, and so the glp design is preferred.
However, as /4 increases, the design tends towards to the optimal design under a
first-order regression model. In this case, when n is a multiple of 2¢, one can use
the 2¢ factorial design with /29 replicates at each corners of the cube.
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