
S A N D Y  L. Z A B E L L  

T H E  R U L E  OF S U C C E S S I O N  

1.  I N T R O D U C T I O N  

Laplace's rule of succession states, in brief, that if an event has 
occurred m times in succession, then the probability that it will occur 
again is (m+ 1)/(m+2). The rule of succession was the classical 
attempt to reduce certain forms of inductive inference - "pure in- 
ductions" (De Morgan) or "eductions" (W. E. Johnson) - to purely 
probabilistic terms. Subjected to varying forms of ridicule by Venn, 
Keynes, and many others, it often served as a touchstone for much 
broader issues about the nature and role of probability. 

This paper will trace the evolution of the rule, from its original 
formulation at the hands of Bayes, Price, and Laplace, to its general- 
izations by the English philosopher W. E. Johnson, and its perfection 
at the hands of Bruno de Finetti. By following the debate over the 
rule, the criticisms of it that were raised and the defenses of it that 
were mounted, it is hoped that some insight will be gained into the 
achievements and limitations of the probabilistic attempt to explain 
induction. Our aim is thus not purely - or even primarily - historical in 
nature. 

As usually formulated, however, the rule of succession involves 
some element of the infinite in its statement or derivation. That 
element is not only unnecessary, it can obscure and mislead. We begin 
therefore by discussing the finite version of the rule, its statement, 
history, and derivation (sections 2-3), and then use it as a background 
against which to study the probabilistic analysis of induction from 
Bayes to de Finetti (sections 4-9). Sections 4-6 deal largely with 
historical issues; sections 7-9 matters mathematical and foundational. 

2. T H E  F I N I T E  R U L E  OF S U C C E S S I O N  

One form of enumerative induction involves performing an experi- 
ment that can, at least in principle, be repeated an indefinitely large 
number of times ("trials"), with one of two possible outcomes ("suc- 
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cess" vs. "failure"). In this case it makes sense to refer to the 
(unknown) probability p of success, i.e., the limiting frequency, pro- 
pensity, or objective chance of success. Under the classical Laplacean 
analysis, if the trials are independent, and all possible values of p are 
assumed equally likely, then given r successes in m trials, the prob- 
ability of a success on the next trial is 

fo /Io lpr+l(1-p)m-rdp pr(1-p)m-rdp=(r+l)/(m+2)" 

This is Laplace's rule of succession. ~ 
For certain types of enumerative induction the Laplacean schema is 

unsatisfactory. If one is noting the color of ravens, tagging each one 
after its color is recorded, then the universe being sampled is finite, 
and the sampling is being done without replacement (i.e., each raven 
is observed at most once). For this reason, in 1918 the English 
philosopher C. D. Broad repeated the Laplacean analysis, but for 
sampling from a finite urn without replacement (the Laplacean picture 
can be thought of, in a way that can be made mathematically precise, 
as sampling from an urn with an infinite number of balls). Of course, 
there are questions about the extent to which observing the color of 
ravens corresponds to sampling balls from an urn (realistically, one 
only sees ravens in one's neighborhood) - important questions, and 
ones also considered by Broad - but let us set these aside for the 
moment and consider Broad's simple mathematical question: 

Consider an urn with a finite but unknown number of balls n, each 
of which is either black or white. Suppose a sample of m balls is drawn 
at random without replacement from the urn. If nothing is known 
about the relative proportion of black and white balls, and all m of the 
balls drawn are black, what is the probability that the next ball drawn 
is black? 

Of course, some assumption must be made about the prior prob- 
ability for the proportion of blacks. The natural assumption, in 
analogy to the Laplacean treatment, is that all possible proportions j/n 
are equally likely, and this is the one that Broad made in 1918. 2 Broad 
discovered that, surprisingly, the answer does not depend on n, the 
population size, but only on m, the sample size, and that the answer is 
identical to Laplace's rule, i.e., (m + 1)/(m + 2). 

The proof is not difficult. A simple application of Bayes's theorem 
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shows that the desired probability is 

~l=m+l j ( j -  1 ) ( j -  2 ) . . .  ( j -  m) 
(n - m) Yq%,,, j ( j -  1 ) ( j -  2 ) . . .  ( j -  m + 1)" 

The problem thus reduces to the evaluation of two sums, and, as 
Broad notes, "it can easily be shown that" their ratio is (m + 1)(m + 2). 
If the sum in the denominator is denoted $,,,,,, then a simple inductive 
argument shows that 

( n + l ) !  
S,,,n (m + 1)(n - m)!' 

and substitution then yields 

(n - m)-lS,~+l,~ = ( m +  1) 

Sm,n (m + 2)" 

Broad did not give the mathematical details, and for completeness a 
proof is given in the appendix at the end of this paper. 

The finite rule of succession has several important philosophical 
consequences: 

(1) It eliminates a variety of possible concerns about the 
occurrence of the infinite in the Laplacean analysis (see, 
e.g., Kneale 1949, p. 205): attention is focused on a finite 
segment of trials, rather than a hypothetical infinite 
sequence. 

(2) The frequency, propensity, or objective chance p that 
occurs in the integration is replaced by the fraction of 
successes; thus a purely personalist or subjective analysis 
becomes possible, and objections to "probabilities of prob- 
abilities" and "unknown probabilities" (see, e.g., Keynes 
1921, pp. 372-75) are eliminated. 

(3) It extends the domain of applicability of the rule to forms of 
enumerative induction not previously covered. 

An important consequence of Broad's analysis was the remark that the 
probability of a universal generalization - i.e., that all n balls in the 
urn are black, given that the first m were - will be quite small unless m 
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is large relative to n (the exact probability is (m + 1)/(n + 1)). This was 
not a novel observation, but it was viewed at the time as a serious 
setback to the Laplacean program of justifying induction prob- 
abilistically, and was an important impetus for the early work of 
Jeffreys and Wrinch (1919). This question will be discussed in the final 
sections of the paper. 

Historical Note. Although Broad is often credited with the finite 
rule of succession (e.g., by von Wright 1957; Jeffreys 1961; Good 
1965, p. 18), he does not specifically claim priority in its derivation, 
and in fact it had been independently discovered several times prior to 
Broad's 1918 paper. The first of these was in 1799, in a paper by the 
Swiss mathematicians Pierre Prevost (1751-1839) and Simon L'Huil- 
ier (1750--1840). Both were interested in the philosophical im- 
plications of probability and wrote several papers on the subject in 
collaboration; see generally Todhunter (1865, pp. 453-463). 3 

As Prevost and L'Huilier state the problem, 

Soit une urne contenant un nombre n de billets; on a tir6 p + q billets, dont  p sont 
blancs and q non-blanes (que j 'appellerai noirs). On demande les probabilit6s que les 
billets blancs and les billets noirs de l 'urne 6toient des nombres donn6s, dans la 
supposition qu'h chaque tirage on n'a pas remis dans l 'urne le billet tir6. 

Thus, Prevost and L'Huilier consider tlae more general case of p 
successes and q failures in p + q = m trials, and derive the posterior 
probabilities for different constitutions of the urn. The law of suc- 
cession is then derived as a consequence, with the result that the 
probability of a success on the next trial is (p + 1)/(m + 2). 

The result was later independently derived by Ostrogradskii (1848), 
as well as "a mere diocesan" (Keynes 1921, p. 179), Bishop Charles 
Terrot of Edinburgh, whose work (Terrot 1853) is mentioned by 
Boole in his Investigation of the Laws of Thought (1854). These early 
derivations are not without interest, and are discussed in the mathe- 
matical appendix at the end of this paper. 

The result is also noted by the indefatigable Todhunter, who reports 
the work of Prevost and L'Huilier in his famous History of the 
Mathematical Theory of Probability (1865, pp. 454-57). Todhunter 
observes that the crucial sum may be readily evaluated by the use of 
the binomial theorem, remarks the identity of the answer with the 
Laplacean one, and comments that "the coincidence of the results 
obtained on the two different hypotheses is remarkable". 4 
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3 .  F I N I T E  E X C H A N G E A B I L I T Y  A N D  T H E  

R U L E  O F  S U C C E S S I O N  

Although the Prevost-L'Huil ier  and later proofs of the finite rule of 
succession are not difficult, they leave unexplained this "remarkable 
coincidence".  It turns out that there is a very different approach, 
involving the concept  of exchangeability, which clarifies why the finite 
and infinite rules agree. 

Let  X1, X2 . . . . .  X n denote  a sequence of exchangeable random 
variables taking on the values 0 and 1. By definition this means that 
the probability distribution of the random variables is invariant under 
permutations; i.e., 

P [ X 1  = el ,  X 2  = e2, . . . , X ,  = e ,]  

= P [ X l  = e~<l), X2 = e,,(2) . . . . .  X ,  = e,,(,)], 

for all possible sequences el, e 2 , . . . ,  e, (ei = 0 or 1), and permutations 
o- of {1, 2 . . . . .  n}. There  is a simple representation for such sequences. 
If S, = X1 + X z  +" �9 �9 + X , ,  then the events {S, = k} form a partition, 
i.e., they are mutually exclusive and exhaustive (they are disjoint and 
one of them must occur). Thus, by the so-called theorem on total 
probability, one may write 

P [ X 1  = el ,  X 2 =  e 2 , . . . ,  X ,  = e,]  

= ~ P [ X l  = ca, X 2  = e 2 , . . . ,  X ,  = e , [S ,  = k ] P [ S ,  = k]. 
k=O 

By the definition of exchangeability, the conditional probabilities 
P[X! = e l ,  X 2  = e 2 , . . . ,  Xn -- gnlSn = k ]  assign equal probabilities to 
the . C k  sequences of k ls and n - k 0s. This corresponds to drawing 
at random all n balls out of an urn containing k l ' s  and n - k 0s, i.e., 
it is a hypergeometr ic  probabi l i ty  which we will denote H, , k .  Let  
Pk = P [ S ,  = k]. The  sequence p0, pa . . . .  , p, specifies the probabilities 
that the sequence X~, X2 . . . .  , X ,  will contain 0, 1 . . . .  or n ls respec- 
tively. In this notation, 

P = ~,, pkHn,k. 
k =0 

That  is, the exchangeable probability P may be viewed as a mixture of 
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the hypergeometric probabilities Hn,k, using the Pk. If one were to 
arrange n + 1 urns U o, U1 . . . . .  U,, with urn Uk containing k l s and 
n - k 0s, pick an urn Uk with probability Pk, and then draw all n balls 
at random out of the urn, the resulting probability distribution on 
sequences of length n would be identical with the original probability 
assignment P. 

This simple, but very useful result, is the finite de Finetti represen- 
tation theorem. Note the following basic properties of the represen- 
tation: 

FE1. 

FE2. 

FE3. 

The Hn,k are independent of P;  P only enters into the 
representation via the Pk. 
The representation is unique: if P = ~ pkHn,k = ~ qkHn,k, 
then Pk = qk, all k. 
The  probability distribution on sequences of length n, 
arising from any mixture ~ pkHn,k, is exchangeable. (The 
term mixture means that the Pk are arbitrary numbers 
satisfying 0 ~< pk ~< 1 and po + P~ +" �9 �9 + P~ = 1.) 

In honor of those who were the first to study it, let us call the sequence 
generated by picking one of the n + 1 urns Uk at random, and then 
drawing all n balls out of the urn at random, the Prevost-L'Huilier 
process, denoted for short as PLn. The  Prevost-L 'Huil ier  process is a 
special example of a finite exchangeable sequence, with the Pk = 
P[Sn = k ] = :  1 / (n+  1) uniform. It is a consequence of FE1 that an 
exchangeable sequence is uniquely determined once the values Pk = 
P[Sn = k] are specified. 

Now we are ready to explain the strange coincidence of the rules of 
succession for the Prevost-L 'Hui l ier  process PL ,  and the Bayes-  
Laplace process BLoo, which is generated by picking p uniformly from 
the unit interval [0, 1] and then tossing a p-coin infinitely often. The  
Bayes-Laplace process X1, X2, X3 . . . .  is an infinitely exchangeable 
sequence; i.e., for any n ~  > 1, the initial segment of the process 
X~, X2 . . . .  , X ,  is exchangeable in the sense defined above. Thus it 
has some finite de Finetti representation ~ pkH,,k. But, the Bayes-  
Laplace process BL~ has the property that Pk = P[S~ = k] = 1/(n + 1), 
just as does the Prevost-L 'Huil ier  process PL. .  Since they are both 
exchangeable,  and since their mixing measures coincide, they are 
identical. That  is, 
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the initial segment X~, X 2 , . . . ,  X, of the Bayes-Laplace 
process BL| is stochastically identical to the Prevost- 
L'Huilier process PL,.  

N o w  it is clear why the rules of succession for the two processes 
coincide: they are actually the same  process (up to stage n)l Not only 
do their rules of succession coincide, but every other probabilistic 
aspect as well. Although the two processes were generated by two 
distinct stochastic mechanisms, the resulting distributions are iden- 
tical. 

In retrospect, this is obvious: if we are given the initial probabilities 
P[X1  = el], and the rules of succession at each stage, it is possible to 
express the probabilities P [ X I  = e~, X2 = e2,.. �9 , X n  = en] in terms of 
these quantities. For example, for both PL4 and BL~, 

P[X1 = 1, X z  = 0, X3 = 1, X4 = 1] = (1/2)(1/3)(2/4)(3/5) 

= 1/20. 

Thus, if the initial probabilities and succession probabilities of two 
processes coincide, the processes are the same. For those allergic to 
exchangeability arguments of the type given above, this gives an 
alternative way of deriving the identity of PL, and the initial nth 
segment of BL= once their rules of succession have been shown to 
coincide. 

Observing the identity of the two processes has the advantage that 
most properties of PL, may be immediately and easily deduced. For 
example, consider the following question: 

Given a sequence of total length N, what is the probability 
that if the first n outcomes are all black, then the remaining 
N -  n outcomes will also be all black? 

That is, how much evidence does the first n outcomes being black 
provide towards the universal generalization that all outcomes are 
black? Doing this directly (as Broad did) is elementary but messy, 
involving the usual sums. Far easier, however, is the observation that 

P[ SN = N I S. = n] = P[  SN = N and & = n J/ P[ & = n] 

= P[SN = N ] / P [ S ,  = n] 
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_ 1 / .  1 
( N +  (n + 1) 

_ ( n +  1) 

( N +  1)' 

which is the answer Broad derives, and which coincides (as it must) 
with the result for the Bayes-Laplace process (Laplace, Th~orie 
analytique, p. 402; De Morgan 1838, p. 64). 

How satisfactory an explanation of enumerative induction does the 
rule of succession provide? What are its limitations? Can these be 
eliminated? Broad's analysis came at the end of a century and a half of 
discussion and debate. It marks the end of an era, for in a few years 
the contributions of Keynes, Johnson, Ramsey, and de Finetti were to 
irretrievably change the way in which the problem was cast. The next 
three sections discuss some of the highlights of the preceding debate 
from Bayes to Broad. Those readers not interested in this previous 
history may turn directly to Section 7, where the emphasis shifts to the 
philosophical analysis and mathematical evolution of the rule. 

4. W H E N  A N D  W H Y  D I D  B A Y E S  P R O V E  B A Y E S ' S  T H E O R E M ?  

Hume first stated the problem of induction; Bayes first advanced a 
solution to it. The chronological link between these two events is 
much closer than is usually recognized. 

Like James Bernoulli before him, the Reverend Thomas Bayes 
perished before he was published. At some time prior to his death on 
17 April 1761, Bayes wrote his famous 'Essay Towards Solving a 
Problem in the Doctrine of Chances', published posthumously by his 
friend Richard Price in 1764. Although Bayes's introduction to his 
essay has not survived, Price tells us that Bayes came to have doubts 
as to the validity of the postulate adopted by him in the solution of the 
problem. As Price puts it, Bayes "afterwards considered, that the 
postulate on which he had argued might not perhaps be looked upon 
by all as reasonable; and therefore he chose to lay down in another 
form the proposition in which he thought the solution of the problem 
is contained, and in a scholium to subjoin the reasons why he thought 
so, rather than to take into his mathematical reasoning any thing that 
might admit dispute". 
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For this reason some latter commentators have assumed that Bayes 
delayed publication of his results because of such doubts (e.g., Fisher 
1973, pp. 9-10). How long did Bayes meditate on his solution? 
Surprisingly, there is evidence that suggests that Bayes may have 
arrived at at least the basic results in his essay some fifteen years prior 
to his death. 

The first piece of evidence in question is a passage from David 
Hartley's Observations on Man, published in 1749. After discussing 
the law of large numbers for binomial trials given by De Moivre, 
Hartley states 

An ingenious Friend has communicated to me a Solution of the inverse Problem, in 
which he has shewn what the Expectation is, when an Event has happened p times, and 
failed q times, that the original Ratio of the Causes for the Happening or Failing of an 
Event should deviate in any given Degree from that of p to q. And it appears from this 
Solution, that where the Number of Trials is very great, the Deviation must be 
inconsiderable: Which shews that we may hope to determine the Proportions, and, by 
degrees, the whole Nature, of unknown Causes, by a sufficient Observation of their 
Effects. (Hartley 1749, p. 339) 

If Hartley's ingenious friend were Bayes, this would mean that Bayes 
had arrived at his basic results no later than 1749, and probably 
somewhat earlier. The identity of the two is not only a natural 
conjecture, it is supported by the internal evidence of Hartley's own 
statement: the terminology used by Hartley is identical to that 
employed by Bayes, who refers in his essay to an " even t . . .  happening 
p times, and failing q t imes . . . " .  (Ingenious, moreover, was a word 
which came readily to mind when thinking of Bayes. Price, for 
example, calls Bayes "one of the most ingenious men I ever knew" 
(Price 1758, p. 248), and Laplace refers to Bayes's method as "tr6s 
ing6nieuse" (Laplace 1814, p. cxlviii).) 

If Bayes did suppress his result for some 15 years, his diffidence in 
publication might well explain the anonymous nature of Hartley's 
reference. Since Bayes and Hartley were both members of the Royal 
Society and dissenters, they may well have known each other, al- 
though there is no direct evidence that they actually did. It is of course 
possible that Hartley's "ingenious friend" was someone other than 
Bayes, but absent Hartley's direct statement to this effect or clear 
evidence that Bayes's work had been independently duplicated, it is 
hard to credit this hypothesis. 5 

Very recently a new piece of evidence has come to light that seems 
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decisive in favor of Hartley's reference to Bayes. Dr. A. I. Dale has 
discovered a passage in an early notebook of Bayes giving a proof of 
one of the rules in Bayes's essay (Dale 1986). Allfhough the entry is 
undated, it is preceded by one dated July 4, 1746, and succeeded by 
one dated December 31, 1749. It is thus clear that at some point in the 
period 1746-1749 Bayes had derived at least some of his basic results, 
and the coincidence with the date of Hartley's book (1749) seems too 
striking to be coincidental. 

What event in the period 1746 to 1749 led Bayes to investigate a 
problem that, in the words of his friend Richard Price, must be 
"considered by any one who would give a clear account of the 
strength of analogical or inductive reasoning"? Thus put, an obvious 
answer suggests itself. In 1748 David Hume had published his 
Enquiries Concerning Human Understanding, containing a clear and 
succinct statement of his famous problem of induction. Hume had laid 
down the challenge: "Let any one try to account for this operation of 
the mind upon any of the received systems of philosophy, and he will 
be sensible of the difficulty" (Enquiry, p. 59). Bayes may have an- 
swered it within a year. 

Bayes's paper, however, had little immediate, direct influence and it 
is through Laplace that the techniques of inverse probability became 
widely known. A decade after the appearance of Bayes's essay, 
Laplace wrote the first of a series of papers in which he, apparently 
independently of Bayes, presented his solution to the problem of 
causes, in the form that was to gain widespread acceptance (Laplace 
1774). 6 His older mentor Condorcet, recognizing the importance of 
Laplace's contribution to the inductive problem, rushed it into print. 
"The problem of finding the probability of the occurrence of an event, 
given only that it has occurred a number of times in the past, is the 
most fundamental in the calculus of probabilities, argued the assistant 
secretary [Condorcet], underlining the significance of Laplace's paper 
in the preface to the sixth volume of the M~moires des savants 
~trangers" (Baker 1975, pp. 168-69). Hume's impact had been felt on 
the Continent as well. 7 

Laplace's own statement of the probabilistic solution of the problem 
of induction appears in the Essai philosophique. The example he 
provided is notorious: 

Thus we find that an event having occurred successively any number of times, the 
probability that it will happen again the next time is equal to this number increased by 
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unity divided by the same number, increased by two units. Placing the most ancient 
epoch of history at five thousand years ago, or at 1826213 days, and the sun having 
risen constantly in the interval at each revolution of twenty-four hours, it is a bet of 
1826214 to one that it will rise again tomorrow. [Laplace, Essai, p. xvii] 

5.  THE RISING OF THE SUN 

It is said that Laplace was ready to bet 1,826,214 to 1 in favor of regular habits of the 
sun, and we should be in a position to better the odds since regular service has followed 
for another century. A historical study would be necessary to appreciate what Laplace 
had in mind and to understand his intentions. (Feller 1968, p. 124) 

L a p l a c e  has  p e r h a p s  r e c e i v e d  m o r e  r id icu le  for  this s t a t e m e n t  than  for  
any  o the r .  Ye t  Fe l l e r ,  de sp i t e  his gene ra l  l ack  of  s y m p a t h y  for  the  
Bayes i an  pos i t ion ,  had  too  m u c h  r e s p e c t  for  L a p l a c e  to dismiss  his 
f amous  ca l cu l a t i on  u n e x a m i n e d .  L e t  us a t t e m p t  the  s tudy  F e l l e r  sug-  
gests .  

T o  b e g i n  with,  it  is i m p o r t a n t  to rea l ize  tha t  the  e x a m p l e  of the  
r is ing of  the  sun does  not  o r ig ina t e  wi th  L a p l a c e .  I t  goes  b a c k  to 
H u m e  (at least) ,  who  in his Treatise of 1739 asse r ted :  " O n e  w o u ' d  
a p p e a r  r id icu lous ,  who  w o u ' d  say, tha t  ' t is  on ly  p r o b a b l e  the  sun will 
rise t o - m o r r o w ,  o r  tha t  all m e n  mys t  dye ;  t ho '  ' t i s  p la in  we  have  no 
fu r the r  a s su rance  of these  facts ,  than  wha t  e x p e r i e n c e  affords  us"  
(Treatise, p. 124). A s  we shall  see,  the  e x a m p l e  of the  r is ing of  the  sun 
as a t o u c h s t o n e  of  i nduc t i ve  i n fe rence  is a c o m m o n  th r ead  t h r o u g h  
m u c h  of  the  l a t t e r  l i t e r a tu re  on  the sub jec t .  

In  deny ing  tha t  i n fe rences  such as the  r is ing of  the  sun a re  m e r e l y  
p r o b a b l e ,  H u m e  was a rgu ing  tha t  t he re  a re  d e g r e e s  of  k n o w l e d g e  
which ,  whi le  no t  d e m o n s t r a t i v e l y  ce r ta in ,  e x c e e d  all p robab i l i ty .  Th is  
is a r e c u r r e n t  idea ,  which  can  also be  found ,  for  e x a m p l e ,  in C a r d i n a l  
N e w m a n ' s  Grammar of Assent. Pr ice ,  to  c o n t r a d i c t  H u m e ,  turns  to  
this  e x a m p l e  in his a p p e n d i x  to  Bayes ' s  essay:  

Let us imagine to ourselves the case of a person just brought forth into this world, and 
left to collect from his observation of the order and course of events what powers and 
causes take place in it. The Sun would, probably, be the first object that would engage 
his attention; but after losing it the first night he would be entirely ignorant whether he 
should ever see it again. He would therefore be in the condition of a person making a 
first experiment about an event entirely unknown to him. But let him see a second 
appearance or one return of the Sun, and an expectation would be raised in him of a 
second return, and he might know that there was an odds of 3 to 1 for some probability 
of this. This odds would increase, as before represented, with the number of returns to 
which he was witness. But no finite number of returns would be sufficient to produce 
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absolute or physical certainty. For let it be supposed that he has seen it return at regular 
and stated intervals a million of times. The conclusions this would warrant would be 
such as follow. There  would be the odds of the millioneth power of 2, to one, that it 
was likely that it would return again at the end of the usual interval. 

This is not Laplace's rule of succession, but rather a calculation of the 
posterior probability that the unknown chance p of the sun's rising 
exceeds 1/2, i.e., 

i' /Io' Pip > 1/2] = p"-l dp p"-l dp 
1/2 

= 1 - (1/2)" = (2" - 1)/2". 

i.e., odds of 2" to 1. (Note Price uses an exponent of n -  1, since he 
considers the first trial to merely inform us that the event is possible; 
see Pearson 1978, pp. 368-69.) 8 

Although Price was a lifelong philosophical opponent of Hume, he 
read Hume carefully, and it is clear that his discussion of Hume's  
example was intended to rebut Hume's contention that "many 
arguments from causation exceed probability, and may be receiv'd as 
a superior kind of evidence . . . .  which are entirely free from doubt and 
uncertainty." Indeed, not only does Price address Hume's example, 
but he goes on to stress that "instead of proving that events will 
always happen agreeably to [uniform experience], there will always be 
reason against this conclusion". 9 

But even if one concedes that our knowledge of future events such 
as the rising of the sun only admit of probability, there is a leap of faith 
in Price's argument. Price began his analysis by first considering "a 
solid or die of whose number of sides and constitution we know 
nothing; and that we are to judge of these from experiments made in 
throwing it", later explaining that he "made these observations chiefly 
because they are all strictly applicable to the events and appearances 
of nature". Condorcet,  in his Essai, accepts this nexus without reser- 
vation: 

Ainsi le motif de croire que sur dix millions de boules blanches m616es avec une noire, ce 
ne sera point la noire que je tirerai du premier coup, est de la m6me nature que le motif 
de croire que le Soleii ne manquera pas de se lever demain, & ces deux opinions ne 
ditt~rent entr 'elles que par le plus ou le moins de probabilit6. (Condorcet  1785, p. xi) 

This was a sweeping claim, and it did not pass unchallenged. Prevost 
and L'Huilier, in a philosophical essay accompanying their paper on 
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the finite rule of  succession,  soon took  issue with Condorce t ,  a rguing  

La persuasion analogique qu'6prouve tout homme, de voir se r6p6ter un 6v6nement 
naturel (tel que le lever du soleil), est d'un genre diff6rent de la persuasion repr6sent6e 
par une fraction dans la th6orie des probabilit6s. Celle-ci peut lui 6tre ajout6e, mais 
I'une peut exister sans l'autre. Elles d6pendent de deux orders de facult6s diff6rens. Un 
enfant, un animal 6prouve la premiere, & ne forme aucun calcul explicite, ni m6me 
implicite: il n'y a aucune d6pendance n6cessaire entre ces deux persuasions. Celle que le 
calcul appr6ci6 est raisonn6, & m6me, jusqu'h un certain point, artificielle. L'autre est 
d'instinct & naturelle. Eile d6pend de quelques facult6s intellectuelles dont l'analyse 
n'est pas facile, & probablement in tr6s-grande partie du principe de la liaison des id6es. 
(Prevost and L'Huilier 1799a, p. 15) 

This  is one  of the earliest a rgument s  urging the dist inction be tween 
induct ion  ("la persuasion ana log ique")  and probabi l i ty  ("une fract ion 
dans la th6orie des probabil i t6s") ,  and it presages  a debate  that  
con t inued  unaba ted  t h rough  the next century.  (For the possible 
influence of  Prevos t  and L 'Hui l i e r  on Mill, via Duga ld  Stewart,  see 
St rong 1978, p. 35). Ber t rand,  for  example,  writ ing nearly a hundred  
years later in his dist inctively acerbic  F rench  prose,  singles out  the 
same passage f rom C o n d o r c e t  for  crit icism: 

L'assimilation n'est pas permise: l'une des probabilit6s est objective, I'autre subjective. 
La probabilit6 de tirer la boule noire du premier coup est 1/10 000 000, ni plus ni moins. 
Quiconque 1'6value autrement se trompe. La probabilit6 pour que le Soleil se l~ve varie 
d'un esprit h l'autre. Un philosophe peut, sans 6tre fou, annoncer sur la foi d'une fausse 
science que le Soleil va bient6t s'6teindre; il est dans son droit comme Condorcet dans 
le sien; tous deux l'exc6deraient en accusant d'erreur ceux qui pensent autrement. 
(Bertrand 1907, p. xix.) 

M a n y  o ther  examples  could  be adduced ,  m W h a t  is striking in many  of  
these discussions is the virtual lack of  serious a rgument .  Posit ions are 
s taked out ,  but  there  is of ten surprisingly little in the way of  genuine  
analysis or  critical discussion. (One except ion  is Ber t rand  1907, pp. 
173-74) .  

A c o m m o n  posi t ion was that  such induct ive  inferences,  even  if 
"p robab le" ,  could  not  be quantified - that  what  was in quest ion was a 
species of  philosophical probabil i ty,  ra ther  than mathematical prob-  
ability. S t rong (1978, p. 207, n. 5) cites an early example  of this 
dist inction in a rare work  of K. H. F r 6 m m i c h e n  of  1773. It will be 
apparen t  by now that  the date  is " n o  acc iden t " ;  by this time the claims 
of  probabi l i ty  in natural  phi losophy were  beginning to p rovoke  dis- 
sent. 
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Such considerations were not, however,  foreign to Laplace. His rule 
of succession is an instrument for  "pure inductions", or "educt ion"  
as W. E. Johnson later termed them. That  Laplace was not under the 
illusion that "hypothetical  inductions" could also be so described is 
clear from the penultimate chapter  of the Essai philosophique, 
"Concerning the various means of approaching certainty".  At the end 
Laplace cautions. 

It is almost always impossible to submit to calculus the probability of the results 
obtained by these various means; this is true likewise for historical facts. But the totality 
of the phenomena explained, or of the testimonies, is sometimes such that without being 
able to appreciate the probability we cannot reasonably permit ourselves any doubt in 
regard to them. In the other cases it is prudent to admit them only with great reserve. 

De Morgan, too, later cautioned that "in the language of many, 
induction is used in a sense very different from its original and logical 
one . . . .  What is now called induction, meaning the discovery of laws 
from instances, and higher laws from lower ones, is beyond the 
province of formal logic" (De Morgan 1847, p. 215). (Note from the 
title of his book that De Morgan includes probability within that 
province.) 

Thus, when Laplace made his notorious remark in the Essai 
philosophique, he was writing against a background of 75 years of 
debate and discussion about inductive inference throughout  which the 
example of the rising of the sun runs as a common and recurrent  
thread. In his dry style, Laplace omits virtually all reference to this 
previous debate. 

How seriously did Laplace view the calculation itself? Certainly 
much less so than is usually implied. All too often it is cited out of 
context, for after the passage quoted, Laplace went on to immediately 
add: 

But this number is incomparably greater for him who, recognizing in the totality of 
phenomena the regulatory principle of days and seasons ["connaissant par l'ensemble 
des ph~nom~nes le principe r~gulateur des jours et des saisons"], sees that nothing at 
the present moment can arrest the course of it. 

The  point is clear: the calculation only establishes the probability that 
flows from the mere repetition of events. 11 And while Laplace did not 
belabor the point, he was far from the only one to make it. Price too 
had cautioned that "it  should be carefully remembered that these 
deductions suppose a previous total ignorance of nature",  and his 
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fanciful narrative is clearly intended to stress the artificial nature of 
the assumption. When Quetelet gives a similar analysis for the rising 
of the tides, it is for someone who has never seen them before. The 
English logician and mathematician Augustus De Morgan, who played 
an important role in disseminating Laplace's work during the 19th 
century, also stressed the point, terming the rule of succession "the 
rule of probability of a pure induction", and adds that "the prob- 
abilities shown by the above rules are merely minima which may be 
augmented by other sources of knowledge" (De Morgan 1847, p. 
215). 

6 .  T H E  G R E A T  J E V O N I A N  C O N T R O V E R S Y  

This then was the Laplacean contribution to the probabilistic analysis 
of enumerative induction. How did it fare during the 19th century? 

The English logician William Stanley Jevons is often portrayed as 
the first important philosopher of science to systematically link prob- 
ability and induction (Keynes 1921, p. 273; Madden 1960, p. 233; 
Heath 1967, p. 261; Lauden 1973). Indeed, in Laudan (1973), the 
history of the subject revolves around Jevons: why did inductive 
logicians and philosophers of science before Jevons spurn probability; 
why did another half-century have to pass after Jevons before the link 
between probability and induction was taken seriously? Laudan con- 
siders these issues, centering his discussion on Jevons's arguments in 
favor of the link, and its criticisms by the English logician John Venn. 

Laudan's analysis is largely vitiated, however, by a surprising 
chronological error: he presents Venn's criticisms as - and apparently 
believes them to be - an attack on Jevons, despite the fact that the 1st 
edition of Venn's Logic of Chance appeared in 1866, eight years prior 
to the appearance of the 1st edition of Jevons's Principles of Science 
(1874). Although it is true that Venn made extensive revisions in the 
2nd (1876) and 3rd (1888) editions of the Logic, the vital chapter on 
'Induction and its Connection with Probability' goes back to the 1st, 
and while the 1888 edition of the Logic (which Laudan quotes) does 
refer on several occasions to Jevons's Principles, it does so only briefly: 
despite several passages where the wording has been recast, new 
material added, or the text shortened, the basic thrust and content of 
the chapter remains that of the 1st edition. 

But if Venn was not, at least initially, directing his fire against 
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Jevons, who then? The  answer is clearly the English mathematician 
and logician Augustus De Morgan. De Morgan was Laplace's most 
enthusiastic English advocate,  the author of no fewer than three 
works during the decade 1838-1847 intended to popularize and 
spread the Laplacean approach to probability. 12 Indeed, De Morgan's 
Formal Logic of 1847 was the first English language textbook on logic 
to break with tradition by presenting probability as a branch of formal 
logic, a precedent  followed by Boole several years later in the latter's 
Investigation of the Laws of Thought of 1854. Venn explicitly singles 
De Morgan out, saying that he would have felt no need to write The 
Logic of Chance, given De Morgan's writings on probability, save that 
he differed from De Morgan in too fundamental a way (Venn 1888, p. 
ix). (Jevons in fact was a student of De Morgan's,  and it was from De 
Morgan that he learned probability theory.) 

Jevons was thus not alone. The probabilistic basis of at least some 
forms of induction had been advocated prior to Jevons by Condorcet ,  
Laplace, Lacroix, Quetelet,  Herschel, and De Morgan, and after 
Jevons by Peirce, Pearson, and Poincar6. Jevons was neither the first 
to argue the connection, nor the first philosopher of science or 
inductive logician to do so, but among this latter tribe he was 
admittedly one of the few to do so. As Venn testifies, 

So much then for the opinion which tends to regard pure Induction as a subdivision of 
Probability. By the majority of philosophical and logical writers a widely different view 
has of course been entertained. They are mostly disposed to distinguish these sciences 
very sharply from, not to say to contrast them with, one another; the one being accepted 
as philosophical or logical, and the other rejected as mathematical. This may without 
offence be termed the popular prejudice against Probability. (Venn 1888, pp. 208-209) 

"Why did we have to wait for Stanley Jevons, and C. S. Peirce, writing 
in the 1870s, rather than Hume in the 1740s or Mill in the 1840s, to 
find someone systematically arguing that inductive logic is based on 
probability theory?"  (Laudan 1973, p. 429). For Hume,  there is a 
simple answer: the necessary apparatus of inverse probability did not 
exist when he wrote his Treatise and Enquiries. As discussed earlier, 
both Bayes and Laplace were aware of the relevance of their con- 
tributions to the questions addressed by Hume. 

But what of the period after Laplace? Even if one takes 1814, the 
year of publication of the Essai phiiosophique as a point of departure, 
what happened in the 60 years that elapsed before the publication of 
Jevons's Principles? That  De Morgan should embrace the Laplacean 
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position on induction is not surprising; as we have noted, De Morgan 
was Laplace's staunchest English advocate and his writings on prob- 
ability were in large part a deliberate effort to bring Laplace's work to 
the attention of the English public. 

But why were there so few others in the English philosophical 
community to embrace the Laplacean position? Here the answer is not 
complimentary to English philosophy: the mathematical prerequisites 
were such as to exclude most writers on the subject. On this we have 
the testimony of Venn himself, the archcritic of Laplacean probability: 

The opinion that Probability, instead of being a branch of the general science of 
evidence which happens to make much use of mathematics, is a portion of mathematics, 
erroneous as it is, has yet been very disadvantageous to the science in several ways. 
Students of Philosophy in general have thence conceived a prejudice against Prob- 
ability, which has for the most part deterred them from examining it. As soon as a 
subject comes to be considered 'mathematical' its claims seem generally, by the mass of 
readers, to be either on the one hand scouted or at least courteously rejected, or on the 
other to be blindly accepted with all their assumed consequences. Of impartial and 
liberal criticism it obtains little or nothing. (Venn 1888, p. vii) 

Interestingly, Venn sees as the most unfortunate result of this neglect 
the loss for probability rather than the loss for philosophy: "The 
consequences of this state of things have been, I think, disastrous to 
the students themselves of Probability. No science can safely be 
abandoned entirely to its own devotees." Probability is too important 
to be left to the mathematicians. 

This then, was the background against which Jevons wrote. In truth, 
there is little new in Jevons, but despite his many weaknesses, he 
represents a clear and succinct statement of the Laplacean position. 
Nevertheless, nearly half a century was to pass before Jevons's pro- 
gram was to be pushed forward by philosophers such as Johnson, 
Broad, Keynes, and Ramsey. 

This hiatus, however, is not surprising. During the decades im- 
mediately following the appearance of Jevons's book, epistemic prob- 
ability was preoccupied. The two-pronged assault of Boole (on the 
logical front) and Venn (on the empirical front) had called into serious 
question the very foundations of the Laplacean edifice. Epistemic 
probability did not go under during this period (Zabell 1989), but it 
did have to put its foundational house in order before it could 
contemplate expanding its horizons. After the contributions of John- 
son, Keynes, Ramsey, and de Finetti this became possible. 
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Although the old Laplacean approach to probability eventually died 
out, epistemic probability arose transfigured from its ashes. While 
some continued to defend the principle of indifference - indeed, some 
still do - the key step in this metamorphosis was the abandonment of 
uniform priors and, on the inductive front, any attempt at a unique 
quantitative explanation of inductive inference. 

A complete account of this transformation has never been written, 
and would go far beyond the compass of the present study. But 
limiting our attention to charting the vicissitudes of the rule of 
succession throughout the following period provides the opportunity 
for a case study, highlighting in a microcosm many of the arguments 
and issues that arose in the broader debate. 

7 .  D E A T H  A N D  T R A N S F I G U R A T I O N  

As the statistician R. A. Fisher once noted, the rule of succession is a 
mathematical consequence of certain assumptions, and its application 
to concrete examples can only be faulted when the examples fail to 
satisfy the presuppositions. Those presuppositions involve two distinct 
types of issues. At the level of balls in an urn, there is the assumption 
that the possible urn compositions are equally likely, i.e., the principle 
of indifference. And at the level of applying the resulting mathematics 
to the real world, there is the question of the relevance of the urn 
model. The attacks on the rule of succession involved both of these 
points. 

7.1. The principle of indifference 

The Achilles's heel of the rule of succession lies in its appeal to the 
principle of indifference. It assumes that all possible ratios are equally 
likely, and that in particular, on any single trial, the probability of an 
event "concerning the probability of which we absolutely know 
nothing antecedently to any trials concerning it" (Bayes 1764, p. 143), 
is 1/2. For example, in the analysis of the rising of the sun, it is 
assumed to be equally likely that the sun will or will not rise. 

Apart from ridicule, this position was subjected to a number of 
telling criticisms, particularly by Boole (1854) and yon Kries (1886), 
and a large number of now-standard paradoxes and counterexamples 
were adduced (for von Kries, see Kamlah 1983 and 1987). A common 
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response to many of these examples is to point to the requirement of 
the absence of prior knowledge about the event in question, and argue 
that it is violated. The fatal flaw in all such defenses is that under- 
standing the very words employed in describing an event necessarily 
implies some knowledge about that event. Thus, as Keynes notes, in 
Jevons's notorious example of the proposition "a platythliptic 
coefficient is positive", the force of the example derives from our 
entire ignorance of the meaning of the adjective "platythliptic" 
(Keynes 1921, p. 42, n. 2). Nevertheless, the example is defective, 
given we do possess considerable knowledge about the words 
"coefficient" and "positive". Keynes is not being sarcastic, but merely 
pursuing the argument to its logical conclusion when he asks whether 
Jevons would "maintain that there is any sense in saying that for those 
who know no Arabic the probability of every statement expressed in 
Arabic is even?" (Keynes 1921, p. 43). 

Even at the syntactic level, it is easy to construct contradictory 
probability assignments using the principle of indifference whenever a 
complex proposition can be decomposed into simpler ones. If Witt- 
genstein's early program of logical atomism had been successful, then 
logical probability would be possible, but the failure of the former 
dooms all attempts to construct the latter. Lacking an ultimate lan- 
guage in one-to-one correspondence with reality, Carnapian programs 
retain an ultimate element of subjectivism, both in their choice of 
language and the assumption that a given partition consists of 
equiprobable elements. 

For essentially such reasons, von Kries and others fell back on what 
was called the principle of cogent reason: alternatives are equally 
probable when we possess knowledge about them, but that knowledge 
is equally distributed or symmetrical among the alternatives. This was, 
in fact, the actual Laplacean position: "la probabilit6 est relative en 
partie ~ cette ignorance, en partie ~ nos connaissances" (Laplace, 
Essai, p. viii). The formulation of the principle of cogent reason, of 
course, is not without its own problems, and its most satisfactory 
statements verge on the tautologous. It was, however, a half-way 
house on the road to the only truly satisfactory formulation: alter- 
natives are equally probable when we judge them to be so. Assign- 
ments of equiprobability can only originate as primitives of the system, 
inputs that are given, rather than logical consequences of the syntax of 
language. Ellis was entirely correct: ex nihilo nihil. 
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7.2. The urn of nature 

The valid application of the rule of succession presupposes, as Boole 
notes, the aptness of the analogy between drawing balls from an urn - 
the urn of nature, as it was later called - and observing an event 
(Boole 1854, p. 369). As Jevons put it, "nature is to us like an infinite 
ballot-box, the contents of which are being continually drawn, ball 
after ball, and exhibited to us. Science is but the careful observation of 
the succession in which balls of various character present 
themselves. . ."  (p. 150). 

The origins of the urn of nature are perhaps to be found in James 
Bernoulli's Ars conjectandi. This was a key moment in the history of 
probability, when the domain of applicability of the theory was 
dramatically broadened to include physical, biological, and social 
phenomena far beyond the simple applications to games of chance 
originally envisaged. But lacking a suitable frequentist or epistemic 
foundation for probability, Bernoulli was forced to employ the Pro- 
crustean bed of equally likely cases: "the numbers of cases in which 
the same events, with similar circumstances prevailing, are able to 
happen and not to happen later on". In attempting to apply the 
doctrine of chances to questions of meteorology, human mortality, and 
competitive skill, Bernoulli saw the difficulty as one of enumerating 
these equipossible cases; for example, "the innumerable cases of 
mutations to which the air is daily exposed", or "the number of 
diseases". Who, Bernoulli asks, "has well enough examined the nature 
of the human mind or the amazing structure of our body so that in 
games which depend wholly or in part on the acumen of the former or 
the agility of the latter, he could dare to determine the cases in which 
this player or that can win or lose?" This is the origin of the urn of 
nature. 

What is remarkable about these passages in the Ars conjectandi is 
the almost casual way in which Bernoulli passes from equally likely 
cases for games of chance to what is essentially a primitive form of 
propensity theory for physical, biological, and social phenomena. 
Price, too, began his analysis by first considering "a solid or die of 
whose number of sides and constitution we know nothing; and that we 
are to judge of these from experiments made in throwing it", later 
explaining that he "made these observations chiefly because they are 
all strictly applicable to the events and appearances of nature". 
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The aptness of this analogy between tossing a die, or drawing a ball 
from an urn, is one of the great points in the later debate. Some, like 
Comte, utterly rejected the application of probability theory outside 
its original narrow domain, referring contemptuously to Laplace's 
work as embodying a "philosophical aberration". Others might accept 
a probabilistic description of sex at birth, or suicide, or weather, but 
questioned the appropriateness of the analogy in cases such as the 
rising of the sun, or the movement of the tides. 

Thus for enumerative induction the key question became: why and 
in what way can the relevant observations be viewed as drawings from 
an urn? 

7.3. W. E. Johnson's rule of succession 

In 1924 the English philosopher and logician William Ernest Johnson 
published the third and final volume of his Logic. In an appendix on 
"eduction" (i.e., inductive inference from particulars to particulars), 
Johnson derived a new rule of succession which met both of these 
basic objections. First, "instead of for two, my theorem holds for a 
alternatives, primarily postulated as equiprobable" (Johnson 1932, p. 
418). Thus the principle of indifference for alternatives was exorcised, 
and the rule extended to cases of multinomial sampling. Although 
Johnson's form of the rule is sometimes viewed as a straightforward 
generalization of the original, it will now be appreciated why the 
generalization was crucial. (Although a proposition and its negation 
might not be judged equiprobable, the proposition might be one of a 
spectrum of possibilities which were.) 

The mere multinomial generalization, however, had already been 
discussed by Laplace and De Morgan. 13 But in its derivation Johnson 
introduced a new and important concept: exchangeability. Johnson 
assumed that "each of the different orders in which a given proportion 
rnl : m2 : �9 �9 ' : rn~ for M instances may be presented is as likely as any 
other, what ever may have been the previously known orders". 
Johnson termed this the "Permutation-Postulate". Its importance is 
that it is no longer necessary to refer to the urn of nature. To what extent 
is observing instances like drawing balls from an urn? Answer: to the 
extent that the instances are judged exchangeable. Venn and others 
had adduced examples where the rule of succession was clearly 
inappropriate and rightly argued that some additional assumption, 
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other than mere repetition of instances, was necessary for valid 
inductive inference. From time to time various names for such a 
principle have been advanced: Mill's Uniformity of Nature; Keynes's 
Principle of Limited Variety; Goodman's "projectibility". It was 
Johnson's achievement to have realized both that "the calculus of 
probability does not enable us to infer any probability-value unless we 
have some probabilities or probability relations given" (Johnson 1924, 
p. 182); and that the vague, verbal formulations of his predecessors 
could be captured in the mathematically precise formulation of 
exchangeability. 14 

But the rule of succession does not follow from the assumption of 
exchangeability alone. As we have already seen in Section 3, an 
assumption must be made about the probability of the different urn- 
compositions. Johnson called the assumption he employed the com- 
bination postulate: In a total of M instances, any proportion, say 
ml : rnz : �9 �9 �9 : rn~, where ml + m2 -k- �9 �9 q- rna = M, is as likely as any 
other, prior to any knowledge of the occurrences in question (Johnson 
1924, p. 183). This is the multinomial generalization of the Bayes- 
Laplace assumption that all proportions k /n  are equally likely in the 
binomial case. 

Given the permutation and combination postulates, Johnson was 
able by simple algebra to deduce the multinomial generalization of the 
rule of succession: (mi + 1)/(M+ t~). Because of the setting, infinite 
trials never came into consideration, and thus this provided a multi- 
nomial generalization of the Prevost-L'Huilier/Broad result (although 
by a clever argument Johnson was able to avoid the problem of 
explicitly summing the relevant series). 

Johnson's result thus coped with two of the three major defects in 
the rule of succession. If it went largely unappreciated, it was because 
it was soon superceded by other, more basic and fundamental ad- 
vances. 

7.4. W. E. Johnson's sufficientness postulate 

The one remaining defect in the rule of succession, as derived by 
Johnson, was its assumption of the combination postulate. Although 
Johnson made no appeal to the principle of indifference, the 
justification for the combination postulate seemed problematical. 
Johnson himself recognized this, for he soon proposed another, more 
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general postulate, the "sufficientness postulate": the probability of a 
given type, conditional on n previous outcomes, only depends on how 
many instances of the type in question occurred, and not on how the 
other instances distributed themselves amongst the other types (John- 
son 1932). Johnson was then able to show that the rule of succession 
in this case was (mi+ k)/(M+ ka), where k can be any positive 
number. That  is, assuming only the sufficientness postulate, a unique 
answer is no longer determined. This new rule is, of course, none 
other than Carnap's later "continuum of inductive methods". 15 

7.5. De Finetti and the rule of succession 

The one final step that remained to be taken was the realization that it 
was unneccessary to make any further assumption beyond exchange- 
ability. As de Finetti noted in his famous 1937 article, there is a 
general form of the rule of succession which holds true for an arbitrary 
finite exchangeable sequence. Namely, if to~ ~) denotes the probability 
of r successes in n trials, then the succession probability given r 
successes and s failures in r + s = n trials is 

r + l  

n + 2 + (s + ~J~,,,rla/,(-+1)/,,o,+1,(-+1) _ 1) '  

(de Finetti 1937, p. 144). If wr"'(n+l)---- wr+l"(n+l), then this reduces to the 
classical rule of succession. The condition is satisfied exactly if the 
classical uniformity assumption is made, or approximately in many 
cases for large n. Venn, in earlier editions of the Logic of Chance, had 
objected to the rule, adducing anti-inductive examples where past 
successes make future successes less likely rather than more; the de 
Finetti version of the rule of succession encompasses such situations. 

De Finetti's analysis, appearing nearly two centuries after the ap- 
pearance of Hume's Treatise in 1739, represents a watershed in the 
probabilistic analysis of induction. It abolishes all reference to the 
infinite, all reference to the principle of indifference, all reference to 
probabilities of probabilities, all reference to causation, all reference 
to principles of limited independent variety and other extraneous 
assumptions. In order to attack it, one must attack the formidable 
edifice of epistemic probability itself. Modern philosophy continues to 
ignore it at its own peril. 
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8 .  U N I V E R S A L  G E N E R A L I Z A T I O N S  

In 1918 Broad had noted that if there are N balls in an urn, and all n 
in a random sample are black, then (under the usual equiprobability 
assumption), the probability that all the balls in the urn are black is 
(n + 1) / (N+2).  If n is considerably smaller than N, this probability 
will also be small; i.e., unless a considerable segment of the sequence 
X1, X2, . . . ,  X~ has been observed, or a considerable number of balls 
drawn from the urn, or most ravens observed, the probability of the 
universal generalization will be small. This observation has been 
persistently viewed as an essentially fatal defect of this form of 
reducing induction to probability, going back at least to the neo- 
Kantian J. J. Fries in 1842.16 

The assumption on which the calculation is based, that P[SN = k] = 
( N + I )  -1, O~ < k<~ N, is a symmetry assumption and, like many sym- 
metry assumptions, contains "hidden baggage" not always initially 
apparent. In this case the hidden baggage lies surprisingly close to the 
surface; adopting the uniformity assumption P[SN = k] = 1 / (N+ 1) 
means assuming in particular that 

1 
P[SN = 0] = P[SN = N] = ( N +  1)' 

i.e., that the universal generalizations {SN = 0} and {SN = N} are a 
priori highly improbable (if N is large). It is hardly surprising that 
hypotheses initially thought highly improbable should remain improb- 
able unless a considerable fraction of the sequence has been observed. 

If one deals with an infinitely exchangeable sequence, the problem 
becomes even more acute: taking the limit as N--~ ~ shows that for 
the Bayes-Laplace process the conditional probability of a universal 
generalization given n successes is always zero: 

P [ X . + ,  = 1, x . + 2  = 1, x . + 3  = 1 . . . . .  I s .  = n ]  = 0 .  

Once again, this is only surprising if one fails to understand what is 
being assumed. In the Bayes-Laplace process, the prior probability is 
zero that the unknown chance p equals one (i.e., P[p = 1] = 0), and 
thus the probability that the limiting frequency of ls  is one must 
necessarily also be zero. 

There are two ways out of this dilemma for those who wish to 
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conclude inductively that repeatedly confirmed universal hypotheses 
are a posteriori probable: 

(1) Stonewalling. That is, argue that the initial intuition was in fact 
false; no matter how many successes have been observed does not 
warrant expecting arbitrarily long further strings of success. This is a 
very old defense, and it appears both in Price's appendix to Bayes's 
essay (p. 151), and Laplace's first paper on inverse probability 
(Laplace 1774). 

De Morgan gives a good statement of the position: 

[E]xperience can never, on sound principles, be held as foretelling all that is to come. 
The order of things, the laws of nature, and all those phrases by which we try to make 
the past command the future, will be understood by a person who admits the principles 
of which I treat as of limited application, not giving the highest degree of probability to 
more than a definite and limited continuance of those things which appear to us most 
stable. No finite experience whatsoever can justify us in saying that the future shall coincide 
with the past in all time to come, or that there is any probability for such a conclusion. (De 
Morgan, 1838, p. 128; emphasis De Morgan's) 

Obviously such a position is open to the objection that some inductive 
inferences are of universal character, and it has been subjected to 
varying forms of ridicule. Keynes (1921, p. 383) notes that the 
German philosopher Bobeck calculated that the probability of the 
sun's rising every day for the next 4,000 years, given Laplace's datum 
that it has risen for the last 5,000 years or 1,826,213 days, is no more 
than 2/3. (Actually, using the formula above, the probability may be 
readily calculated to be (1,826,213 + 1)/(3,287,183 + 1) = 0.56.) 

(2) Different priors. Edgeworth, in his review of Keynes's Treatise, 
remarks that "pure induction avails not without some finite initial 
probability in favour of the generalisation, obtained from some other 
source than the instances examined" (Edgeworth 1922, p. 267). This 
is the nub of the matter: in order for the posterior probability of any 
event to be positive, its prior probability must be positive (cf. Keynes 
1921, p. 238). Within a year of Broad's 1918 paper, Jeffreys and 
Wrinch (1919) noted that the difficulty could be averted by using 
priors which place point masses at the endpoints of the unit interval) 7 

In 1919 this may have seemed to some to beg the question; after the 
ascendancy of the Ramsey/de Finetti approach to epistemic prob- 
ability, it seems quite natural. Permitting passage from a unique 
uniform prior to a much wider class was crucial if this objection was to 
be successfully met. 
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What is the justification for assigning positive probability to the end 
points? The argument is in fact quite simple: not assuming some 
positive prior probability for the universal generalization is not an 
assumption of neutrality or absence of knowledge; it means that the 
universal generalization is assumed to have probability zero, i.e., we 
are certain it will not occur. Thus this classical objection is in fact a 
non-objection: unless one is certain that the universal generalization is 
false, its posterior probability increases with the number of confirming 
instances. 

9 .  B R U N O  D E  F I N E T T I  A N D  T H E  R I D D L E  O F  I N D U C T I O N  

Despite its virtues, the Jeffreys-Wrinch formulation suffers both from 
its continuing appeal to the "unknown chance" p, and the apparently 
ad hoc nature of the priors it suggests. Both of these defects were 
removed in 1931, when Bruno de Finetti proved his justly famous 
infinite representation theorem. 18 De Finetti showed that if an infinite 
sequence of 0-1 valued random variables X1, X 2 , . . . ,  Xn , . . .  is 
exchangeable for every n, then the limiting frequency of ones, Z =  
lim(Xl + X 2 + "  .Xn)/n, will exist with probability 1, and the prob- 
ability distribution of the sequence can be represented as a mixture of 
binomial probabilities having this (random) limiting frequency Z as 
success parameter. Thus de Finetti provided a subjectivist account of 
objectivist chance and the role of parameters in statistics. 

De Finetti also employed his infinite representation theorem, 
moreover, to provide a qualitative explanation for induction similar to 
and directly inspired by the French mathematician Henri Poincar6's 
method of arbitrary [unctions (Poincar6 1902, chap. 11). Poincar6 had 
also sought to explain the existence of objective chance: to account 
for the apparently paradoxical fact that the outcome of tossing a coin, 
rolling a die, or spinning a roulette wheel results in equiprobable 
outcomes, despite our ignorance of and inability to control the com- 
plex physical conditions under which these occur. Poincar6 was able to 
show that essentially independent of the distribution of physical inputs 
- in tossing a die, for example, the imparted linear velocity and 
angular momentum - the outcomes will occur with approximately 
equal probabilities for reasons that are purely mathematical. Detailed 
quantitative knowledge of input is thus unnecessary for approximate 
knowledge of outcome. Likewise, de Finetti was able to show for 
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exchangeable sequences that, essentially independent of the initial 
distribution for the limiting frequency Z, after observing a sufficiently 
long initial segment of the sequence the posterior distribution of Z will 
always be highly peaked about the observed frequency p*, and future 
trials expected to occur with a frequency very close to that of p*. 

De Finetti's is thus a coherence explanation of induction: if past and 
future are judged exchangeable, then - if we are to be consistent - we 
must expect future frequencies to resemble those of the past. But 
unlike the unique quantitative answer of Bayes, or the continuum of 
quantitative answers provided by Jeffreys, Wrinch, and Johnson, de 
Finetti's solution to Hume's problem of induction is a qualitative one. 
Whatever our prior beliefs, our inferences about the future based on 
our knowledge of the past will indeed be inductive in nature, but in 
ways that do not admit of unique numerical expression and may vary 
from person to person. 

De Finetti's solution of Hume's problem of induction is a profound 
achievement, one of the few occasions when one of the deep problems 
of philosophy has yielded to direct attack. De Finetti's solution can be 
criticized, but such criticisms must go either to the nature of probable 
belief itself (can it be quantified? how does it change when new 
information is received?), or the illposed nature of Hume's problem 
(how is the future supposed to resemble the past?). 

What is remarkable about de Finetti's essay Probabilismo is the 
clarity with which de Finetti saw these issues from the very beginning, 
and how closely they fit there into a unified view of science and 
philosophy. To many it may seem a strange and unfamiliar landscape; 
perhaps it "will only be understood by someone who has himself 
already had the thoughts that are expressed in it". 19 

A P P E N D I X :  D E R I V A T I O N  O F  T H E  F I N I T E  

R U L E  O F  S U C C E S S I O N  

Although the derivation of the finite rule of succession via exchange- 
ability is both simple and elegant, the direct combinatorial proofs of 
the rule have a mathematical attractiveness of their own. We begin 
with the simplest case, considered by Broad, when all outcomes 
observed are successes. 

Fix m~>l, and for n>~m, let an =: n ! / ( n -  m)! and S n = : a , , +  
a m + l  + " " " W a n .  
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L E M M A  1. For  all n ~> m, S, = (n + 1)!/{(m + 1)(n - m)!}. 
Proof. By induction. For n = m, S,,, = am = m! = 

(m + 1)!/{(m + 1 ) ( m -  m)!}. Suppose next that the lemma is true for 
some n/> m, and let 

An - 
( n +  1)! 

(m + 1)(n - m)!" 

The  induction hypothesis then states that Sn = An, and we wish to 
prove  that Sn+l = An+l. But 

S,,+l = Sn + an+l 

= A n  + a,,+l 

( n + l ) !  ( n +  1)! 
= (m + 1)(n - m)! I- (n - m + 1)! 

= ( n + l ) !  
( n - m + l ) + ( m + l )  

(m + 1 ) ( n -  m + 1)! 

= ( n + l ) !  
(n + 2) 

( m +  l ) ( n -  m +  l)! 

( n + 2 ) !  

(m + 1)(n - m + 1)! 

= An+l. [] 

The  integer m was fixed in the above argument .  If we now denote the 
dependence of $, on m by Sn,m, then Broad 's  result follows by noting 
that the succession probabili ty is the quotient (n-m)-lSn,, ,+l/Sn,, , ,  
and cancelling terms. Thus 

P[Xm+,  = l lX~ = x 2  . . . . .  x m  = 1] 

Y~'=n,+, j ( j -  1 ) ( j -  2 ) "  " ( j -  m) 

(n  - m )  Y.i"---., J(J - 1)(j  - 2 ) . . .  ( j  - m + 1) 

1 Sn,m+ | 

( n - m )  S.,m 



T H E  R U L E  O F  S U C C E S S I O N  311 

1 (n + 1)!/{(m + 2)(n - rn - 1)!} 

(n - m) (n + 1)!/{(m + 1)(n - m)!} 

_ ( r e + l )  

(m +2)" 

If instead of all m trials being successes, it is assumed that there are p 
successes and q failures, then the necessary sum becomes 

( n - q - j ) !  (q+j)!  

and it may be again evaluated to be 

(plq!) (n+ 1)! 

(m + 1)! (n - m)!" 

Namely, if there are p successes and q failures, the possible urn 
compositions are 

Hj : (q  + j) black and ( n - q -  j) white, 
O<~j<~n-m.  

Under hypothesis Hj the probability that p whites and q blacks will be 
observed in the first m trials is 

Pi = (n)(n - 1) n - m + 1)' 

where 

and 

P j = ( n - q - j ) ( n - q - j - 1 ) . . . ( n - q - j - p +  l) 

( n - q - j ) !  
(n- m-j)! 

Oj = (q + j)(q + j -  1 ) ( q + j - 2 ) . . .  ( j +  1) 

_ (q + j)! 
j~ 

By Bayes's theorem, it follows that the posterior probability of Hi, 
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given that p whites and q blacks have been observed, is 

P[Hi IP, q] = P,(n + 1 ) - 1 / ~  ', Pj(n + 1) -1 
- - j  

where 

PiQi = 

and 

LEMMA 2. 

(n - q - i)! (q + i)! 

( n - m - i ) !  i! ' 

( n - q - j ) !  (q+j)! 
j,  

"~" ( n - q - j ) !  (q+j)!___p!q! ( n + l ) l  
j~,, ~ --if-s--F! j---?-. (m + 1)!(n - m)!" 

Proof. Dividing by p!q! and denoting n -  m by k yields 

i (k-~P ,' 1), 
j=0 k 

which is a well-known combinatorial identity (see, e.g., Whitworth 
1897, p. xiii; Feller 1968, p. 65, problem 14 and p. 238, problem 15). 

[] 

All of the classical derivations of the finite rule of succession reduce to 
the evaluation of this sum. 

A.I. Prevost and L' HuiUier' s proof 

The Prevost-L'HuiUier proof draws on the machinery of the "figurate 
numbers." 
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Let 

and 

fSo=l, j =  1 , 2 , 3 , . . .  

J 
J -  j ~  f i -  ~ fik"-l' i, l;  

the f~ are called the figurate numbers and are related to the binomial 
coefficients by the formula f~ = (s-~+l); see generally Edwards (1987). 

Prevost and L'Huilier prove the figurate identity 

f~+q+l ~--- ~ JqJpfi fn--i+l 
i=l 

by induction on q, from which the corresponding result for binomial 
coefficients immediately follows. (Edwards 1987, p. 107, attributes this 
result in the special case q = 1 to Leibniz in 1673 but does not cite a 
source for the general result, his equation (8.24). Edwards's k, l, and s 
are our p + q + 1, n, and q respectively.) 

Proof: If q = 0, then the identity is valid for all p/> 0, since f~ = 1, 
all i, and the identity follows from the definition of the figurate 
numbers. Suppose the identity has been proved for some q/> 0 and all 
p 1> 0. Then it holds for q + 1 and all p i> 0 because 

f ~+q+2 = f ~ re n--j+l (induction step) Jp+l 
j=l 

= fsq f~-,+l  (definition of f{) 
]=1 

= r n-i+1 (rearranoement~ J p  
i=1 

: ~ Jq+lii JP#'n-i+l (definition of f{); 
i=l 

the first step uses the induction hypothesis for q and p + 1. 
Alternatively, 

r Cn--i+l trn--i+l ]q+lJp = j p  
i=1 i=1 

(definition of f j )  
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= fq-j. l  -pr (reverse summation) 
i=1 

= ~ ~ jqfi--]+l jpfn--i+l (rearrangement) 
i=1 i=i 
n n--j+l 

= Z E ~kfn-i-k+2 ~qlp (k = i - j +  1) 
1=1 k = t  

= ~ jp+q+lr (induction) 
i=l 

= f$+q+2 [] 

This second proof is in fact the one given by Prevost and L'Huilier 
(although they only prove the specific cases q = 0, 1, 2, and 3, "la 
marche de la d6monstration g6nfrale 6tant enti~rement semblable 
celle des exemples pr6c6dents, et ne pr6sentant aucune difficult6" (p. 
122)). 

The fundamental binomial identity is also a special case of the more 
general result 

Ak(a,  b )A , -k (c ,  b) = A , ( a  + c, b), 
k = 0  

where Ak(a,  b) = (a / (a  + bk))(~+k bk) and a, b, c are arbitrary real 
numbers. As Gould and Kaucky (1966, p. 234) note, this identity "has 
been widely used, rediscovered repeatedly, and generalized exten- 
sively". Gould and Kaucky attribute it to H. A. Rothe, who proved it 
in his Leipzig dissertation of 1793, and thus appears to have priority 
over Prevost and L'Huilier. 

A.2. Bishop Werrot's Proof 

Bishop Terrot sums the series in Lemma 2 by using Abel partial 
summation (see, e.g., Knopp 1947, p. 313) and the identity 

(b + j)! = ( a  + b + l ) (a  + b) .  . . ( a + l )  

j=o j! ( b + l )  

If one denotes the sum in Lemma 2 by An,p,q, then it follows that 
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An,p,q = { ( ~ +  1) } An,p+l,q-1, 

and repeating the process a total of q times yields Lemma 2. 

A.3. Todhunter' s proof 

Todhunter remarks that the sum is readily obtained "by the aid of the 
binomial theorem" (Todhunter 1865, p. 454). By this he means 
comparing the coefficients in (x + y)~+b = (x + y)~(x + y)b, with nega- 
tive exponents permitted; see Feller (1968, p. 65, problem 14). 

A.4. Ostrogradskii 

The Russian mathematician M. V. Ostrogradskii also appears to have 
analyzed this problem in 1846; see Maistrov (1974, pp. 182-84). 

A.5. Whipple' s Proof 

Jeffreys (1973, Appendix II) reports a simple counting argument 
proof. Combinatorial identities can often be profitably thought of as 
counting a certain quantity in two different ways, and Whipple dis- 
covered such an interpretation for Lemma 2. 

N O T E S  

1 Laplace (1774; 1812, p. 402; 1814, p. xvii). The terminology is due to Venn, who 
gave this name to Chapter VIII of his Logic of Chance, adding in a footnote: "A word 
of apology may be offered here for the introduction of a new name. The only other 
alternative would have been to entitle the rule one of Induction. But such a title I 
cannot admit, for reasons which will be almost immediately explained" (Venn 1888, p. 
190). 
2 Broad later abandoned this assumption; see Broad (1927). 
3 For further information about Prevost and L'Huilier, see the entries on both in the 
Dictionary of Scientific Biography. 
4 The reader should be cautioned the literature abounds with confusions between the 
finite and infinite cases, and the cases involving sampling with and without replacement. 
For example, Keynes (1921, p. 378) states that "the rule of succession does not apply, as 
it is easy to demonstrate, even to the case of balls drawn from an urn, if the number of 
balls is finite" (Keynes 1921, p. 378). Likewise Strong (1976, p. 203) confuses the 
answers for sampling with and without replacement from a finite urn, a confusion that 
may stem in part from an unfortunate typographical error in Boole. 
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5 Stigler's nomination of Nicholas Saunderson, Lucasian Professor of Mathematics at 
Cambridge from 1711 to 1739, as a plausible alternative candidate (Stigler 1983), 
cannot be seriously credited. There is no evidence that Saunderson ever wrote on any 
topic in probability. Hartley's wording, moreover ("an ingenious friend has com- 
municated to m e . . . " ) ,  suggests information recently received from a living person, 
rather than a friend long dead (Saunderson had died a decade earlier, in 1739). The 
anonymity employed would scarcely make sense otherwise. Stigler's concluding 
"Bayesian calculation" (summarized in his Table 1), purporting to show that the odds 
are 3 to 1 in favor of Saunderson over Bayes, curiously omits the single most important 
item of evidence in favor of Bayes - that Bayes is known to have written a manuscript 
on the subject, while Saunderson is not. 
6 In his original memoir on inverse probability, where the rule of succession is first 
stated, Laplace begins by considering an urn "supposed to contain a given number of 
white and black tickets in an unknown ratio", but in his solution he assumes that the urn 
contains "an infinity of white and black tickets in an unknown ratio". Strictly construed, 
of course, this latter statement makes no sense, and is clearly intended as an abbreviated 
way of saying something else. De Morgan considers that the contents of the urn are 
assumed infinite "only that the withdrawal of a definite number may not alter the ratio" 
(1847, p. 214), and he goes on to note that if the contents of the urn are finite, but the 
sampling is with replacement, then as the number of balls increases, the resulting rule of 
succession will approximate the Laplacean answer of (m + 1)/(m + 2). Bishop Terrot, on 
the other hand, uses the expression "infinite or indefinite" in describing this case (Terrot 
1853, p. 543), and clearly takes the reference to infinite contents to be a circumlocution 
for the asymptotic, large-sample result. The paper by Prevost and L'Huilier was an 
attempt to clarify matters by determining the exact, small-sample answer, and it must 
have come as a considerable surprise to find that there was no difference between the 
two. The philosophical importance of the result is that, whatever its other real or alleged 
defects, Laplace's analysis cannot be faulted on the grounds of its appeal to the infinite. 
This point is sometimes overlooked. 
7 , , . . .  it was Hume who furnished the Laplacean school with its philosophy of science," 
as Stove (1973, p. 102) notes. Hume's influence, especially on Condorcet, is ably 
discussed by Baker (1975, chap. 3, passim), and appears most clearly in the work of 
Condorcet's disciple, Sylvestre-Francois Lacroix (Stove 1973, p. 103; Baker 1975, pp. 
186-87). 
8 Strictly speaking, Price misstates the rule in two ways: (a) the odds are 2 n - 1 to 1, not 
2 n to 1; (b) the exponent of 2 should be the number of risings, not the number of 
returns. (Thus the true odds are 21,~176176176176 - 1  to 1.) Price gives the correct formula, 
however, earlier in his appendix. 
9 The French naturalist Buffon gives the 2" to 1 rule in his Essai d'arithrn~tique morale 
of 1777; taking the age of the earth to be 6,000 years, he concludes the probability that 
the sun will rise the following day is 22,189,999 to 1. Although Buffon does not cite the 
rule's source, it is clearly taken from Bayes's essay: Price's fanciful narrative of a man 
who observes the rising of the sun for the first time has been lifted, without attribution, 
virtually word-for-word! (Zabell 1988). 
1o Likewise, the English mathematician Waring (1794, p. 35) dissented from the 
identification': 
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I know that some mathematicians of the first class have endeavoured to demonstrate 
the degree of probability of an event 's happening n times from its having happened m 
preceding times; and consequently that such an event will probably take place; but, 
alas, the problem far exceeds the extent of human understanding; who can determine 
the time when the sun will probably cease to run its present course? 

11 The Truscott and Emory translation of the Essai renders "principe r6gulateur" as 
"principal regulator". This is not only incorrect, it introduces a deistic note entirely 
foreign to Laplace, and obscures the essential point of the passage. 
12 The level of English mathematics was at ebbtide at the beginning of the 19th 
century, and De Morgan was one of a group of English mathematicians and scientists 
(including Babbage, Herschel, and Galloway) who attempted to remedy the situation 
during the first half of the century through a series of popular and technical tracts. 
13 The mathematical machinery for the generalization is provided by Laplace (Th(orie, 
p. 376), although it is not stressed. The uniform prior on the unit interval is replaced by 
the uniform prior on the simplex A t =: {(Px, P2 . . . . .  P~) : Pl, t92 . . . . .  Pt I> 0, Pl + P2 +" �9 "+ 
Pt = 1}, and the rule of succession becomes (ms + 1)/(M+ t), where ms is the number of 
outcomes in the ith category. (This is, of course, nothing other than Carnap's c*.) De 
Morgan discusses the rule of succession in this more general context (De Morgan 1838, 
pp. 66-69; 1845, pp. 413-14), including the so-called "sampling of species problem", 
where one does not know the total number of categories. 
14 Now the inappropriateness of the application of the rule of succession to the rising of 
the sun becomes manifest: successive risings are not exchangeable. (For example, 
although for most people the probability that the sun will rise tomorrow, but not rise the 
day after is quite small, the probability that it will not rise tomorrow but will rise the day 
after is much smaller still.) 
15 See generally Zabeil (1982). 
x6 For discussion of Fries's analysis, see Kriiger (1987, pp. 67-68). 
17 The objection that simply because the limiting frequency of ls in the sequence can 
equal 1, it does not follow that all elements of the sequence will equal 1, is easily met by 
working at the level of sequence space and giving the sequences {1, 1, 1 . . . .  } and 
{0, 0, 0 . . . .  } positive probability. 
as The following briefly summarizes an argument given in much greater detail in Zabell 
(1988). 
19 I thank Persi Diaconis for a number of helpful discussions over the years regarding 
finite exchangeability (in particular, for pointing out the identity of the Prevost- 
L'Huilier and the Bayes-Laplace processes). 
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