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ABSTRACT. A major difficulty for currently existing theories of inductive inference 
involves the question of what to do when novel, unknown, or previously unsuspected 
phenomena occur. In this paper one particular instance of this difficulty is considered, 
the so-called sampling of species problem. 

The classical probabilistic theories of inductive inference due to Laplace, Johnson, de 
Finetti, and Carnap adopt a model of simple enumerative induction in which there are 
a prespecified number of types or species which may be observed. But, realistically, this 
is often not the case. In 1838 the English mathematician Augustus De Morgan proposed 
a modification of the Laplacian model to accommodate situations where the possible 
types or species to be observed are not assumed to be known in advance; but he did not 
advance a justification for his solution. 

In this paper a general philosophical approach to such problems is suggested, drawing 
on work of the English mathematician J. F. C. Kingman. It then emerges that the solution 
advanced by De Morgan has a very deep, if not totally unexpected, justification. The 
key idea is that although 'exchangeable' random sequences are the right objects to consider 
when all possible outcome-types are known in advance, exchangeable random partitions 
are the right objects to consider when they are not. The result turns out to be very 
satisfying. The classical theory has several basic elements: a representation theorem for 
the general exchangeable sequence (the de Finetti representation theorem), a distin- 
guished class of sequences (those employing Dirichlet priors), and a corresponding rule 
of succession (the continuum of inductive methods). The new theory has parallel basic 
elements: a representation theorem for the general exchangeable random partition (the 
Kingman representation theorem), a distinguished class of random partitions (the Poiss- 
on-Dirichlet process), and a rule of succession which corresponds to De Morgan's rule. 

1. INTRODUCTION 

An important  question rarely discussed in accounts of inductive infer- 
ence is what to do when the utterly unexpected occurs, an outcome for 
which no slot has been provided. Alternatively - since we know this 
will happen on occasion - how can we coherently incorporate such new 
information into the body of our old beliefs? The very a t tempt  to do 
so seems paradoxical within the f ramework of Bayesian inference, a 
theory of consistency between old and new information. 

This is not the prob lem of observing the ' impossible ' ,  that is, an 
event whose possibility we have considered but whose probabili ty we 
judge to be 0. Rather ,  the problem arises when we observe an event 
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whose existence we did not even previously suspect; this is the so-called 
problem of 'unanticipated knowledge'. This is a very different problem 
from the one just mentioned: it is not that we judge such events impos- 
sible - indeed, after the fact we may view them as quite plausible - it 
is just that beforehand we did not even consider their possibility. On 
the surface there would appear to be no way of incorporating such new 
information into our system of beliefs, other than starting over from 
scratch and completely reassessing our subjective probabilities. Coher- 
ence of old and new makes no sense here; there are no old beliefs for 
the new to cohere with. 

A special instance of this phenomenon is the so-called sampling of  
species problem. Imagine that we are in a new terrain, and observe 
the different species present. Based on our past experience, we may 
anticipate seeing certain old friends - black crows, for example - but 
stumbling across a giant panda may be a complete surprise. And, yet, 
all such information will be grist to our mill: if the region is found rich 
in the variety of species present, the chance of seeing a particular 
species again may be judged small, while if there are only a few present, 
the chances of another sighting will be judged quite high. The unantici- 
pated has its uses. 

Thus, the problem arises: How can the theory of inductive inference 
deal with the potential existence of unanticipated knowledge, and, how 
can such knowledge be rationally incorporated into the corpus of our 
previous beliefs? How can we predict the occurrence of something 
we neither know, nor even suspect, exists? Subjective probability and 
Bayesian inference, despite their many impressive successes, would 
seem at a loss to handle such a problem given their structure and 
content. Nevertheless, in 1838 the English mathematician Augustus De 
Morgan proposed a method for dealing with precisely this difficulty. 
This paper describes De Morgan's proposal and sets it within the con- 
text of other attempts to explain induction in probabilistic terms. 

The organization of the paper is as follows. The second section gives 
some historical background and briefly describes De Morgan's rule. As 
will be seen, although the statement of the rule is unambiguous, its 
justification - at least, as described by De Morgan - is unclear, and 
our goal will be to understand why De Morgan's rule makes sense. We 
begin this task by briefly reviewing, in the third section of the paper, 
the classical analysis of the inductive process in probabilistic terms. 
This is very well-known material, and our goal here is simply to set 
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up a framework in which to place De Morgan's rule. This is then done 
in the fourth and fifth sections of the paper: the key point is that while 
'exchangeable' random sequences are the right objects to consider when 
all possible outcomes are known in advance, exchangeable random 
partitions are the right objects to consider when they are not. 

The result turns out to be very satisfying. The classical theory has 
several basic elements: a representation theorem for the general ex- 
changeable sequence (the 'de Finetti representation theorem'), a distin- 
guished class of sequences (those arising from the so-called 'Dirichlet 
priors'), a 'rule of succession', specifiying the probability of a future 
outcome (Carnap's 'continuum of inductive methods'), and an urn- 
model interpretation ('Polya's urn'). The new theory, developed by the 
English mathematician J. F. C. Kingman for another purpose but ide- 
ally suited for this, has parallel basic elements: a representation theorem 
for the general exchangeable random partition (the Kingman represen- 
tation theorem), a distinguished class of random partitions (the 'Poiss- 
on-Dirichlet process'), an urn-model representation (sometimes called 
the 'Chinese restaurant process'), and a rule of succession which corre- 
sponds t o . . .  De Morgan's rule! 

The problem considered by De Morgan is closely related to a statist- 
ical problem, mentioned earlier, termed 'the sampling of species' prob- 
lem. There have been a number of attempts to analyze such questions, 
beginning with the distinguished English statistician R. A. Fisher. This 
literature is briefly summarized in the final section of the paper, together 
with some concluding remarks concerning the original inductive prob- 
lem. 

2. T H E  D E  M O R G A N  P R O C E S S  A N D  I T S  A N T E C E D E N T S  

Hume's problem of induction asks why we expect the future to resemble 
the past. One of the most common methods of attempting to answer 
Hume's question invokes probability theory; and Laplace's rule of 
succession is the classical form of this type of explanation. It states that 
if an event has occurred n times out of N in the past, then the probability 
that it will occur the next time is (n + 1)/(N + 2). This version of the 
rule implicitly assumes that possible outcomes are dichotomous; that 
is, an event of a specified type either did or did not occur. A more 
complex form of the rule, which can also be found in Laplace's writings, 
posits instead a multiplicity of possible outcomes. In this setting, the 
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rule becomes: if there are t possible outcomes (labelled C l ,  C 2 ,  . . . ,  C t )  , 

if Xk denotes the outcome occurring on the k-th trial, and if the vector 
n = (hi, n2, . • . ,  n t )  records the number of instances in which each of 
the t possible outcomes occur in a total of N trials, then the probability 
that an outcome of the j-th type will occur again on the next trial is 

LAP LACE 'S  RULE:  

nj + 1 
P[XN+I = qln] - 

N + t  

But as the English mathematician and logician De Morgan noted, 

[t]here remains, however, an important case not yet considered; suppose that having 
obtained t sorts in N drawings, and t sorts only, we do not yet take it for granted that 
these are all the possible cases, but allow ourselves to imagine there may be sorts not 
yet come out. (De Morgan 1845, p. 414) 

The problem of how to deal with the observation of novel phenomena 
in Bayesian inference is as old as Bayes's theorem itself. In Price's 
appendix to Bayes's essay (Bayes 1764, pp. 149-53),  Price supposes 
"a solid or die of whose number of sides and constitution we know 
nothing; and that we are to judge of these from experiments made in 
throwing it". Price argues that "the first throw only shows that it has 
the side then thrown",  and that it is only "after the first throw and not 
before,  [that] we should be in the circumstances required" for the 
application of Bayes's theorem. Price's subsequent analysis, however, 
is confined to those cases where our experience is uniform, that is, 
where "the same event has followed without interruption in any one 
or more subsequent experiments" (e.g., the rising of the sun); or where 
it is known in advance that there are only two categories (e.g., the 
drawing of a lottery with Blanks and Prizes). 

Laplace considered the multinomial case where there are three or 
more categories (Laplace 1781, Section 33), but his analysis is limited 
to those instances where the number of categories is fixed in advance. 
De Morgan, in contrast, proposed a simple way of dealing with the 
possibility of an unknown number of categories (De Morgan 1838, pp. 
66-67; 1845, pp. 414-15). If initially there are t possible outcomes 
known, then De Morgan gives as the probability of seeing the outcome 
on trial N + 1 fall into the j-th category: 



P R E D I C T I N G  T H E  U N P R E D I C T A B L E  209 

DE  M O R G A N ' S  RULE:  

e [ X N < = q ! n ] - -  n j + l  . 
N + t + l  

That  is, one creates an additional category: "new species not yet obser- 
ved",  which has a probability of 1/(N + t + 1) of occurring. 

How can one make sense of De Morgan's idea? First, it is unclear 
what one should do after observing a new 'species'. De Morgan (1845, 
p. 415) takes t to be the number of species present in the sample at 
any given instant; so that it increases over time. But if De Morgan's 
rule is thought of as a generalization of Laplace's, then it is more 
appropriate to view t as fixed, the number  of species known to exist 
prior to sampling. (This second convention is the one employed below.) 
Nor is it clear whether De Morgan's prescription is even consistent, in 
the sense that one can find a probability function on sequences which 
agrees with his rule. So, the first item of business is to see that this is 
indeed the case. 

2.1. The De  Morgan  Process 

It turns out that there is a simple urn model which generates the 
sequence of probabilities suggested by De Morgan. Consider an urn 
with one black ball (the 'mutator ' ) ,  and t additional balls, each of a 
different color, say, Cl, c2, • • . ,  ct. We reach into the urn, pick a ball at 
random, and return it to the urn together with a new ball, according to 
the following rule: 

• If a colored ball is drawn, then it is replaced together with 
another of the same color. 

• If the mutator is drawn, then it is replaced together with 
another ball of an entirely new color. 

The colored balls correspond to species known to exist; selecting a ball 
of a given color corresponds to observing the species represented by that 
color; selecting the mutator to observing a hitherto unknown species. 

Clearly this sequence of operations generates the probabilities De 
Morgan suggests. After N drawings, there are N + t + 1 balls in the 
urn, because we started out with t (the colored balls) + 1 (the mutator) 
and have added N since. Because we are choosing balls at random, 
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each has a probability of 1 in N + t + 1 of being selected. The number 
of colors is gradually changing, but if there are n j+ l  balls of a specific 
type, then the probability of observing that type at the next draw is the 
one given by De Morgan. On the other hand, since there is always only 
one mutator,  the probability of it being selected (the probability that 
a new species is observed) is I / (N + t + 1). This process generates the 
probabilities specified by De Morgan, so we shall call it the De Morgan 
process. 

More generally, we might imagine that the mutator  has a 'weight' 0 
accorded to it, 0 < 0 < ~, so that it is either more or less likely to be 
selected than the colored balls in the urn, which are accorded a weight 
of 1. That is, each colored ball has a probability of (N + t + 0) -1 of 
being selected, while the mutator  has probability 
1 - (N + t) /(N + t + 0) = 0/(N + t + 0). This will also be called a De 
Morgan process (with parameter  0). 

So, De Morgan's prescription is consistent. But does it make sense? 
Isn't it simply arbitrary, no better  or worse than any of a broad spectrum 
of rules we could invent? The answer, surprisingly, is 'No': it turns out 
to be a very special process, with many distinctive and attractive fea- 
tures. But, in order  to appreciate this, we need to briefly review the 
classical probabilistic account of induction for a fixed number of categ- 
ories, and then leap forward nearly a century and a half, when the De 
Morgan process mysteriously reappears in the 1970s. 

3. E X C H A N G E A B L E  R A N D O M  S E Q U E N C E S  

Attempts to explain enumerative induction in probabilistic terms go 
back to Bayes and Laplace, but this program was perfected at the hands 
of the twentieth-century Italian mathematician and philosopher Bruno 
de Finetti. De Finetti 's crucial insight was that those situations in which 
the simplest forms of enumerative induction are appropriate are cap- 
tured by the mathematical concept of 'exchangeability',  and that the 
mathematical structure of such sequences is readily described. 

3.1. The De Finetti Representation Theorem 

Let X1, X 2 , . . .  X N , .  • • be an infinite sequence of random variables 
taking on any of a finite number of values, say Cl, c 2 , . . . ,  ct: these are 
the possible categories or cells into which the outcomes of the sequence 
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are classified, and might denote  different species in an ecosystem, or 
words in a language. The sequence is said to be exchangeable if for 
every N the 'cylinder set '  probabilities 

P[X1 = el,  X2 = e2 . . . .  , XN = eN] = Pie1, e2 . . . . .  eN] 

are invariant under  all possible permutat ions of the time index. Put 
another  way, two sequences have the same probabili ty if one is a 
rearrangement of the other.  If  the outcomes are thought of as letters 
in an alphabet,  then this means that all words of the same length having 
the same letters have the same probability. 

Given a sequence of possible outcomes el,  e2 . . . . .  eN, let nj denote 
the number  of times the j-th type occurs in the sequence. The frequency 
vector n = (nl, n2 . . . . .  nt) plays a key role in exchangeability (in Car- 
nap 's  terminology, it is the "structure-description").  First, it provides 
an equivalent characterization of exchangeability, since given any two 
sequences, say e = (el,  e2 . . . .  , eN) and e* -- (e*, e* . . . .  , e~), one can 
be obtained f rom the other by rearrangement  if and only if the two 
have the same frequency vector. Thus, P is exchangeable if and only 
if two sequences having the same frequency vector have the same 
probability. 

In the language of theoretical statistics, the observed frequency 
counts nj = nj(X~, Xa, • • •, XN) are sufficient statistics for the sequence 
{XI, X2 . . . .  , XN}, in the sense that probabilities conditional on the 
frequency counts depend only on n, and are independent  of the choice 
of exchangeable P: given a particular value of the frequency vector,  
the only sequences possible are those having this frequency vector,  and 
each of these, by exchangeability, is assumed equally likely. The 
number  of such sequences is given by the muItinomial coefficient 
N!/(n~! n2! . . . nt!); and, thus, the probabili ty of such a sequence is 

P[X1, X 2 ,  • • . , X N I n  ] - -  h i !  n 2 !  • • • n t [  

N! 

The structure of exchangeable sequences is actually quite simple. Let  

At =: {(Pl, P2 . . . .  , Pt): Pi/> 0 andp~ + p2 + • • • + pt -- 1} 

denote  the t-simplex of probabilities on t elements.  Every element  
of the simplex determines a multinomial probability, and the general 
exchangeable probabili ty is a mixture of  these. This is the content of a 
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celebrated theorem due to de Finetti: if an infinite sequence of t-valued 
random variables X1, X2, X3 . . . .  is exchangeable, and (nl, n2,. • •, nt) 
is the vector of frequencies for {X1, X2. •, XN}, then the infinite limit- 
ing frequency 

Z = : I i m N ~ ( n N  n 2 ' N ' ' ' ' ' N )  

exists almost surely; and, i f /x(A) = P[Z E A] denotes the distribution 
of this limiting frequency, then 

P[Xl = e l ,  X 2 = e 2 , . . .  ,XN= eN] 

pnlpn2.. ,  pntd/X(pl ' P2 . . . . .  Pt-1). 
t 

The use of such integral representations of course predates de Finetti; 
de Finetti's contribution was to give a philosophical justification for 
their use, based on the concept of exchangeability, one not appealing 
to objective chances or second-order probabilities to explain the nature 
of the multinomial probabilities appearing in the mixture (see, e.g., 
Zabell 1988, 1989). 

3.2. Determining the Prior Measure dtx 

In order to apply the de Finetti representation theorem, it is necessary 
to decide on a specific 'prior' d/x. In principle d/x can be anything, but 
it is natural to single out classes of priors thought to represent situations 
of limited knowledge or 'ignorance'. Such ideas go back to Bayes 
himself, who considered "an event concerning the probability of which 
we absolutely know nothing antecedently to any trials made concerning 
it" (Bayes 1764). The earliest and best-known prior is the so-called 
'Bayes-Laplace prior', which assumes that there are two categories, say 
'success' and 'failure' (so that t = 2), and takes d/x(p) = dp. Although 
Laplace made direct use of this prior, Bayes deduced it by a more 
circuitous route, assuming that SN, the number of successes in N trials, 
is equally likely to assume any value between 0 and N: P[SN = k] = 
1/(N + 1). This assumption in fact uniquely determines d/,  (see Zabell 
1988, pp. 159-60). 

There is an obvious generalization of Bayes's postulate, employing 
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the frequency vector, which was proposed by the English logician, 
philosopher, and economic theorist William Ernest Johnson. This is 
Johnson's "combination postulate" (Johnson 1924): All ordered t-parti- 
tions of  N are equally likely. That is, all possible frequency vectors n = 
(n~, n 2 , . . . ,  nt) are assumed to have equal probability of occurring. 
(Note that if t = 2, then (nl, n2) = (k, N - k) and Johnson's postulate 
reduces to Bayes's.) Since there are 

AN ( N+t-1)t 
ordered t-partitions of N (see, e.g., Feller 1968, p. 38), each of these, 
assuming the combination postulate, has probability 1/AN, t of Occur- 
ring. In mathematical probability the frequency counts are often re- 
ferred to as occupancy numbers, and the probability distribution arising 
from the combination postulate as Bose-Einstein statistics (see, gen- 
erally, Feller 1968, chapter 2, Section 5). The force of Johnson's combi- 
nation postulate is that, just as in the binomial case, it uniquely deter- 
mines the mixing measure d/x; here the uniform or 'flat' prior d/x(p~, 
P2 . . . .  , pt) = d p l d p 2 . . ,  dpt-1, first introduced by Laplace in 1778. 

3.3. The Rule of  Succession 

Once the prior d/~ has been implicitly or explicitly specified, one can 
immediately calculate the predictive probabilities that it gives rise to: 

P[XN+I = cilXl, X2 . . . .  , XN] = P[XN+I = ciln], 

Such a conditional probability is sometimes called a 'rule of succession' 
(the terminology is due to the English logician John Venn). For exam- 
ple, in the case of the Bayes-Laplace prior (where t = 2), a simple 
integration immediately yields Laplace's rule of succession, 
(nl + 1)/(N + 1); and for Johnson's combination postulate the corre- 
sponding rule of succession is (nj + 1)/(N + t) (Johnson 1924, Appen- 
dix). A rule of succession uniquely determines the probability of any 
possible sequence; and the probability specification on sequences corre- 
sponding to the combination postulate is, in Carnap's terminology, the 
c* function. 

There is an air of arbitrariness about the combination postulate, and 
both Johnson (and later Carnap) ultimately replaced it with one less 
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stringent, Johnson's 'sufficientness' postulate (the terminology is due 
to I. J. Good): 

P[XN+I = iln] = f(ni, N). 

That is, the only relevant information conveyed by the sample, vis-h- 
vis predicting whether the next outcome will fall into a given category, 
is the number of outcomes observed in that category to date; any 
knowledge of how outcomes not in that category distribute themselves 
among the remainder is posited to be irrelevant. 

As a consequence of the sufficientness postulate, Johnson was able 
to derive, just as in the case of the combination postulate, the corre- 
sponding rule of succession: if X1, X2, • • • is an exchangeable sequence 
satisfying the sufficientness postulate, and t >/3, then (assuming that 
all cylinder set probabilities are positive so that the relevant conditional 
probabilities exist) 

P[XN+~ = iln] - ni + a 
N + t a  

(see, generally, Zabell 1982). The corresponding measure in the de 
Finetti representation in this case is the symmetrical Dirichlet prior with 
parameter a: 

F(ta) p ~ - l p ~ - i . . ,  p~-ldpldp2. .  "dpt-1. d/x(px, P2 . . . . .  Pt) = F(a) t 

3.4. Polya's Urn Model 

There is a simple urn model which generates Laplace's rule of succes- 
sion. It is usually referred to as the Polya urn model (see, e.g., Feller 
1968, pp. 119-21), after the mathematician George Polya, who pro- 
posed its use as a model for the spread of contagious diseases, although 
a description of it (in the case of all successes) can be found in Quete- 
let's Lettres sur la th~orie des probabilit~s (Quetelet 1846, p. 367). 

4. PARTITION EXCHANGEABILITY 

Johnson's sufficientness postulate, or its later equivalent formulation, 
Carnap's 'continuum of inductive methods',  attempts to capture the 
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concept of prior ignorance about individual categories. Despite its at- 
tractiveness, however, it is far from clear that Johnson's sufficientness 
postulate is a necessary condition for such a state of ignorance. Is it 
possible to further weaken the notion of absence of information about 
the categories? A natural idea is that ignorance about individual categ- 
ories should result in a symmetry of beliefs similar to that captured by 
de Finetti's notion of exchangeability with respect to times. This sug- 
gests the following definition. 

DEFINITION: A probability function P is partition exchangeable if the 
cylinder set probabilities P[X~ = el, X ~ - - e 2 , . . . ,  XN----eN] are in- 
variant under permutations of the time index and the category index. 

For example, if we are rolling a die (so that t = 6), and our subjective 
probabilities for the various outcomes are partition exchangeable, then 

P[6, 4, 6, 4, 4, 5, 1, 2, 5] = P[1, 1, 1, 2, 2, 3, 3, 4, 5]. 

This can be seen by first arranging the sequence 

{ 6 , 4 , 6 , 4 , 4 , 5 , 1 , 2 , 5 }  

into 'regular position': 

{ 4 , 4 , 4 , 5 , 5 , 6 , 6 , 1 , 2 } ,  

(i.e., descending order of observed frequency for each face); and then 
follow this up by the category permutation 

1 ---~ 4 ---~ 1, 2 --. 5 ---~ 2, 3 --~ 6 ---, 3, 

which can be more compactly written as (1, 4)(2, 5)(3, 6). 
The 'sufficient statistics' for a partition exchangeable sequence are 

the frequencies of  the frequencies (or 'abundances'): 

a r  = : number of nj equal to r 

• Example: Suppose one observes the sequence 5, 2, 6, 1, 2, 3, 5, 1, 1, 
2. Then: 

N = 10; t = 6. 
nl = 3, n2 = 3, n3 = 1, n 4  = 0 ,  n 5  = 2, n6 = 1. 
n = (3, 3, 1, 0, 2, 1) " = "  01122132 
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ao = 1 ,  a l  = 2 ,  a2 = 1 ,  a3 = 2 ,  a4  : . . • a l 0  = 0 .  

a = ( 1 ,  2 ,  1 ,  2 ,  0 , . . . , 0 )  

A useful bit of terminology will be to call the a-vector the partition 
vector. (Kingman (1980, p. 36) calls it the "altelic partition".) Note 
that in a partition exchangeable sequence, P[X1 = l/t],  so the number 
of categories that appear in such a sequence must be finite. 

The partition vector plays the same role relative to partition ex- 
changeable sequences that the frequency vector plays for ordinary ex- 
changeable sequences; that is, two sequences are equivalent, in the 
sense that one can be obtained from the other by a permutation of the 
time set and a permutation of the category set, if and only if the 
two sequences have the same partition vector. Thus, an alternative 
characterization of partition exchangeability is that: all sequences having 
the same partition vector have the same probability. The frequencies of 
the frequencies, furthermore, are the sufficient statistics for a partition 
exchangeable sequence, since probabilities conditional on the partition 
vector a = (a0, al . . . . .  at) are independent of P: and, given a partition 
vector a, the only possible sequences have a as partition vector and 
each of these is equally likely. (Note that this refers only to the cylinder 
set probabilities involving X1, X2, • • •, XN. The predictive probabilities 
f o r  X N + I ,  X N + 2 ,  . . .  will still depend on the ar.) 

According to the de Finetti representation theorem, a partition ex- 
changeable sequence, being exchangeable, can be represented by a 
mixing measure d/x on the t-simplex At. An important subset of the t- 
simplex in the partition exchangeable case is the subsimplex of ordered 
probabilities: 

k* = { ( p * , p * , . . . , p * ) :  p* > p* > / - . .  ~> p* ~> O, Ejp* = 1} 

In the partition exchangeable case, once the prior d/x is known on 
the ordered t-simplex zX*, it is automatically determined on all of At by 
symmetry. It is not really difficult to prove this, but it is perhaps best 
seen by considering a few simple examples. 

Consider, first, the case of a coin which we know to biased 2:1 in 
favor of one side, but where we don't  know which side it is - it could 
be either with equal probability. Then, p* = 2/3, p* = 1/3. In terms 
of the original, unordered probabilities, this corresponds to either p~ = 
2/3, P2 = 1/3 or Pl = 1/3, P2 = 2/3 and, since we are indifferent be- 
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tween categories, these two possibilities are equally likely; thus, we 
have as the mixing measure on the simplex A2 the measure 

1 1 
d/x(p) = 2 62/3 + 2 61/3, 

where 6x is the Dirac measure which assigns probability 1 to x. This is 
a partition exchangeable probability, since it is invariant under the 
interchange H --~ T, T --~ H. 

Consider next a die with six faces. The most general exchangeable 
probability is obtained by mixing multinomial probabilities over the 
simplex A6. The partition exchangeable probabilities are those which 
are invariant with respect to interchange of the faces. This would be 
equivalent to specifying a probability over 

6 

A* = {(p*,p* . . . . .  p * ) : p * / > . . .  ~ p ~  > 0, ~ p* = 1} 
j = l  

Specifying such a probability would be to say we have opinions about 
the bias of the die (the most likely face has probability p*, the second 
most likely p~, and so on), but not about which face has the bias, since 
our probability function is symmetric with respect to faces. 

A little thought should make it clear that the frequencies of frequenc- 
ies can provide information relevant to the prior d/, on At* (in the 
partition exchangeable case). For example, suppose that we know the 
die is biased in favor of one face, and that the other faces are equally 
likely. Then, the unknown vector of ordered probabilities satisfies 
p* > p* = p* . . . . .  p*. Suppose now that in 100 trials we observe 
the frequency vector (20, 16, 16, 16, 16, 16). Then, we would guess that 
Pl = P* = .2 (approximately), and p2 = p* = P3 . . . .  p* = .16. But, if 
we observed the frequency vector (20, 40, 10, 15, 10, 5), we would guess 
P2 = P* = .4, and Pl = P* = (20 + 10 + 15 + 10 + 5)/{(100)(5)} = .12. 
Our estimate for pl differs in the two cases (.16 vs . .12)  despite the 
fact that the frequency count for the first category is the same in both 
cases. 

This is clearly then an objection to Johnson's sufficientness postulate 
(and, thus, also Carnap's continuum of inductive methods): although 
on the surface it appears to be a reasonable quantification of a state of 
ignorance about individual categories, it asserts that the frequencies 
of the frequencies lack relevant information about the probabilities of 
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those categories. Nevertheless, as the example demonstrates, it is cer- 
tainly possible to have degrees of belief which are category symmetric, 
and yet for which the frequencies of frequencies provide very real 
information. This far from obvious fact was apparently first noted by 
the brilliant English mathematician Alan Turing during World War II 
(see Good 1965, p. 68; 1979). 

In general, the predictive probabilities for partition exchangeable 
probabilities will have the form 

P[XN+t = cilX1, X2 . . . . .  XN] = f(ni, a0, al . . . . .  aN). 

Johnson's sufficientness postulate thus makes the very strong supposi- 
tion that the predictive probabilities reduce to a function f(ni, N). In 
a very interesting paper, Hintikka and Niiniluoto (1980) explore the 
consequences of the weaker assumption that the predictive probabilities 
are functions f (ni, a0, N); that is, these may also depend on the number 
of categories which are thus far unobserved. This generalization of 
Johnson's postulate seems very natural within the context of partition 
exchangeability, but it is unclear why the dependence on the partition 
vector should be limited to only its first component.  Ultimately it is 
only partition exchangeability which exactly captures the notion of 
complete ignorance about categories; any further restriction on a proba- 
bility beyond that of category symmetry necessarily involves, at least 
implicitly, some assumption about the categories. The temptation to 
do so, of course, is understandable; unlike the continuum of inductive 
methods, the partition exchangeable probabilities do not form a finite- 
dimensional family, which can be described by a finite number of 
parameters. 

NOTE: In general there are t! permutations of the set of integers 
{1, 2 , . . . ,  t}; and to every such permutation there corresponds a sub- 
simplex ht,~ of At, namely, 2xt,~ = {(Pl, P2 . . . .  , p t )  ~ At: 

P`,(I~ ~> p~(2)/> • • • >~ P~(0}- The map (Pl, P2, • • •, Pt) ---> 
(P~o), P,~(2) . . . .  , p~(t)) defines a homeomorphism of ht,~ onto zX*, 
and this map permits one to transfer the values of a prior d/x on 2x* to 
the subsimplex At,,,. 

5.  E X C H A N G E A B L E  R A N D O M  P A R T I T I O N S  

Now we come to the major point of this paper. How can a Bayesian 
allow for (1) infinite categories, or (2) unknown species? 
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If the number of categories is infinite, then no prior can be category 
symmetric, for such a prior would have to assign equal weight to each 
category, which is impossible; that is, if there are an infinite number 
of colors (say), cl, c2,. • • , then P[X1 = C l ]  = P[X2 = C2] . . . .  l / t ,  
which is impossible, since t = ~. We are thus compelled to consider 
probability assignments which contain some element of asymmetry be- 
tween the different categories. 

But, more seriously, what does it even mean to assign probabilities 
in a situation where we are encountering previously unknown species, 
continuously observing new and possibly unsuspected kinds? According 
to (at least one naive version of) the classical Bayesian picture, one 
assigns probabilities in advance to all possible outcomes and, then, 
updates via Bayes's theorem as new information comes in. How can 
one introspect and assign probabilities when the possible outcomes are 
unknown beforehand? 

The earlier discussion of partition exchangeable sequences suggests 
a solution to this second difficulty: rather than focus on the probability 
of a sequence of outcomes (el, e 2 , . . . ,  eN), or the probability of a 
frequency vector (nl, n2 . . . .  , nt) (the elements of which refer to specific 
species), focus instead on the partition vector (al, a2 . . . .  , aN) and its 
probability. Even if one does not know which species are present prior 
to sampling, one can still have beliefs as to the relative abundances in 
which those species, as yet unobserved, will occur. (Note that in this 
setting a0 is excluded from the partition vector: lacking prior knowledge 
as to the totality of species present, it is impossible to specify at any 
given stage how many species present do not yet appear in the sample.) 

One could, in fact, now proceed exclusively at the level of partition 
vectors, and construct a theory of the type we are seeking (although it 
is far from obvious at this stage how to cope in a category symmetric 
fashion with the t = ~ case discussed above). But there would appear 
to be a substantial cost: the rich theoretical structure of exchangeability, 
the representation theorem, ignorance priors, and the like. One need 
not despair, however. All this can be obtained, provided one looks at 
the matter in a new, if initially somewhat unorthodox manner. 

5.1. Exchangeable Random Partitions 

The key point is to recognize that in the sampling of species scenario, 
the relevant information being received is an exchangeable random 
partition. Because the individual species do not, in effect, have an 
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individuality - we simply observe the first species, then at some subse- 
quent time the second, at a still later time the third, and so on - the 
relevant information being received is a partition of the integers. 

In other words, the first species occurs at some set of times 

A1 =:  {tl ,  t 2, t ~ , . . . :  tl  < t 2 < t 3 < "  "} 

where necessarily t~ = 1, and in general the set A1 may only contain a 
finite number of times even if an infinite number of observations is 
made (this will happen if the first species is only observed a finite 
number of times, possibly even only once, in which case A1 = {tl}). 
Likewise, the second species occurs at some set of times 

12  =: {t21,t 2 , t 3 , . . .  " t~ < t~ < t~ < - . . }  

where necessarily t 1 is the first positive integer not in A1, and A2 may 
again be finite. In general, the i-th species to be observed occurs at 
some set of times A i  = {ti:J --= 1, 2,  3 . . . .  } and the collection of sets 
A1, Az, A3, • • • forms a partition of the positive integers N in the sense 
that 

N = A 1 U A 2 U A 3 U . . .  and A i N A j = 0 ,  i=Pj. 

In the example considered before,  the partition of {1, 2, 3 , . . .  10} 
generated is 

{1, 7} U {2, 5, 10} U {3} U {4, 8, 9} U {6}. 

Note a new interpretation we can now give the partition vector a = 
(al, a2 . . . .  , al0): it records the sizes of the sets in the partition and 

the number of species observed. Thus, in our example, given the parti- 
tion vector is (2, 1, 2, 0 , . . . ,  0), two sets in the resulting partition have 
a single element (since al = 2), one set in the partition has two elements 
(since a2 = 1), two sets in the partition have three elements (since 
a3 = 2), and the total number  of species observed is 5 (since 
a~ + a2 + • • • + al0 = 5). Although originally defined in terms of the 
underlying sequence, the partition vector is a function solely of the 
resulting partition of the time set; and one can therefore refer to the 
partition vector of a partition. 

Thus, observing the successive species in our sample generates a 
random partition of the positive integers. Now let us consider in what 
sense such a partition could be 'exchangeable' .  An obvious idea is to 



P R E D I C T I N G  T H E  U N P R E D I C T A B L E  221 

examine the structure of random partitions arising from exchangeable 
sequences and see if we can characterize them in some way. 

This turns out to be relatively simple: if  a random sequence is ex- 
changeable, then the partition structures for two possible sequences have 
the same probability whenever they have the same partition vector a. 

In order to see this, let's think about what happens to a partition 
when we permute the categories or times of the underlying sequence 
which generates it. Consider our earlier example of the sequence 
{5, 2, 6, 1, 2, 3, 5, 1, 1, 2}, and suppose we permute the category index 
in some way, say, the cyclic permutation 

1-->2--+3-+4--+5--+6--+1.  

Then, our original sequence becomes transformed into {6, 3, 1, 2, 3, 
4, 6, 2, 2, 3}, and the resulting partition of the time set from 1 to 10 is 
the same as before: species 6 occurs at times 1 and 7, hence, we get 
A1 = {1, 7}, and so on. Permuting the category index results in a new 
sequence but leaves the resulting partition unchanged. 

Next, suppose we were to permute the times, say, by the cyclic 
permutation 

1 -+2-+3- -+4- -+5- ->6- -+7- -+8- -+9-+  1 0 ~  1. 

(That is, what happened at time i is observed to occur at time 2 instead; 
at time 2, at time 3 instead; and so on.) 

Then, our original sequence becomes transformed into {2, 5, 2, 6, 1, 
2, 3, 5, 1, 1}, and we get a new partition of the time set, namely, 

{1, 3, 6} tO {2, 8} U {4} U {5, 9, 10} U {7}. 

Because of the exchangeability of the underlying sequence, this new 
partition has the same probability of occurring as the original one. Note 
that it has the same frequency vector n and, therefore, partition vector 
a. This observation is the one underlying the idea of an exchangeable 
random partition: 

DEFINITION:  A random partition is exchangeable if any two parti- 
tions '7/'1 and 7r2 having the same partition vector have the same probabil- 
ity; i.e., if 

a(vrl) = a('a-2) ~ P[vr~] = e[~'2]. 
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5.2. The Kingman Representation Theorem 

In the case of sequences, the de Finetti representation theorem states 
that the general exchangeable sequence can be constructed out of ele- 
mentary building blocks: Bernoulli trials (coin-tossing sequences) in the 
case of 0,1-valued random variables; multinomial trials in the case of 
t-valued random variables; and in general sequences of independent- 
and identically-distributed random variables. The corresponding build- 
ing blocks of the general exchangeable random partition are the paint- 
box processes. 

In order to construct a paintbox process, consider an ordered 'defecti- 
ve' probability vector 

P = (pl, P2, P3, • • .), where Pl >~ p2 ~ P3" • • ~> 0 and 
Pl + P2 + P3 + • " " ~< 1, 

and let V denote the infinite simplex of all such vectors. 
Given such a defective probability vector p -- (PI, P2, P3, • • .) ~ V, 

let P0 =: 1 -  ~iPi; and let /xp be a probability measure on the unit 
interval [0, 1] having point masses pj at some set of distinct points xj, 
j/> 1 (which points are selected doesn't  matter),  and a continuous 
component  assigning mass P0 to [0, 1]. Call such a probability measure 
a representing probability measure for p. Let  X1, X2, X3 . . . .  be a se- 
quence of independently- and identically-distributed random variables 
with common distribution /Xp, and consider the exchangeable random 
partition generated by the rule: 

Aj = {i: Xi = xj} where A1 t2 A2 U . . . .  {1, 2 , . . . ,  N}. 

That is, partition the integers 1, 2 , . . . ,  N by grouping together those 
times i at which the random variables Xj have a common value xj. 

It is then not difficult to see that if p E V, and /Xp and vp are 
two different representing probability measures for p, then/Xp and Vp 
generate the same exchangeable random partition II, in the sense that 
the two random partitions have the same stochastic structure. Thus, we 
have a well-defined rule for associating exchangeable random partitions 
with vectors in V: given p, select Pa,, and use/xp to generate II. Let 's 
call this resulting exchangeable random partition IIp. 

Now we are ready to state the Kingman representation theorem: 
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THEOREM (Kingman 1978): The general exchangeable random parti- 
tion is a mixture of paintbox processes. 

Let us make this precise. Suppose that Za, Z 2 ,  Z 3 . . . .  is a sequence 
of random partitions; specifically, for each N i> 1, ZN is an exchangeable 
random partition of { 1 , 2 , . . . , N } .  There is an obvious sense in 
which such a sequence is consistent. Namely, any partition of 
{1, 2 . . . .  , N + 1} gives rise to a partition of {1, 2 . . . .  , N} by simply 
omitting the integer N + 1 from the subset in which it occurs. Let 
TN+I,N denote the map which performs this operation. Then, the pair 
ZN+~ and ZN are consistent if P[ZN E A] = P[TN+~.N(ZN+I) E A], 
where A is a set of partitions of {1, 2 . . . .  , N}; and the sequence is 
consistent if ZN and Z~+I are consistent for every N/> 1. Every such 
consistent sequence gives rise to a probability measure on the partitions 
of N =: {1, 2, 3 , . . . } .  If H is the probability distribution on the partitions 
of N arising from such an arbitrary exchangeable random partition, 
then the Kingman representation theorem states that there exists a 
(unique) probability measure d/x on V, the infinite simplex of all ordered 
defective probability vectors, such that for every (measurable) set A of 
partitions, 

II(A) = fv ~Ip(A) d/x(p). 

Note that instead of integrating over the probability simplex, one inte- 
grates over the ordered defective probability simplex V consisting of 
all possible defective probability vectors p. Moreover, as proven by 
Kingman, the ordered sample frequencies arising from the random 
partition converge in joint distribution to the mixing measure d/x. (Just 
as in de Finetti's theorem the unordered sample frequencies 
(n~/N . . . .  , nt/N) converge to the mixing measure d/z, in the de Finetti 
representation, here the ordered sample frequencies converge to the 
mixing measure d/x in the Kingman representation.) 

The distinctive role that the continuous component P0 of a paintbox 
process plays in the theorem deserves some comment. When Kingman 
first investigated exchangeable random partitions, he was puzzled by the 
fact that mixtures over the discrete nondefective ordered probabilities 
(p*, * • p2, P3 . . . .  ) generated many, but by no means all possible ex- 
changeable random partitions. The key to this puzzle is the far from 
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obvious observation that when a new species appears, it must always 
suffer one of two fates: either it never appears again, or it is subse- 
quently seen an infinite number of times. No intermediate fate is pos- 
sible. The species that arise once and only once are precisely those that 
arise from the continuous component. 

The Reverend Dr. Richard Price would not have found this surpris- 
ing. As he states (Bayes 1764, p. 312), the first appearance of an event 
only informs us of its possibility, but would not "give us the least reason 
to apprehend that it was, in that instance or in any other, regular rather 
than irregular in its operations"; that is, we are given no reason to 
think that its probability of recurring is positive (read "regular") rather 
than 0 (read "irregular"). In effect, Price is saying that the first obser- 
vation tells us that the outcome lies in the support of the unknown 
representing probability/Xp, while the second observation tells us that 
it lies in the discrete component of this probability. 

5.3. The Poisson-Dirichlet Process 

Thus far we have managed to capture a notion of exchangeable random 
outcome suitable to the sampling of species setting, and have a repre- 
sentation theorem as well. But the classical theories of induction that 
employ probability theory usually attempt to go further and identify 
classes of possible priors d/l thought to represent situations of limited 
information. In the de Finetti representation discussed earlier, this 
was easy: the so-called flat priors dp or dp idp2 . .  • dpt- i  immediately 
suggested themselves, and the game was to come up with characteriza- 
tions o f  these priors in terms of symmetry assumptions about the under- 
lying cylinder set probabilities. Here, however, it is far from apparent 
what a 'flat' prior would be. 

At  this point we encounter a deep and truly ingenious idea of King- 
man's. Let a > 0. Suppose we took a symmetric Dirichlet prior D(a) 
on the t-simplex zXt and let the number of categories tend to infinity 
(i.e., let t--~ ~). The resulting probabilities would then 'wash out'.  For 
any fixed to < ~ and (xl, x2 . . . .  xt0) E At, the cylinder set probabilities 
are: 

P~.t[Pl ~ xl,  p2 ~ X 2  . . . .  , Pt0 <~ Xt0] "-9 0 as t --~ oo. 

But, suppose instead that we consider the vector of ordered probabil- 
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ities. Then, something truly remarkable occurs. Since we can map the 
t-simplex At onto the ordered t-simplex At* (by associating to any vector 
(Pl, p2 . . . .  , Pt) its ordered rearrangement (p*, p * , . . .  , pt*)), the sym- 
metric Dirichlet prior on At induces a probability distribution on At*: 
for any fixed to ~ t < ~ and sequence (x*, x~, . . . , xt*0) E At*, there is 
a corresponding cylinder set probability 

P~,t[P* ~< Xl, P2 ~< x*, . . . , pt~ ~< xt*o] • 

Then, as Kingman shows, if t - + ~  and a---,O in such a way that 
ta  ~ 0 > 0, for some positive number 0, then the resulting sequence of 
probabilities does not 'wash out': instead, it has a proper limiting 
distribution. And, since this is so for each t, the result is a probability 
measure on V. (A 'consistent' set of probabilities on the finite cylinder 
sets always corresponds to a unique probability on infinite sequence 
space.) This is called the Poisson-Dirichlet distribution (with parameter 
0). (The terminology is intended to suggest an analogy with the classical 
Poisson-binomial limit theorem in probability theory.) 

A simple example will illustrate the phenomenon. Suppose you pick 
a point p at random from A t according the symmetric Dirichlet distribu- 
tion P,~.t and ask for the probability Pa.t[pl i> xl]. As t ~ ~, this proba- 
bility tends to 0 (since a typical coordinate of p will be small if t is large). 
But suppose, instead, you ask for the probability that the maximum 
coordinate of p exceeds xl: that is, P,~.t[p* i> xl]. Then, Kingman's 
theorem states that this probability has a nonzero limit as t ~ ~. Such 
a result, although hardly obvious, is evidently neither counterintuitive 
nor paradoxical. 

5.4. The Ewens Sampling Formula 

Since the Poisson-Dirichlet distribution with parameter 0 is a probabil- 
ity measure on 7, and each paintbox process in 7 gives rise to an 
exchangeable random partition, for every sample size N the Poisson- 
Dirichlet distribution induces a probability distribution 
P[al, a2 . . . . .  aN] on the set of possible partition vectors. Kingman 
shows that these probabilities are given by the so-called 
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EWENS SAMPLING FORMULA:  

n! I~ Oa~ 
0(0+ 1 ) . .  i-(0+ n -  1)r=l  rarar ! 

This little formula turns out to be remarkably ubiquitous: it is ca l led  
the Ewens sampling formula, because it was first discovered by the 
geneticist Warren Ewens in the course of his work in theoretical popula- 
tion genetics (Ewens 1972). It crops up in a large number of seemingly 
unrelated contexts. One example of many is: if one picks a random 
permutation of the integers {1, 2 . . . .  , N}, and lets a s denote the number 
of j-cycles, then the probability distribution for al, a2 . . . . .  aN is pro- 
vided by the Ewens formula. 

Given the Ewens formula for the cylinder set probabilities, it is a 
simple calculation to derive the corresponding predictive probabilities 
or rules of succession. It is important, however, to be clear what this 
means, so let's back up for a moment. Suppose we are performing a 
sequence of observations X i , X 2 , . . .  , X N , . . .  , noting at each stage 
either the species of an animal, the next word used by Shakespeare, or 
whatever. At each point, we observe either a species previously ob- 
served or an entirely new species. Before these are observed, it doesn't 
make sense to refer to these outcomes as exchangeable; in fact, it 
doesn't even make sense to refer to the probabilities of such outcomes, 
because ahead of time we don't  know what a complete list of possible 
outcomes is. We're learning as we go along. But at time N we can 
construct a partition of {1, 2 , . . . ,  N} on the basis of what we've seen 
thus far, and it does make sense to talk prospectively about the probabil- 
ity of seeing a particular partition. It is then natural to assume that the 
resulting random partition is exchangeable; it is necessary to tutor one's 
intuition, but this is the end result. (As Diaconis and Freedman (1980, 
p. 248) observe about the concept of Markov exchangeability, "the 
notion of symmetry seems strange at first . . . .  A feeling of naturalness 
only appears after experience and reflection".) Having arrived at this 
epistemic state, we can then invoke the Kingman representation theo- 
rem, and write our exchangeable random partition as a mixture of 
paintbox processes. Although we do not, indeed cannot, have prior 
beliefs about the probabilities of the species we observe, since we didn't 
know they existed until we saw them, we can certainly have opinions 
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about their abundances: that is, what is the frequency of occurrence of 
the most abundant species, the second most abundant,  and so on, and 
this is what our prior on V summarizes. 

Now, given that we make a series of N observations, it is clear that 
our exchangeable probability assignment will predict whether a new 
species will be observed on the next trial. And, if we don' t  observe a 
new species, whether we see a member  of the same species as the very 
first animal observed. (That is, whether the new partition resulting after 
time N + 1 will add the integer N + 1 to the member  of the partition 
containing 1.) Or, whether a member  of the second species observed. 
(That is, whether the new partition adds N + 1 to that member  of the 
partition containing the first integer not in the member  of the partition 
containing 1.) And so on. 

Given that we have observed a number of species so far - with nl of 
the first type, n2 of the second, and so on - what are the resulting 
succession probabilities for observing one of the known species or an 
unknown one? The answer, given the Poisson-Dirichlet  prior (and 
letting sj denote the j-th species observed to date) is: 

P[XN+I = Sj [ n] -- nj 
(N + 0) 

That is, with 0 = 1 and t = 0 the answer is identical to De Morgan's! 
Thus, De Morgan's answer emerges as far from arbitrary. It arises 

from the canonical ' ignorance prior'  for exchangeable random parti- 
tions. 

5.5. The Chinese Restaurant Process 

Completing our analogy with the case of exchangeable sequences, what 
is the generating urn process for this 'benchmark'  process? We already 
know the answer to this: it is a classical urn model with the added facet 
of a black ball representing the 'mutator ' .  

This process has in fact been independently noted several times 
during the last two decades. Perhaps the most attractive version is the 
Chinese restaurant process: on any given evening in Berkeley, a large 
number  of people go to some Chinese restaurant in the downtown area. 
As each person arrives, he looks in the window of each restaurant to 
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decide whether or not to go inside. His chance of going in increases 
with the number of people already seen to be inside, since he takes 
that as a good sign. But there's always some probability that he goes 
to an empty restaurant. In a second (and, in fact, the original) version 
of the process, people enter a single restaurant and sit down at random 
at one of several circular tables (see Aldous 1985, p. 92). (The main 
point of this version is that the groups around the tables define the 
cycles of a random permutation.) 

6. S O M E  F U R T H E R  L I T E R A T U R E  

The problem discussed above is often referred to in the statistical 
literature as the sampling of species problem. One of the earliest refer- 
ences is a short but important paper by Fisher (Fisher et al., 1943). 
The sampling of species problem has since been considered by several 
people from a Bayesian perspective. As noted earlier, Turing seems 
to have been the first to realize the potential informativeness of the 
frequencies of the frequencies, a discovery he made during the course 
of his cryptanalytic work at Bletchley Park during World War II. The 
noted Bayesian statistician I. J. Good was Turing's statistical assistant 
at the time, and after the war he published a series of interesting papers 
in this area (see, e.g., Good 1953; Good and Toulmin 1956; and Good 
1965, chapter 8). These methods have recently been employed to esti- 
mate the total number of words known to Shakespeare (Efron and 
Thisted 1976), and to test whether a poem attributed to Shakespeare 
was in fact authored by him (Thisted and Efron 1987). During the last 
two decades the American statistician Bruce Hill has also investigated 
the sampling of species problem (see, e.g., Hill 1968, 1979). Zipf's law 
is an empirical relationship that the elements of a partition vector 
are often found to follow (see Hill 1970). Hill (1988) discusses some 
relationships between his own methods and those of Kingman. 

Kingman's beautiful work is summarized in his monograph, The 
Mathematics of Genetic Diversity (1980; see also Kingman 1975). King- 
man's theory was originally stated in terms of "partition structures" 
(Kingman 1978a), as was his original proof of the representation theo- 
rem for exchangeable random partitions (Kingman 1978b). The account 
given above draws heavily on Aldous (1985, pp. 85-92). The Ewens 
sampling formula was of course discovered by Ewens (1972); it thus 
provides a counterexample to Stigler's law of eponomy, but it was 
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also independently discovered shortly after by Charles Antoniak in a 
Bayesian setting (Antoniak 1974). The urn model discussed in Section 
2 is implicit in De Morgan (1838, 1845), but was never formally stated 
by him. During the 1970s the model surfaced in Berkeley, first as a 
special case of a class of urn models discussed by Blackwetl and 
MacQueen (1973) and, then, in the guise of the Chinese restaurant 
process (fathered by Lester Dubins and Jim Pitman). The CRP re- 
mained 'folklore', however, until it was described in Aldous's 1985 
monograph. The urn model itself became more widely known after 
1984, when Fred Hoppe drew attention to it as a simple method of 
generating the Ewens sampling formula (see Hoppe 1984, 1987; and 
Donnelly 1986). 

An axiom corresponding to the assumption of partition exchange- 
ability is briefly mentioned by Carnap at the beginning of his book 
(Carnap 1950), but not pursued further by him. Good has studied priors 
for multinomial probabilities which are mixtures of symmetric Dirichlet 
priors (and therefore partition exchangeable); there is a close relation- 
ship between some of his work (Good 1953) and recent efforts by Theo 
Kuipers (1986) to estimate the h-parameter in Carnap's continuum of 
inductive methods (equivalently, the a-parameter of the corresponding 
symmetric Dirichlet prior). Kuipers had earlier discussed a mutation 
model similar to De Morgan's, but in his system the mutation rate does 
not tend to zero (see Kuipers 1973). 

The concept of exchangeability was introduced into the philosophical 
literature by Johnson, who termed it the "permutation postulate", 
and analyzed its consequences assuming first the combination postulate 
(Johnson 1924) and then the less restrictive sufficientness postulate 
(Johnson 1932). Exchangeability was soon after independently discov- 
ered by de Finetti, who skillfully employed his representation theorem 
to analyze the structure of the general exchangeable sequence, making 
no appeal to additional, restrictive postulates. After World War II, 
Carnap investigated exchangeability as part of a broad attack on the 
problem of inductive inference, rediscovering many of Johnson's results 
and carrying his investigations into new territory (see, especially, Car- 
nap 1980). 

It is an important historical footnote that Carnap clearly recognized 
the importance of studying the case of inductive inference when the 
number of categories is not fixed in advance, and thought that this 
could be done by employing the equivalence relation R: belongs to the 
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s a m e  s p e c i e s  as .  (That is, one has a notion of equivalence or common 
membership in a species, without prior knowledge of that species.) 
Carnap did not pursue this idea any further, however, because he 
judged that it would introduce further complexities into the analysis, 
which would have been premature given the relatively primitive state 
of the subject at that time. (My thanks to Richard Jeffrey, to whom I 
owe the information in this paragraph.) 

As we can now appreciate, Carnap displayed great prescience here: 
the use of such an equivalence relation would have been tantamount 
to considering partitions rather than sequences, and the resulting com- 
plexities are indeed an order of magnitude greater. That we can now 
see further today is a tribute to the beautiful and profound work of 
Kingman discussed above. 
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