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Abstract When presented with an object to be manipulated, a robot must identify
the available forms of interaction with the object. How might an agent automatically
acquire this mapping from visual description of the object to manipulation action?
In this chapter, we describe two components of an algorithm that enable an agent to
learn a grasping-oriented representation by observing an object being manipulated
by a human teacher. The first component uses the sequence of image/object pose
tuples to acquire a model of the object’s appearance as a function of the viewing
angle. We identify visual features that are robustly observable over a range of similar
viewing angles, but that are also discriminative of the set of viewing angles. Given
a novel image, the algorithm can then estimate the angle fromwhich the object
is being viewed. The second component of the algorithm clusters the sequence of
observed hand postures into the functionally distinct waysthat the object may be
grasped. Experimental results demonstrate the feasibility of extracting a compact
set of canonical grasps from this experience. Each of these canonical grasps can
then be used to parameterize a reach controller that brings the robot hand into a
specific spatial relationship with the object.
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1 Introduction

Manipulating one’s world in very flexible ways is a skill thatis shared only by a
small number of species. Humans are particularly skilled atapplying their manipu-
lation abilities in novel situations using a range of effectors, from hands and other
parts of the body, to tools. How can robots come to organize and learn knowledge
representations for solving grasping and manipulation problems in unstructured en-
vironments? J. J. Gibson (1966, 1977) suggests that these representations should be
partitioned intowhat can be done with particular objects andwhy an object should
be manipulated in a certain way. The first of these, which Gibson termsobject affor-
dances, captures the details of what can be done with the object by the agent. The
latter captures information about how individual manipulation skills are to be put
together in order to solve a specific task. The task-neutral affordance representation
is important in that it can provide an agent with a menu of actions/activities that are
possible with a given object – whether the current task is well known or is a new
one. Hence, the affordance representation enables the agent to potentially bring a
substantial amount of knowledge to new tasks that are to be solved.

One important form of interaction is that of grasping. For a given object, how
might an agent come to represent the set of feasible grasps that may be made? Ulti-
mately, one must establish a mapping from perceivable visual and haptic features to
a set of parameterized grasping actions (specific positionsand orientations for the
hand, as well as configurations for the fingers) that are expected to be successful if
executed. We would like for these representations to be rooted in an agent’s own
experiences – either through direct interaction with objects or through observation
of other agents’ interactions.

In this chapter, we describe two efforts toward addressing this challenge. First, we
describe an approach for visually recognizing the 3D orientation of an object. The
models of object appearance are based entirely on sequencesof image/object pose
pairs as the object is being manipulated. The learning algorithm identifies robust
descriptions of object appearance from different viewing angles. Second, we intro-
duce a method of identifying descriptions of canonical grasps (that include hand
pose and finger configuration) based on observation of a largenumber of exam-
ple grasps made by a human teacher. We employ a clustering method in thishand
posture space that identifies a small number of these canonical grasps. Theresult-
ing grasp descriptions can then be used by the agent for planning and execution of
grasping actions and for interpreting the grasping actionsof other agents.

2 Learning Models of 3D Object Appearance

One of our ultimate goals is for a robotic agent to learn affordance representations
based on experience gathered by looking at an object as the agent manipulates it.
In particular, we would like to construct visual models thatenable the agent to rec-
ognize the object and the angle from which it is being viewed.This interactive ap-
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proach means that although the agent is able to control many of the conditions in
which this experience is gathered, the learning approach must be robust to spurious
features in the visual stream, including occlusions by the robot itself and lighting
effects such as shadows and specular reflections. The challenge is to discover visual
operators that are sensitive to the appearance of the objectat some subset of viewing
angles (oraspects), but that are not “distracted” by these spurious effects. In our
approach, individual visual operators recognize the appearance of an object for a
subset of viewing aspects. A complete 3D appearance model ofan object is cap-
tured by identifying a collection of visual operators that cover all possible viewing
aspects.

2.1 Edgel Constellations for Describing 2D Object Appearance

A visual operator in our case recognizes a specific constellation of orientededgels (Pi-
ater and Grupen, 2000; Coelho, Jr. et al, 2000; Wang, 2007). Edgels are edge image
features defined at each pixel, and are described by their orientation in the image and
their magnitude. Piater and Grupen (2002) define aconstellation as a set of edgels
that are arranged in some geometric configuration in the 2D image space. This geo-
metric configuration is represented by the relative position and orientation between
edgels in a constellation. By construction, a constellation is rotation-invariant in the
image plane.

Fig. 1 illustrates two constellations that have been identified for two distinct
viewing angles of a cup. The constellation that matches the side view (a) captures
the top rim of the cup. The constellation that matches the bottom view (b) captures
edgels on both the top rim and the bottom of the cup. Within a novel image, a con-
stellation is considered to match if all of the constellation edgels can be found at the
correct relative position and orientation. The highest degree of match occurs when
the set of edgels in the constellation align perfectly with high-magnitude edges in
the query image.

2.2 Capturing Object Appearance in 3D

Although the 2D features are invariant under rotation within the image plane, it is
clear from Fig. 1 that the rotations out of this plane can dramatically alter the ap-
pearance of an object. We can represent all possible viewingaspects as the set of
points on the unit sphere with the observed object as the center (Fig. 2). Imagine a
camera located at some point on thisaspect sphere, oriented toward the sphere’s ori-
gin. This point therefore constrains two orientation DOFs,leaving free the rotation
about the camera’s axis. The object appearance at a single point can be described
by one (or a small number of) edgel constellations. For the case of the cup, one can
imagine a unique constellation that only matches a set of views surrounding the top
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(a) (b)

Fig. 1 Constellations matching a side view (a) and a bottom view (b) of acup. The constellations
have been “painted” on top of the edge magnitude image for each viewing direction. Individual
edgels are shown using small circles; the geometric constraints between edgels are shown as dotted
lines.

Fig. 2 The aspect sphere of a cup with rotation symmetry aboutu.

pole of the sphere. As the viewing angle deviates fromu, the likelihood of observing
the constellation can drop quickly. For a constellation that recognizes a “non-polar”
aspect, the set of recognized aspects will fall along a circular band on the sphere.
This is because the cup’s appearance does not change with rotations about the ver-
tical axis As the viewing angle deviates from the center of the band, it becomes less
likely that the constellation will be observed.

Fig. 3 illustrates the aspects for which the constellationsof Fig. 1 are found. The
major axis of the cup in these figures falls along the X axis, with the top of the cup
atX = −1. The constellation that recognizes the side of the cup is found most often
along the circle for whichX = 0 (a). The constellation that recognizes the bottom of
the cup is found most often aroundX = 1, but is occasionally found aroundX =−1
(b). This is the case because this particular constellationrecognizes pieces of two



Grasping Affordances: Learning to Connect Vision to Hand Action 5

(a) (b)

Fig. 3 Constellation matches for (a) the side constellation (of Fig. 1(a)) and (b) the bottom constel-
lation (Fig. 1(b)). Small dots show aspects that correspond to image samples; large dots indicate
where the constellation matches. In this case, the major axis of the cup is aligned with the X axis.

concentric circles of particular radii, a feature that is sometimes visible from the top
of the cup.

How can we compactly represent the set of viewing angles for which a constella-
tion is viewable? Specifically, we would like to capture the likelihood of the aspect
given that a particular constellationCi has been observed:p(a|Ob j,Ci). Bingham
and Mardia (1978) proposed thesmall circle distribution, which allows us to de-
scribe Gaussian-like distributions on the unit sphere.

b(a|τ,ν ,µ) =
1

F(τ,ν)
e−τ(µT a−ν)2

, (1)

wherea, µ are unit vectors andµ denotes the mean direction;τ is a scalar that
gives the concentration of the distribution (the higher theτ, the more concentrated
the distribution);ν is a scalar that determines the shape of the distribution; and
F(τ,ν) is a normalizing term. Note that equation 1 obtains a maximumvalue when
µT a = ν . This set ofa’s fall at a fixed angle aboutµ. By adjusting the parameters
of this distribution, we can describe different shapes of clusters on our aspect sphere
(Fig. 4).

2.3 Learning Complete 3D Appearance Models

Given a set of image/aspect tuples, the challenge is to discover a set of edgel con-
stellations that cover the entire aspect sphere. Our algorithm is outlined in Fig. 5.
During the training process, the algorithm samples a singleconstellation at a time
from a specific training image (call this imageP). A two-step filtering process is
used to determine whether the constellation islocally robust andglobally discrim-
inative. First, the set of images from aspects surrounding P are searched for the
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(a) (b) (c)

Fig. 4 Gaussian-like distributions on the unit sphere, whereµ = [0,0,1]. In all cases, the surface
radius is 1+ p/(2×max(p)), where p is the likelihood at the corresponding aspect. (a) Uniform
Gaussian:τ = 50,ν = 1.2; (b) small circle:τ = 100,ν = 0.8; and (c) great circle:τ = 100,ν = 0.

constellation. If the constellation describes transient features such as shadows, then
it is unlikely to match neighboring images. If this is the case, the constellation is
discarded and a new one is sampled. The second filter examinesall images in the
training set for the constellation. If the degree of match ofthe constellation distin-
guishes the neighboring images from most of the remaining training set, then the
constellation is considered to be discriminative. Formally, the discriminative power
of the constellation is measured using the Kolmogorov-Smirnoff distance (KSD)
between the neighboring and complete population of images (Piater and Grupen,
2002). Should the constellation satisfies both filters, the algorithm then finds the pa-
rameters of a probability density function that describes the set of aspects in which
the constellation is observed. This training process continues iteratively until the
entire set of generated constellations cover most of the training images.

Given a novel image, we would like to accurately estimate theaspect from
which it is being viewed. More specifically, assuming that a set of constellations
C1,C2, ...,CN are either observed or not in an image, we would like to find theas-
pect,a that maximizesp(a|Ob j,C1, ...,CN). Making the näıve Bayes assumption,
we can estimate this likelihood accordingly:

p(a|Ob j,C1, ...,CN) =
N

∏
i=1

p(a|Ob j,Ci). (2)

In practice, we make use of a local gradient ascent search with multiple starting
locations to identify the maximum likelihooda.
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Fig. 5 Overall structure of the aspect recognition algorithm.

2.4 Data Collection and Preprocessing

In our experiments, each element in the data set is atuple of image and object
pose. A Polhemus Patriot (Colchester, VT) is attached to theobject so that the 3D
position and orientation of the object can be paired with each image. Tuples are
gathered continuously as the object is rotated in front of the camera. In all, a data
set will contain about 2000 such tuples. We employ an image preprocessing step
that identifies a region of interest (ROI) that ideally contains only the object. The
stationary background and skin-colored objects are first subtracted from the image.
The ROI is then selected to encompass a large, contiguous setof the remaining
pixels within the middle of the image frame. In practice, theROI contains the object
in excess of 99% of the images.

Fig. 6 illustrates the recognition process. An independenttesting image of the
cup is shown in Fig. 6(a) and the corresponding (true) aspectis shown on the as-
pect sphere in Fig. 6(b). For this particular image, two constellations are observed
(Fig. 6(c) and Fig. 6(e)). The density functions corresponding to these two constel-
lations are shown in Fig. 6(d) and Fig. 6(f). The combined density function (Eq. 2)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Example aspect recognition. (a) a testing image of the cup, (b) the true aspect from which
the object is observed, (c) match of constellation 1 to the test image, and (d)p(a|cup,C1). (e) match
of constellation 2 to the test image, (f)p(a|cup,C2), (g) p(a|cup,C1,C2), (h) the maximum likeli-
hood aspect, and (i) the nearest training image that correspondsto this aspect.

is shown in Fig. 6(g). The maximum likelihood aspect is 0.31◦ from the true aspect
(Fig. 6h).

2.5 Experimental Results

Both symmetric (a cup and a block) and asymmetric (a mug and a spray bottle) ob-
jects are used in the experiment. For each object, about 2000sample image/aspect
tuples are taken uniformly in order to cover the aspect sphere as well as possible. For
each object, we performed 10 independent experiments. For each experiment, a dif-
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ferent set of 100 samples are randomly selected and reservedas the test data set; the
remaining samples are used as training data. Error is measured for each test image
as the angle between the estimated and true aspects, down to the symmetry of the
object. When there are multiple estimated aspects, the mean of error is calculated for
a single test image. We report the mean error over 100 images and 10 experiments.
We compare the proposed approach with one in which no filtering is performed (the
“unfiltered method”) and with a method that guesses aspects randomly.

Both the filtered and unfiltered methods cover 3556 out of 4000testing images
(of 4 objects, 100 test images and 10 experiments). No constellations are found in
the remaining test images. The aspect estimate error histogram for the three methods
is shown in Figure 7a. These histograms include errors from all ten experiments
and four objects. The filtered and unfiltered methods decrease exponentially with
increasing error. However, the filtered method is biased more toward lower errors.
The mean error for the random method is substantially higherthan either of the
other two methods.

The mean errors and standard deviations for each object are shown in Fig. 7b.
For both methods, we can see that the errors for the spray bottle are relatively large
compared to that for the other objects. The reason is that theshape and texture of
the spray bottle are more complex than the other objects. As aresult, many constel-
lations often match to a high degree with the texture of the labels, even though they
are not originally generated from those regions.

We can also see that filtering is a benefit, especially for the more complicated
objects. For the simple objects, sampled constellations for a particular aspect are of-
ten very similar to each other. Hence, the filtering step doesnot make any practical
distinctions between different constellations. As the objects become more compli-
cated, such as with the spray bottle, a particular aspect will give rise to a set of
rather different constellations. Hence, the filtering stepis able to make meaningful
distinctions between these constellations.

The performance difference between the filtered and unfiltered methods is signif-
icant for all four objects by a two-tail, paired t-test (block: p < 0.05; cup:p < 10−3;
mug: p < 10−4; spray bottle:p < 10−4). We should also note that the random guess
method does not perform as poorly as one might expect. This isbecause these errors
have also been adjusted according to the symmetric properties of the objects.

3 Learning Canonical Grasps for Objects

Once an object has been visually identified and localized in space, how can an agent
describe the set of possible grasping actions that may be taken? Because the set of
possible actions will ultimately be used for planning and for exploratory learning,
we are motivated to make this set as small as possible so as to reduce the complexity
of either search process. One approach to constructing thisrepresentation is to begin
with a large set of successful example grasps and then to cluster them into a small
set of canonical grasps. This set of examples could be derived from manipulation
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Fig. 7 (a) Histogram of aspect estimate errors made by the three methods (all objects), and (b)
aspect estimation errors for each method and object.

sequences produced by the agent itself, or by a human acting directly on the ma-
nipulated object or acting through the agent via teleoperation. Our focus to date has
been on these two human-driven methods.

We describe each example grasp with the following: 1) position of the hand in
an object-centered coordinate frame, 2) orientation of thehand, and (in some cases)
3) the joint angles of the fingers of the hand. Clustering is performed using amix-
ture of probability density functions approach, in which each cluster corresponds
to a canonical hand configuration that describes all three ofthese components (de
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Granville et al., 2006, 2009, and submitted; de Granville, 2008). Below, we detail
each of these steps and then show that this method can successfully identify mean-
ingful clusters from teleoperation experiments performedusing NASA’s humanoid
robotRobonaut.

3.1 Modeling Hand Orientation

Unit quaternions are a natural representation of 3D orientation because they com-
prise a proper metric space, a property that allows us to compute measures of simi-
larity between pairs of orientations. Here, an orientationis represented as a point on
the surface of a 4D unit hypersphere. This representation isalso antipodally sym-
metric: pairs of points that fall on opposite poles represent the same 3D orientation.
The Dimroth-Watson distribution captures a Gaussian-likeshape on the unit hy-
persphere, while explicitly acknowledging this symmetry (Mardia and Jupp, 1999;
Rancourt et al, 2000). The probability density function forthis distribution is as
follows:

f (q|u,k) = F (k)ek(qT u)
2

, (3)

whereq ∈ R
4 represents a unit quaternion,u ∈ R

4 is a unit vector that represents
the “mean” rotation,k ≥ 0 is a concentration parameter, andF(k) is a normalization
term. Note thatqT u = cosθ , whereθ is the angle betweenq andu. Hence, den-
sity is maximal whenq and u are aligned, and decreases exponentially as cosθ
decreases. Whenk = 0, the distribution is uniform across all rotations; ask in-
creases, the distribution concentrates aboutu. Fig. 8(a) shows a 3D visualization
of the Dimroth-Watson distribution, and highlights its Gaussian-like characteristics.
The high density peaks correspond tou and−u.

A second cluster type of interest corresponds to the case in which an object ex-
hibits a rotational symmetry. For example, an object such asa cylinder can be ap-
proached from any orientation in which the palm of the hand isparallel to the planar
face of the cylinder. In this case, hand orientation is constrained in two dimensions,
but the third is unconstrained. This set of hand orientations corresponds to an arbi-
trary rotation about a fixed axis, and is described by a great circle (or girdle) on the
4D hypersphere. We model this set using a generalization of the Dimroth-Watson
distribution that was suggested by Rivest (2001). The probability density function
is as follows:

f̄ (q|u1,u2,k) = F̄ (k)e
k
[

(qT u1)
2
+(qT u2)

2
]

, (4)

whereu1 ∈ R
4 and u2 ∈ R

4 are orthogonal unit vectors that determine the great
circle, andF̄(k) is the corresponding normalization term. Fig. 8(b) illustrates the
girdle distribution on the 3D unit sphere. First, note that all points on the great
circle are assigned maximal density. This corresponds to the set of points for which
(

qT u1
)2

+
(

qT u2
)2

= 1. However, as the angle betweenq and the closest point on
the circle increases, the density decreases exponentially.
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(a) (b)

Fig. 8 Three dimensional representations of the Dimroth-Watson (a) andgirdle (b) distributions on
S2. In both cases, the surface radius is 1+ p, wherep is the probability density at the corresponding
orientation

For a given set of observations, the parameters of the Dimroth-Watson and girdle
distributions are estimated using maximum likelihood estimation (MLE). The axes
of the distribution are derived from the sample covariance matrix, Λ ∈ R

4×4:

Λ =
∑N

i=1 qiqT
i

N
, (5)

whereqi is the orientation of theith sample, andN is the total number of samples.
The MLE of u is parallel to the first eigenvector ofΛ (Mardia and Jupp, 1999;
Rancourt et al, 2000). The orthogonal vectorsu1 andu2 span the same space as the
first and second eigenvectors ofΛ (Rivest, 2001).

For the Dimroth-Watson distribution, the MLE of the concentration parameter,k,
uniquely satisfies the following (see de Granville (2008) for the derivation):

G(k) ≡
F ′ (k)
F (k)

= −
∑N

i=1

(

qT
i u

)2

N
. (6)

In the case of the girdle distribution, the MLE ofk uniquely satisfies:

Ḡ(k) ≡
F̄ ′ (k)
F̄ (k)

= −
∑N

i=1

[

(

qT
i u1

)2
+

(

qT
i u2

)2
]

N
. (7)
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For computational efficiency, we approximateG−1() andḠ−1() when solving fork.
This approximation is discussed in detail by de Granville (2008).

3.2 Modeling Hand Position

The position of the hand is represented as a 3D vector in Cartesian space. We choose
to model position using a Gaussian distribution:

p(x|µ,Σ) =
1

(2π)
d
2 |Σ |

1
2

e−
1
2(x−µ)T Σ−1(x−µ) . (8)

Here,x ∈ R
d denotes a point in ad dimensional Cartesian space, whileµ ∈ R

d

andΣ ∈ R
d×d correspond to the mean vector and covariance matrix of the Gaussian

distribution. For our purposes,d = 3, µ describes the mean position of the hand,
andΣ captures covariance in hand position.

3.3 Modeling Finger Posture

Humanoid robots such as Robonaut typically have many degrees of freedom (DOF)
available to perform manipulation tasks. For example, eachof Robonaut’s hands has
12 DOF: three for the thumb, index, and middle fingers; one forthe ring and pinkie
fingers; and one for the palm (Ambrose et al, 2000). Incorporating finger config-
urations into our clustering algorithm is a key step to constructing more complete
grasp affordance representations. One possible approach to this problem is to learn
clusters using the full dimensionality of the robot’s end-effector. However, hands
with a large number of joints can be difficult to model becausean increasingly large
number of training examples is needed to adequately sample aspace as more and
more dimensions are added to it.

One question is whether or not all of the available DOFs of thehand are even nec-
essary to accurately model the finger configurations used forgrasping. For example,
when executing a power grasp, the fingers tend to flex in unison. This means that
there is a strong correlation between the distal and proximal joints of each finger, as
well as a correlation across fingers. Santello et al (1998) and Ciocarlie et al (2007)
present an approach that takes advantage of such correlations through the notion of
aneigengrasp. The eigengrasps of a hand comprise a set of basis vectors in the joint
space of the hand. Linear combinations of a small number these eigengrasps can be
used to approximate the finger configurations used when grasping.

More formally, letp∈R
d be a column vector of joint angles describing the finger

configuration of a robot’s end-effector, andV∈R
d×d constitute a basis for the vector

space of whichp is a member. The columns ofV represent directions in the joint
space of the hand (the eigengrasps), and are ordered from those that capture the most
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variance in finger configuration to the smallest (i.e., from the largest corresponding
eigenvalue to the smallest). Linear combinations of the columns ofV can be used to
represent any possible pose for the fingers of the robot’s hand:

p =
d

∑
i=1

aivi = Va. (9)

Here,vi ∈ R
d is thei’th column ofV, a ∈ R

d is a column vector of coefficients, and
ai ∈ R is elementi of the vectora.

Because there may be a large number of joints in the robot’s hand, the configura-
tion of the fingers may be approximated by using a small number(K) of eigengrasps:

p =
K

∑
i=1

aivi = V̂â, (10)

whereV̂ =
[

v1 v2 ... vK
]

, andâ =
[

a1 a2 ... aK
]T

. Given a finger configurationp
and a subset of the eigengraspsV̂, a low dimensional representation ofp is obtained
by solving the system of linear equations in 10 forâ.

We compute the set of eigengrasps using samples of the joint angle vector as a
teleoperator grasps a set of objects. LetP ∈ R

d×N be the set of finger configurations
resulting from the human demonstration, whereN denotes the number of examples.
The eigengrasps are determined by computing the eigenvectors of P’s covariance
matrix (Hand et al, 2001).

3.4 Modeling Mixtures of Hand Postures

We model a grasp using a joint distribution defined over hand pose and the finger
posture. Specifically:

g(x,q, â|θ) = p(x|θp) f
(

q|θ f
)

p(â|θh) , (11)

and
ḡ
(

x,q, â|θ̄
)

= p(x|θp) f̄
(

q|θ f̄

)

p(â|θh) . (12)

Here,p(â|θh) is a multivariate Gaussian distribution overK dimensions. We assume
that hand position, hand orientation, and finger configuration are conditionally in-
dependent given a cluster.

An individual hand posture distribution can capture a single cluster of points,
but a set of grasps is typically fit best by multiple clusters.Furthermore, the use of
multiple clusters captures any covariance that may exist between the position and
orientation of the hand when grasping a particular object. We therefore employ a
mixture model-based approach. Here, the density function of the mixture,h(), is
defined as:
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h(x,q|Ψ) =
M

∑
j=1

w jc j(x,q|θ j), (13)

Ψ = (w1, ...,wM,θ1, ...,θM), (14)

and
M

∑
j=1

w j = 1, (15)

whereM denotes the number of component densities, andcj is one of the two density
functions describing hand pose (g() or ḡ()). Each element of the mixture represents
a single cluster of points, and is weighted bywj. Estimation of the parameters of
the individual clusters and the cluster weight variables isaccomplished using the
Expectation Maximization (EM) algorithm (Dempster et al, 1977).

For a given set of observations, it is uncleara priori how many or of what type
of cluster is appropriate. Our approach is to construct all possible mixtures that
have a maximum ofM clusters (we chooseM = 10) and to choose the mixture
that best matches the observations. For this purpose, we make use of the Integrated
Completed Likelihood (ICL) criterion (Biernacki et al, 2000) to evaluate and order
the different mixture models. Like the Bayesian Information Criterion, ICL prefers
models that explain the training data, but punishes more complex models. In ad-
dition, ICL punishes models in which clusters overlap one-another. These features
help to select models that describe a large number of grasps with a small number of
clusters.

Because the EM algorithm is a gradient ascent method in a likelihood space con-
taining many local maxima, each candidate mixture model wasfit a total ofΩ dif-
ferent times using the available training data (for our purposes,Ω = 80). For a given
mixture, this ensures that a variety of different initializations for the EM algorithm
are explored. The model that performs best on the first validation set according to
ICL is subsequently evaluated and compared with other mixtures using the second
validation set (again using ICL).

Due to our data collection procedure, some samples do not correspond to quality
grasps, and instead correspond to transitions between grasps. It is desirable that our
clustering algorithm be robust to this form of noise. However, when a large enough
number of mixture components is allowed, the EM algorithm tends to allocate one
or more clusters to this small number of “outlier” samples. We explicitly discard
these mixture models when an individual cluster covers a very small percentage
of the samples (indicated by a small magnitude cluster weight parameter,w j). In
particular, a model is discarded when:

maxj(w j)

minj(w j)
≥ λ , (16)

whereλ is a threshold. For our experiments, we chooseλ = 5 because it tends to
result in the selection of high quality, compact models. Of the models that have not
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been removed by this filter step, the one with the best ICL measure on the second
validation set is considered to be the best explanation of the observed data set.

3.5 Data Collection

The human teleoperator is able to control Robonaut’s many degrees of freedom with
a virtual reality-like helmet and a data glove equipped witha Polhemus sensor (Am-
brose et al, 2000). In addition to articulating Robonaut’s neck, the helmet provides
visual feedback from the environment to the teleoperator. The arms and hands of the
robot are commanded by tracking the movements of the human’swrists and fingers,
and performing a mapping from human motion to robot motion.

Each trial consists of the human teacher haptically exploring an object for ap-
proximately 15 minutes. The object is located in a fixed pose relative to the robot.
To maximize the number of quality samples collected, different grasping strategies
may be employed by the teleoperator based on the local geometry of the object. For
example, when grasping larger surfaces, a sliding motion inconjunction with a fixed
finger configuration is used. This ensures that the feasible positions and orientations
of the hand are collected in a timely manner. In contrast, theteleoperator repeat-
edly opens and closes the robot’s hand when grasping small surfaces. This strategy
forces hand pose to vary even though the hand may not be able toslide along the
local surface.

When compared with the data collected during direct observation of a human
performing grasping actions (de Granville, 2008; de Granville and Fagg, submit-
ted), the robot teleoperation experience tends to contain larger amounts of noise.
Robonaut’s arm motions are slower and less fluid under human control. Hence, the
hand posture samples contain a large number of cases in whichthe hand is not in
contact with the object. To alleviate this problem the transitions are removed manu-
ally by identifying the time intervals in which they occur.

3.6 Experimental Results

To demonstrate the effects of incorporating finger configuration into the grasp learn-
ing process, a number of experiments are performed. First, the eigengrasps are
learned based on experience that is generated by the human teleoperator. A num-
ber of different objects are used to ensure a reasonable sampling of the finger con-
figurations. Due to invalid sensor data, seven of the finger joints are ignored. This
means that the number of effective degrees of freedom in Robonaut’s hand has been
reduced from twelve to five. Of these remaining five degrees offreedom, approxi-
mately 98% of the variance can be explained by the first three principal components.
This, in conjunction with the ability to visualize the resulting low dimensional rep-
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(a) (b)

Fig. 9 The set of objects used in the Robonaut clustering experiments. (a) Handrail; (b) Hammer.

resentation of finger configuration, led to the use of only thefirst three eigengrasps
(i.e.,K = 3).

3.6.1 Handrail

Figs. 10(a,c,e) show the training examples for the handrailobject. Panel (a) shows
the 3D position of the hand throughout the course of the experiment, while panel
(b) provides a visualization of the corresponding hand orientations. Orientation of
the hand is represented as a single point on the surface of theunit sphere: imagine
that the object is located at the origin of the sphere; the point on the surface of the
sphere corresponds to the intersection of the palm with the sphere. Note that this
visualization technique aliases the set of rotations aboutthe line perpendicular to
the palm. In both panels (a) and (c), the major axis of the handrail is located along
the X axis, with the grasped end atX = −60 in the position space and atX = −1
in the orientation space. Finally, panel (c) shows the fingerconfigurations projected
into the eigengrasp space.

A total of five clusters were learned for the handrail object:two that correspond
to an overhand reach in which the handrail is approached fromthe top, two for
the underhand configuration, and one for the side approach. The learned position
clusters are shown in Fig. 10(b) as first standard deviation ellipsoids of the Gaus-
sian distribution. The orientation component of these clusters is represented using a
Dimroth-Watson distribution and is show in panel (d). The mean orientation is indi-
cated using the line segment emanating from the center of thesphere. Clusters 1 and
4 correspond to the top approach and show an elongation in theposition component
along theX axis. This elongation encodes the fact that the top approachresults in
grasps at many points along the length of the handrail. Likewise, clusters 2 and 5
correspond to the underhand approach (with the palm up) and are also elongated
along the handrail. Cluster 3 corresponds to the side approach to the handrail. The
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 The training examples and learned affordance model for the handrail. (a) The position of
the hand; (b) The position component of the learned affordancemodel; (c) The orientation of the
hand; (d) The orientation component of the learned affordance model; (e) The finger configuration
of the hand; (f) The finger configuration component of the learned affordance model.
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demonstrated variation in hand position was very small, andis reflected in the size
of the ellipsoid.

Panel (f) shows the learned eigengrasp clusters. Each corner of the bounding box
provides a visualization of the mapping that occurs betweenthe low dimensional
representation of finger configuration and each joint of the robot’s hand. Notice that
variation along the first eigengrasp corresponds to flexion of the index and middle
fingers, while variation along the second eigengrasp causesadduction and abduc-
tion of the thumb. However, variation along the third eigengrasp does not affect the
configuration of the fingers significantly, only affecting the flexion of the most dis-
tal joints of the index and middle fingers. Also, note that thering and pinkie fingers
remain in their extended configurations. (these are among the degrees of freedom
for which no data were recorded).

Turning to the learned eigengrasp clusters, notice that theellipsoids 1 and 2 are
in the same region of the finger configuration space even though they correspond
to grasp approaches from above and below the handrail. Because the same sliding
technique was employed by the teleoperator when demonstrating these grasps, the
hand had a similar shape for each approach. However, for cluster 2 there is more
variation in finger configuration, which is indicated by the elongation of ellipsoid
2. In contrast, the hand was continually opened and closed when the side approach
was used to grasp the handrail. This is evident by comparing the hand shapes that
correspond to points on opposite ends of ellipsoid 3’s majoraxis. On the right end
of the figure, the hand is in an open configuration, but on the left end the middle and
index fingers are flexed considerably. Also, notice that ellipsoid 3 is separated from
the other eigengrasp clusters, which highlights the different hand shapes used when
grasping the handrail from above and below versus from the side.

3.6.2 Hammer

The example grasps demonstrated by the human teleoperator and the learned grasp
affordance model for the hammer are shown in Fig. 11. In this case five clusters
were learned: cluster 1 represents grasps when approachingfrom above the ham-
mer’s head. The orientation of this cluster is represented using a girdle distribution,
as indicated by the circle on the surface of the sphere in panel (d). In our visualiza-
tion, the points along the circle correspond to the orientations of maximum density.
For the case of cluster 1, we would have expected the use of a Dimroth-Watson
distribution because there is little variation about the points corresponding to the
top approach. However, what variation there is falls along anarrow arc that is best
captured by the girdle.

The remaining clusters (2–5) capture grasps along the handle of the hammer
when approaching from the side. Girdle distributions were selected to model the
orientation of the hand for the side approach. While this is encouraging, the algo-
rithm learned four clusters instead of one. This is most likely due to the spatially
distinct hand positions used to grasp the hammer’s handle.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 The training examples and learned affordance model for the hammer. (a) The position of
the hand; (b) The position component of the learned affordancemodel; (c) The orientation of the
hand; (d) The orientation component of the learned affordance model; (e) The finger configuration
of the hand; (f) The finger configuration component of the learned affordance model.
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The finger configurations used by the teleoperator to grasp the hammer’s handle
were very different than those used to grasp the hammer’s head. When approaching
the object from the side, power grasps that maximized the contact surface area be-
tween the hand and the handle were more likely to be used. Conversely, precision
grasps that mainly used the finger tips were employed when grasping the head of
the hammer. These differences in hand shape can be seen in Fig. 11(f). Ellipsoid 1
represents the finger configurations used to grasp the hammerfrom above. The large
volume of the ellipsoid is due to the exploration strategy employed by the teleopera-
tor: the hand was continually opened and closed on this portion of the object. Hence,
there was a large variance in finger configuration. Also, notice that ellipsoids 2–5
are spatially distinct from eigengrasp cluster 1.

4 Discussion

In this chapter, we presented several steps toward robot learning of affordance rep-
resentations in support of grasping activities. Affordances provide a means of map-
ping sensory information, including vision, into a small set of grasping actions that
are possible with the object being viewed. Key to this representation is the fact that
it captures the specific interaction between the object and the agent. The ability
to learn these representations automatically will be important as we begin to field
robots in unstructured environments and expect them to perform a wide range of
manipulation tasks.

Given a sequence of tuples consisting of an image and an object pose, our algo-
rithm learns 3D appearance models for objects. In particular, the algorithm identifies
visual operators that are robust to spurious image featuressuch as object occlusions
and shadows. Visual operators are implemented as edgel constellations that describe
a specific geometrical relationship between a set of small edges. The 3D appearance
of an object is captured by compactly describing the set of viewing angles from
which each image feature is viewable. When a novel image is presented, the set of
observed features can then be used to estimate the most likely viewing angle of the
object. Ultimately, we will estimate the complete pose of the object, which, in turn,
can be used for planning and executing grasping actions.

In more recent work, we have begun to make use of scale-invariant feature trans-
form (SIFT) image features in place of edgels (Lowe, 2004). This method is showing
promise in addressing image scale issues, improving the computational efficiency
of identifying features, and increasing the accuracy of theviewing angle estimates.
One of the challenges in using such an approach is that of pruning the set of primi-
tive features that arise from such a large database of imagesthat exhibit very similar
appearance. In addition, we are now making use of a particle-based approach for
describing the density functions. This approach is helpingto address the overfitting
issues that can arise with mixture-type models and allows usto capture irregular
shapes in the density functions.
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The second component of our algorithm uses tuples of object pose and hand pos-
ture to construct a small menu of grasps that are possible with the object. These
compact representations are constructed from many examplegrasps made by clus-
tering the hand posture examples. This property enables theuse of the affordance as
a way to access “primitives” in higher-level activities, including planning, learning,
and the recognition of motor actions by other agents (Fagg etal, 2004; Brock et al,
2005). In particular, the hand posture clusters that have been learned map directly
onto resolved-rate controllers that can bring a robot hand to a specific position and
orientation relative to the object. Note that this control step assumes that haptic ex-
ploration methods are available to refine the grasps once thehand has approached
the object (Coelho and Grupen 1997; Platt et al., 2002, 2003;Platt 2006; Wang et
al., 2007).

Our approach to date has assumed an intermediate representation between vision
and grasp that is rooted in the individual objects. However,we would ultimately
like for this representation to be able to generalize acrossobjects. This step will be
important as the robotic agent is faced with objects with which it has little to no prior
experience. Our approach is to identify canonical grasps that routinely co-occur with
particular visual features. When two or more objects have components that share a
common shape, and hence common visual features, it is likelythat similar hand
postures will be used to grasp these components.

The affordance representation captures the syntax of grasping (i.e., what grasps
are possible for a given object), and does not take into account the semantics of
grasping (how an object is to be used in the larger context of atask). This distinc-
tion, which is drawn by Gibson, is a critical one for a learning agent. When a new
task is presented, the syntax of interacting with a specific object can be readily ac-
cessed and used. The learning agent is then left with the problem of selecting from a
small menu of possible grasping actions to solve the new task. This abstraction can
have important implications for the agent quickly learningto perform in these novel
situations.
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