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T
he development of a direct, bidirectional interface between the human ner-
vous system and a machine would radically alter the way we interact with
computers and each other. The peripheral nervous system offers a number
of advantages over the brain as the location for certain types of neural in-
terfaces. These advantages include ease of accessibility and direct corre-

spondence between external sensory stimuli and nerve activity.
A number of interfacing strategies have been proposed for connecting periph-

eral nerves to computers. One such strategy utilizes the limited ability of periph-
eral nerves to regenerate following transection and anastomosis. These
“regeneration” interfaces [1] consist of a perforated substrate resembling a sieve
with electrodes placed around some or all of the holes. The interface is placed be-
tween the ends of a cut peripheral nerve and the nerve is allowed to regenerate.
Once nerve fibers have regrown through the holes of the interface the electrodes
can be used to record and stimulate the fibers. Unfortunately, regenerative neural
interfaces require that a nerve be transected to accomplish the interface. Regenera-
tive interfaces may provide a good solution in cases where limb amputation has
occurred. However, since one of the goals of this research is to create an interface
that can eventually be used in both healthy and injured persons, an interfacing
methodology that does not rely on nerve transection had to be developed. Other
methods such as suction electrodes or patch clamp recording techniques can ob-
tain single-fiber recordings with excellent signal-to-noise ratio (SNR) but are too
bulky to be used on a large number of fibers simultaneously.

A compact and less-invasive alternative to these methods are nerve cuff elec-
trodes [2]-[4]. The “cuff” consists of a short, flexible tube that has been slit longi-
tudinally to allow it to be opened and placed around a nerve. Arranged around the
inner circumference of the cuff are electrodes that detect the electric field pro-
duced by sources within the lumen. Cuff electrodes have a long history of use in
the peripheral nervous system for both recording and stimulation [3], [5]-[10]. A
self-sizing spiral cuff electrode has recently been used in humans for implement-
ing the stimulation interface of a prototype visual prosthesis [4]. When fabricated
from medical-grade silicone, elastomer cuff electrodes can provide a mechani-
cally flexible and biologically well-tolerated platform for deploying a record-
ing/stimulation electrode array.

Multiple electrodes can be used to obtain different versions of the evoked, bulk
electrical activity. That is, each electrode would see the signals originating from
sources closest to it as being larger in amplitude than those further away. Hence,
the signal detected by one electrode would consist of the same sources mixed to-
gether in different amounts than the signal detected by another electrode in a dif-
ferent position. If differential pairs of electrodes are used, then signals closest to
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the negative electrode would appear inverted while those near
the positive electrode would not be inverted. To be useful as a
neural interface, complex electrical activity recorded from a
nerve or other neural source must be interpreted. In the work
reported here, a cuff electrode containing multiple pairs of dif-
ferential detectors was used to explore the feasibility of using
measured neural signals to image overall axonal activity in in-
tact peripheral nerve.

MINIS: Minimally Invasive Neural Interfacing System
MINIS consists of four parts: an in vivo multielectrode nerve
cuff placed around an intact ensheathed whole nerve, wavelet
based signal processing, information-theoretic data summari-
zation, and a cascade correlation neural network. The system
was validated using the visual system of Limulus polyphemus
(common horseshoe crab). In our application the implantation
of the cuff electrode requires surgery to expose the nerve but
does not require removal of the sheath and surrounding con-
nective tissue, hence the term “minimally invasive.”

Limulus
Limulus is a good experimental system to demonstrate the ef-
ficacy of the MINIS hardware/software as it has been the sub-
ject of intense study for over half a century. The body of work
pertaining to Limulus, and specifically the Limulus visual sys-
tem, is vast. Additionally, the lateral eye and lateral eye optic
nerve are easily accessible for surgeries and specimens are
hardy and easy to maintain prior to use. Limulus has a highly
developed compound eye which, as in mammals, uses lateral
inhibition to perform edge enhancement [11]. One visual unit
(ommatidium) consists of one lens, several photoreceptors,
and a neuron whose axon connects the visual unit to the brain
and to neighboring visual units (Figure 1).

A pattern of light incident on the surface of the eye is repre-
sented by the rate/timing of firing of the visual units illumi-
nated by the given portion of the light/dark pattern. The
coding of the spatial image into the neural representation is
defined by a series of equations originally elucidated by
Hartline [12] and greatly expanded upon by others [13]-[15].
Thus, a visual scene is coded by the parallel activity of all the
visual units in the lateral eye. The mapping of the visual units
to the fibers of the optic nerve is stereotypical. Axons from
horizontal strips of units contribute to the bundles that form
the optic nerve. The packaging of the bundles in the optic
nerve replicates the spatial relationship between the strips
(five to seven on average) of visual units on the eye (Figure 2).
The placement of the fibers in the bundles also preserves the
position of the unit in the horizontal strip [16].

Thus, the Limulus visual system is well characterized both
in terms of the anatomy (mapping of visual units to fibers) and
its coding properties, making it an ideal testbed for MINIS.

Stimuli
Stimuli (Table 1) consisted of 11 light patterns and one control
pattern (no illumination) delivered to the surface of the lateral
eye by eight fiber-optic cables. One end of each fiber was con-
nected to an LED that was driven by one line of an 8-bit digital
port. The other end of the fiber was held in place perpendicular to
the surface of the eye by a hood constructed of opaqued beeswax.
The peak emission wavelength of the LEDs was 520-525 nm and
was matched to the peak spectral response of the photoreceptors
in the lateral eye [17]. Illumination at the surface of the eye by
one optic fiber produces a vigorous response in a small group of
visual units that in turn produce focal activity in the optic nerve.

Stimulus patterns were presented in a set that began with
pattern 1 and ended with pattern 12 (Table 1). Each set took
approximately 4 minutes to complete and was presented 100
times (6.7 hours per experiment). For data processing pur-
poses, all the presentations of a given stimulus pattern are re-
ferred to as a trial. Thus, a trial consists of 100 presentations of
a given pattern and there are 12 trials per experiment, one for
each pattern. Individual stimulus patterns were presented for
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Fig. 1. Diagram of the receptor surface of the lateral eye. L =
cylindrical lens, A = aperture, R = retinular cells, RH =
rhabdomeres, E = neuron cell body, D = dendrite, AX = axon.
Light enters from the top of the illustration, travels down the
lens, and strikes the photosensitive cells surrounding the den-
drite. Inset 1 shows the radial symmetry of the photoreceptor
complex for one visual unit (lens removed). Inset 2 is a
closeup of the region of the eccentric cell. One retinular cell
on each photoreceptor complex has been removed to al-
low visualization of the eccentric cell body. Pigment-produc-
ing cells and lateral connections are not shown.
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Fig. 2. Illustration showing the general mapping scheme of
horizontal strips of visual units to their corresponding fibers
located in the optic nerve. The shading present on the left
half of the lateral eye and right half of the optic nerve is to
indicate that the anterior/posterior mapping of units is also
preserved. The visual unit density (units/mm2) is greatest
along the center horizontal strips (3 and 4) and decreases
at the top and bottom (1 and 5) of the eye.



1.3 s followed by an interstimulus interval of 18.7 s. Each pre-
sentation generated four data records each comprising 32,768
sample points. That is, there was one record for each of the
four differential electrode pairs in the cuff.

Signal Acquisition
Our cuff electrode design (Figure 3) was based on an elec-
trode layout consisting of four differential electrodes symmet-
rically arranged around the inner circumference of a short
piece of silicone tubing. The active areas of the positive and
negative poles of the differential pairs were located approxi-
mately opposite to one another to insure that they were re-
cording through a large cross-section of the nerve. There was
enough deviation in positioning of the electrodes to insure that
the zero point in the centers of the differential pairs did not co-
incide. Had this been the case it would have created a record-
ing “dead spot” in the center of the nerve.

The signals detected by the cuff electrodes were buffered
by a unity gain headstage (Neuralynx EIB-27, impedance 1013

Ω) then passed to a differential amplifier (Neuralynx Lynx-8)
with a gain of 50,000. Analog bandpass filtering was applied
from 10 Hz to 9 kHz to eliminate unwanted dc components
and to prevent aliasing when the signals were digitized. The
four channels of data were acquired into the computer using a
12-bit A/D card (National Instruments AT-MIO-16F5) at a
sampling rate of 25 kHz per channel. Data acquisition began
approximately 150 ms prior to the presentation of the stimulus
and continued for 1.31 s yielding 131K (32K × 4) points of
data per presentation.

Signal Processing
Signals were processed offline using the discrete wavelet
transform (DWT) [18]. The DWT has the ability to utilize a
number of different kernels (basis functions) that enable
better matching of the filter with the features of the signal to
be extracted. Several possible choices for the basis functions
resemble action potentials (Figure 4) and produce better re-
sults than other methods for denoising neural data.

Processing the 32K data records with the DWT returns 15
levels of coefficients. The lowest levels contain coefficients
that describe the dc components, 60-Hz noise, etc. The high-
est levels contain coefficients for the high-frequency noise
portion of the signal. By throwing out (zeroing) coefficients
and then reconstructing the signal, various types of filtering
operations can be performed. We chose to reconstruct our sig-
nal using a Daubechies 4 wavelet basis and the coefficients
from DWT level 10 resulting in a signal that is band limited to
approximately 300-900 Hz. This band encompasses the fre-
quency of the primary lobe of the action potential, which is
approximately 500-600 Hz based on spectral analysis of the
unprocessed data.

The SNR of MINIS was determined using the method illus-
trated in Figure 5. The beginning of every record contains ap-
proximately 150 ms of noise. This period is the latency between
when the stimulus is presented to the Limulus lateral eye and
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The trained network for a given

specimen was very specific to the

specimen-interface-nerve configuration

on which the data used to build the

training/testing sets originated.

TABLE 1. Stimulus patterns. The outline of the lateral eye is
shown in black with the stimulus areas superimposed.
The areas are numbered from 2 to 9 to correspond to the
eight single location stimulus patterns. Pattern 1 was the
control (no stimulus). In patterns 10, 11, and 12 two
locations were illuminated simultaneously. The 12
patterns are numbered top to bottom, left to right
beginning with 1. Patterns for both the left and right eyes
are shown in each cell of the table; however, only one
eye was used in any given experiment. Only the first and
last three patterns of the 12 are shown for space
considerations.
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when the resulting activity is observed
in the recording of the optic nerve ac-
tivity. The data contained within this la-
tency period (Figure 5) is the baseline
noise measurement used in the SNR
calculation for the given record. Fol-
lowing the latency period there is ap-
proximately 250 ms of large amplitude
transient response (Figure 5) before
sensory adaptation reduces the ampli-
tude of the activity to the steady-state
level seen in the remainder of the re-
cord. The activity during the transient
response period is used for the “signal”
part of the SNR measurement since it
can be easily identified in both filtered
and unfiltered data. The peak-to-peak
voltage for both the latency and the
transient response period of the record
being considered is found using (1):

Vpp = +max min (1)

where Vpp is the peak-to-peak voltage
within the region of interest (ROI) of
the signal, |max| is the absolute value
of the maximum voltage measured in
the ROI, and|min| is the absolute value
of the minimum voltage measured in
the ROI. Vpp was converted to root
mean square (RMS) prior to comput-
ing the SNR (2) for the given data:

SNR vrms

vrms

= T

L
(2)

where Tvrms is the RMS voltage measured during the transient
response period andLvrms is the RMS voltage measured during
the latency period preceding the transient response.

The improvement in the SNR following wavelet-based fil-
tering is found using (3):

I
B

A
SNR log= 20 * (3)

where I SNR is the improvement in decibels of the SNR follow-
ing signal processing, B is the SNR before processing, and A
is the SNR after processing.

Information-Theoretic Data Summarization
Initial data analysis utilized amplitude histograms built from the
signal reconstructed from wavelet level 10. Amplitude histo-
grams were converted to probability densities (PDs) using (4):

P
n

N
i

i= (4)

where Pi is the approximate probability density for the given
voltage bin in the amplitude histogram, ni is the number of
counts in the given voltage bin, and N is the total number of
counts in the histogram.
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Fig. 4. Members from both the Daubechies and Coiflet
wavelet families. All of these wavelets have characteristics
in common with an action potential: sharp voltage transi-
tions and a large positive peak in the center followed by a
smaller negative peak. However, of these six choices the
Daubechies 4 most resembles an action potential because
of the relative sizes of its major peaks. The D4 wavelet basis
was the one used in this research for denoising recorded
neural data.
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Fig. 3. Our four-pair differential cuff electrode was formed from 0.076-mm diameter
silver wire and 0.356-mm thick silicone sheeting. The wires that formed the elec-
trodes passed through slits in the silicone sheeting and traversed the top of the
sheet at approximately a 45° angle. The electrodes were adhered to the sheet and
insulated from the extracellular environment by a thin layer of silicone elastomer
(not shown). The active area (zone) of an electrode was the portion that was in di-
rect electrical contact with the nerve sheath. To form the active zones indicated in
the inset above, the elastomer was selectively removed using microdissecting scis-
sors and forceps. The sheet was then rolled to form a tube (electrodes on the in-
side) that was then placed around the intact nerve.



The PD of a discretely sampled distribution is an approxi-
mation of the area under the probability density function. By
converting the amplitude distribution to the PD, informa-
tion-theoretic measures can be used to further analyze the data.

Entropy (5) is a measure of the complexity of a given
system [19]. In information theory, entropy relates to the
minimum number of bits required to code a data set of a
given complexity. The more complex the data the more in-
formation it contains and the more bits that are needed for
encoding. We computed the entropy for the PD of our data
set using (5):

H X p x p x
x

N

( ) ( ) log ( )= −
=
∑

1
2

(5)

where H X( ) is the entropy of the random variable x expressed
in bits, N is the number of intervals (bins), and p x( ) is the
probability density for the given interval.

The Kullback-Leibler distance [(6) and (7)] is used to deter-
mine how easily two distributions can be distinguished from
one another. The formula is similar to that of (5) except the log2

of the ratio of the distributions being compared is used:

D p q p x
p x

q xx

N

( ) ( ) log
( )

( )
=

=
∑

1
2

(6)

D q p q x
q x

p xx

N

( ) ( ) log
( )

( )
=

=
∑

1
2

(7)

where D p q( ) and D q p( ) are the
Kullback-Leibler distances between
probability densities p and q, N is the
number of intervals (bins), and p x( )
and q x( ) are the probability densities
on identical intervals for the two distri-
butions being compared.

It is important to note that the
Kullback-Leibler (K-L) distance is not
symmetrical. That is, the distance from
p to q is not equal to the distance from q
to p. To compensate for the asymmetry
the J-Divergence is computed (8) and
used for comparison. The J-Divergence
is computed by taking the mean of the
K-L distances from p to q and from q to
p for the two distributions:

J
D p q D q p

p q( , )

( ) ( )
=

+
2

(8)

where J p q( , ) is the J-Divergence for
the distributions p and q, D p q( ) is the
K-L distance from p to q, and D q p( )
is the K-L distance from q to p.

H X( ) provides a compact descriptor
of the quantity of activity detected by a
given electrode pair. Since the wave-
let-based processing step band-limited
the signal, H X( ) described the quantity
of activity occurring at a given time and
within the given range of frequencies.
Little or no activity resulted in a narrow
distribution with a low H X( ) (Figure 6,
left). Maximal activity resulted in a
broad distribution with a high H X( )
(Figure 6, right). J p q( , ) is useful as an
early indicator of how well the neural
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Fig. 6. Example demonstrating the relationship between the probability density
H X( ) and J p q( , ) for band-limited neural data from a control recording (left) and
two different stimulation patterns (center and right). The data shown is for a single
electrode pair. The H X( ) measure for the given distribution is shown in the top right
corner of each plot. The J p q( , ) for the center and left densities (compared to the
control) were 0.36 bits and 2.03 bits, respectively.
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Fig. 5. Measuring the signal-to-noise ratio before and after signal processing. The
top plot shows measurements on the signal before filtering, and the bottom plot
shows measurements on the same waveform following wavelet-based filtering. The
stimulus is presented to the lateral eye and recording begins at time 0 (stimulus
start). Approximately 150 ms later the response is observed in the recording (re-
sponse start). The maximum and minimum values used in the SNR calculations for
this record are denoted by labeled dotted lines. The measurements for the latency
and transient response periods are shown beneath the given segment.



network would perform on its task. A low value for J p q( , ) for a
given combination of patterns often indicated difficulty learning
to distinguish those patterns from one another. Higher values in-
dicated greater probability of success at learning to distinguish
individual patterns (Figure 6).

J p q( , ) was also used to evaluate the overall quality of the
recordings. Low values for J p q( , ), when comparing record-
ings for stimulated activity to controls, indicate data that are
increasingly difficult to distinguish from background noise. In
such cases the neural net will produce less accurate results or
completely fail at the recognition task.

The difference in the mean J-Divergence (DMJD) pro-
vided an accurate predictor of the performance of the neu-
ral network during pattern classification. The DMJD was
computed by first finding the J p q( , ) between the probabil-
ity density of the data p x( ) produced by each stimulus pat-
tern and that of the control q x( ). Thus, one cycle of 12
patterns produced 44 values for J p q( , ) (11 patterns com-
pared to the control * 4 channels of data). Then the absolute
value of the difference between all the nonredundant com-
binations of the 44 values was found, yielding four tables.

The mean of corresponding cells in the four tables was
computed, yielding a single table (see Table 4). The rows
and columns of the DMJD matrix correspond to those of the
score matrices (see Table 3).
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TABLE 2. Results of the SNR calculations for all specimens.
The results are based on the analysis of record 4,
presentation 1, trial 8 of the first experiment for each
specimen.

Specimen Before After ∆dB

1 1.84 2.75 3.48

2 2.23 2.5 1.00

3 1.99 3.28 4.31

4 2.16 4.37 6.05

5 1.30 2.92 7.06

Mean 1.90 3.15 4.38
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Fig. 7. Training the cascade correlation neural network. The top line on the plot is the mean square error (MSE) for the net-
work during forward operation with the validation set. The bottom line is the MSE for the network during training using the
training set. Since the network learns only the training set, the validation set provides an independent measure of the net-
work’s ability to generalize what it is learning to other data. The point labeled “minimum error” represents the optimum train-
ing point where the network will best be able to abstract what it has learned to the test data. Continuing training past this
point results in an overfitted network that will perform better on the training data but progressively worse on the validation
or testing data as training proceeds. This can be seen on the plot as divergence in the training and validation error curves
as the network error for the training set falls and the validation set error rises.

When the network becomes overfitted it

performs increasingly well at identifying

the activity that corresponds to the data

on which it was trained while becoming

worse with novel data.



Cascade Correlation Neural Network
The Stuttgart Neural Network Simulator (SNNS) [21] was
used to evaluate a number of network types including time de-
lay [20][21] and radial basis function neural networks [21],
[22]. Ultimately, a back-propagation neural network [23] was
constructed using the cascade correlation algorithm [24] and
trained using the quickprop [25] learning rule (9). The pri-
mary selection criteria were accuracy of the results, speed,
and ease of use:

∆ ∆( )
( )

( ) ( )
( )t w

S t

S t S t
t wij ij+ = +

− +
1

1

1
(9)

where wij is the weight between units I and j, ∆( )t +1 is the ac-
tual weight change, S t( )+1 is the partial derivative of the error
function wij , and S t( ) is the previous partial derivative.

Cascade correlation (CC) is used to build and train optimal
multilayer networks. CC begins with a minimal network con-
sisting of an input and output layer. By creating a hidden layer
and adding new units, it minimizes the overall error of the net-
work until it falls below a predetermined value. CC is often re-
ferred to as a meta-algorithm rather than a learning rule since it
directs the addition of hidden units and monitors the learning
process but calls a preselected learning algorithm to actually
train the net. (For a complete discussion of the mathematical
background the reader is directed to the seminal paper by Scott
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Fig. 8. Twelve frames of animation showing one sequence of patterns presented to the lateral eye. The patterns/frames are
numbered left to right, top to bottom. Thus, pattern 1 (no stimulus) appears in the top left corner of the picture while pattern
12 appears in the bottom right corner. The portion of each frame marked “ACTUAL” indicates the stimulation pattern pre-
sented to the lateral eye. The “SYSTEM OUTPUT” section indicates what MINIS said the stimulation pattern was. The intensity
of the point in the system output section indicates the relative certainty of the system that the given point was illuminated
by the stimulus.



Fahlman [24]. The implementation and operation of the cas-
cade correlation algorithm in SNNS is discussed in detail in the
freely available SNNS users guide [21].)

The final network topology for this application had four in-
puts and eight outputs. One input pattern for the ANN con-
sisted of four H X( ) values, one for each channel of data
acquired from each of four electrode pairs in the cuff. The size
of the hidden layer was solely determined by the CC algo-
rithm and ranged from five to 18 units. Each of the eight out-
puts corresponded to one of the eight stimulus locations
(Table 1). All the layers of the network were fully connected.

To minimize the chance of overtfitting the network, each cy-
cle of training was followed by a cycle of testing with an inde-
pendent data set (termed the validation set). The network was
saved prior to each new cycle of training. During initial training
the error between the training and validation sets decreased. As
training progressed the error between the set would begin to in-
crease again (Figure 7). The network configuration prior to the
point of increase is the configuration that was used.

Scoring
There was one output from the neural network for each of the
11 stimulated conditions. The output of the neural network for

each stimulus presentation was scored for accuracy using the
following method. First, a threshold value was selected below
which a given output was considered zero. This was necessary
since the double precision floating point output of the network
was rarely 0, but zeros on the outputs were needed to indicate
pattern 1 (no stimulus). If there were outputs that were nonzero
following thresholding, the outputs were evaluated by match-
ing the highest valued 1 (for single location stimuli) or 2 (dual
location stimuli) outputs to the actual stimulus location(s). The
scores reported in Table 3 (top and bottom) are in percentages
of the total presentations evaluated for the given trial.

Results
Five adult specimens of Limulus polyphemus were used in this
study. An average of three studies per animal were performed.
Data exhibiting low SNR were excluded from analysis. The
results discussed in this article are based on analysis of data
originating from seven experiments conducted with speci-
mens 3, 4, and 5.

The output of the neural network simulator maps to an
image of the stimulus pattern. Cinematic images (Figure
8) could be generated for each experiment to provide a
qualitative measure of performance. However, analysis of
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TABLE 3. (Top) Cumulative scores from seven experiments (329 presentations of each pattern) using neural data. (Bottom)
Cumulative scores from experiments using Poisson noise (500 presentations per pattern).

1 2 3 4 5 6 7 8 9 10 11 12 DK

1 100 0 0 0 0 0 0 0 0 — — — 0

2 0 25 12 0 33 0 13 1 17 — — — 0

3 0 13 0 0 33 1 15 2 36 — — — 0

4 0 27 4 32 3 11 18 3 4 — — — 0

5 0 2 0 0 56 0 2 0 38 — — — 2

6 0 23 0 7 1 38 7 24 0 — — — 0

7 0 12 1 0 31 2 23 0 32 — — — 0

8 0 12 0 1 0 24 1 62 0 — — — 0

9 0 0 0 0 9 0 0 0 91 — — — 0

10 — — — — — — — — — 47 5 1 46

11 — — — — — — — — — 1 97 0 3

12 — — — — — — — — — 8 0 55 36

1 2 3 4 5 6 7 8 9 10 11 12 DK

1 18 6 8 8 10 13 17 8 12 — — — 0

2 16 12 5 8 15 8 14 10 11 — — — 0

3 17 9 6 6 11 12 18 9 12 — — — 0

4 18 12 12 4 13 10 15 10 6 — — — 0

5 18 10 10 6 11 9 17 8 10 — — — 0

6 26 10 11 4 9 11 15 6 8 — — — 0

7 22 8 10 6 11 11 15 9 8 — — — 0

8 22 10 9 4 6 12 20 9 8 — — — 0

9 24 8 11 5 11 9 15 10 8 — — — 0

10 — — — — — — — — — 8 10 10 72

11 — — — — — — — — — 7 7 17 69

12 — — — — — — — — — 9 7 15 69



the cumulative scores (Table 3, top) proved to be more
useful in determining the overall performance of the sys-
tem at its task.

Each experiment generated a score matrix organized as
shown in Table 3 (top and bottom). The leftmost column in
each table contains the number of the desired output pattern

(i.e., what the system’s answer should have been). The top-
most row in each table contains the pattern number for the ac-
tual output from the system (i.e., the system’s answer). For
example, looking at row 2 in the top table we would read
“When stimulus pattern 2 was presented, the system said pat-
tern one for 0% of the total presentations, pattern two for 25%

of the total, etc.” The highlighted diag-
onal delineates the position in which
correct classifications are located, and
numbers on either side of the diagonal
are misclassifications. The last col-
umn labeled “DK” indicates the per-
centage of the data that could not be
classified as belonging to one of the 12
patterns. It is important to note that the
results are arranged in rows, the values
in a given row sum to 100%, and the
table is not row-column invertible.
The score matrices from the seven ex-
periments were averaged to produce
the values shown in Table 3 (top).

To determine the portion of the sys-
tem’s responses that might be attribut-
able to random processes, data sets
were constructed from Poisson dis-
tributed noise and subjected to identi-
cal processing as the data collected
from the in vivo preparations. The re-
sult of these experiments (Table 3, bot-
tom) was a numerical value that served
as the decision point for significance
(termed the criterion point) of the neu-
ral data scores (Table 3, top).

Composite scores from four experi-
ments (3,360 total presentations)
shown in Table 3 (top) indicate high ac-
curacy at identifying stimulus patterns
1, 8, 9, 11, and 12. When compared to
the criterion levels given in Table 3
(bottom) for the corresponding table
locations, patterns 10, 5, 6, 4, and 2
(listed in decreasing order) were also
significant but not as remarkable as the
previously mentioned patterns. Pattern
3 was never correctly identified during
any of the seven experiments, a state
which is itself unlikely. Referring to
Table 3 (bottom), for pattern 3 the num-
ber of correct responses produced by
chance was six, giving a probability
score of 0.012 (6/500). Thus for 329
presentations of pattern 3, we would
expect a score of 4 by random chance.
The results from Table 3 (top) that were
greater than the corresponding loca-
tions in Table 3 (bottom) were plotted
as a stacked bar chart [Figure 9(a)] to
permit comparison of both the correct
and incorrect responses from the sys-
tem. The results given in Table 3 (bot-
tom) are shown as a stacked bar chart
below [Figure 9(b)] the experiment
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scores to permit direct comparison of the system performance
on both random and neural data.

Training the neural network with data from one experi-
ment then testing it with data from the same specimen but a
different experiment results in high accuracy at the stimu-
lus/no-stimulus recognition task (Pattern 1) and greatly de-
creased accuracy with the other patterns. Training the
network with data from one specimen and testing it with data
from a different specimen was also attempted with unsatis-
factory results. Therefore, the trained network for a given
specimen was very specific to the specimen-interface-nerve
configuration on which the data used to build the train-
ing/testing sets originated.

The DMJD was used to flag combinations of neural data
whose probability distributions (and thus their entropy val-
ues) may not differ enough to allow successful classification
by the trained neural network. The mean value of all the cells
in the table (generally around 0.32 bits) for a given experi-
ment was used as the a priori decision value. A value in a given
cell that was below the decision value was considered an indi-
cator of a potential misclassification. After the network was
trained and the score matrices (Table 3, top) constructed, the
predictions made using the DMJD results (Table 4) were com-
pared to the system scores for accuracy.

The accuracy of the DMJD as a predictor of neural data
misclassification at various decision values was assessed
(Figure 10). Values for the DMJD that were below the deci-
sion value indicated a potential problem with the neural net
partitioning the data for the two patterns. Decision values
from 0.1 to 0.9 bits were evaluated along with the median
(0.28 bits) and the mean (0.32 bits). It was determined from
this analysis that a value of approximately 0.4 bits would have
produced the highest accuracy (approximately 87%) while the
efficacy of the mean and median were approximately 82%.

Discussion
H X( ) provides a single measure on which the computer can
reliably distinguish between the stimulus/no-stimulus condi-
tions because the H X( ) values for each condition cluster in
distinct domains (Figure 11) in the input space of the neural
network. The two domains are well separated because the ex-
periments are conducted in the dark and there is a striking dif-
ference in the nerve activity between the stimulated and
unstimulated conditions. While useful as a basic test of sys-
tem function, in a real-world application it is unlikely that
there will be a strictly unstimulated condition. Thus, how the
system performs with the patterns containing stimulation
(patterns 2-12) is of particular importance.
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TABLE 4. Composite DMJD result matrix from one experiment. The rows and columns are organized as in Table 3 with two
exceptions. First, there are no numbers on the diagonal since the J p q( , ) of a pattern compared to itself is 0. Second,
since the J p q( , ) is the mean of D p q( || ) and D q p( || ) the DMJD values are symmetric about the diagonal; thus, the table is
row-column invertible.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.40 0.35 0.53 0.32 0.59 0.37 0.70 0.27

2 0.40 0.04 0.13 0.08 0.19 0.03 0.31 0.13

3 0.35 0.04 0.17 0.03 0.24 0.02 0.35 0.08

4 0.53 0.13 0.17 0.21 0.06 0.16 0.18 0.26

5 0.32 0.08 0.03 0.21 0.27 0.05 0.38 0.05

6 0.59 0.19 0.24 0.06 0.27 0.22 0.11 0.32

7 0.37 0.03 0.02 0.16 0.05 0.22 0.33 0.10

8 0.70 0.31 0.35 0.18 0.38 0.11 0.33 0.43

9 0.27 0.13 0.08 0.26 0.05 0.32 0.10 0.43

10 0.33 0.13

11 0.33 0.46

12 0.13 0.46

Though it’s doubtful a given source

could ever be at the exact centers of

all four pairs in a hand-made cuff, being

near the centers impacts the SNR

and thus the accuracy for that pattern.



The input space for the neural net
has four dimensions, one for each dif-
ferential electrode pair. Within the
cluster formed by the H X( ) data for
the stimulated condition (Figure 11,
domain 2) there are subdomains that
contain the data for identical patterns
(Figure 11, trials 4,6,8). One of the
tasks of the neural net is to learn to
partition this multidimensional space
in such a way as to identify the differ-
ent domains/subdomains and map
them to desired output states.

However, partitioning is not the
only task the network must be able to
perform. In order to correctly classify
novel data the network must be able to
generalize about its inputs. Thus, it is
critical to halt the training process be-
fore the network becomes overfitted.
The cascade correlation algorithm
trains the network and constructs the
hidden layer; however, it is not simply
a matter of the network weights be-
coming suboptimal with overtraining
but also the size of the hidden layer
growing too large. When the network
becomes overfitted it performs in-
creasingly well at identifying the ac-
tivity that corresponds to the data on
which it was trained (i.e., the training
set) while becoming worse with novel
data (Figure 7).

Several correctable problems
have been identified that degrade
system performance both when
training/testing using data from the
same specimen, same experiment
(Table 3 and Figure 9) and training
with data from one experiment and
testing with data from a different ex-
periment (same specimen).

First, it is difficult to reliably stabi-
lize the cuff electrode in an acute re-
cording situation and specimen
movement produces artifacts that de-
crease the system’s accuracy. Research
indicates that when used in vivo in a
chronic recording situation, connective
tissue will encapsulate the cuff and me-
chanically stabilize it [8], thus prevent-
ing shifting of the electrode position
due to movement of the subject. The
impedance of an implanted cuff will
sharply increase during the first few
days following implantation due to
trapped air and edema between the
nerve and electrodes. This results in a
decrease in the SNR and a subsequent
decrease in system accuracy. In a
chronic implantation situation, trapped
air is resorbed and the edema resolves
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as the damage heals. Studies conducted in cats by Loeb and
Peck [8] demonstrate that around 20 days postoperative the im-
pedance has decreased and stabilized at a value approximately
double its measured preimplantation value. The doubling of the
impedance is primarily due to the ingrowth of connective tissue
between the nerve and the electrodes but should pose little
problem with recordings.

Second, the H X( ) values used in this implementation
are derived from the activity occurring in a narrow fre-
quency band (wavelet level 10). This provides a coarse
measure of activity that permits demonstration of this sig-
nal processing methodology using very simple stimuli.
However, more levels must be utilized to improve accu-
racy on the simple stimuli and to allow the system to dis-
tinguish between the activity arising due to more complex
stimulation patterns. Additionally, the information con-
tained in each level might be better utilized by thres-
holding/windowing the coefficients into separate classes
and then computing H X( ) for each class. Each group of
H X( ) values is equivalent to a set of coordinates that lo-
cates a point in the neural net’s multidimensional input
space. With more dimensions in the input space of the neu-
ral net there would be a greater chance that the data gener-
ated by complex stimulus patterns would cluster.

Third, the electrode cuffs fabricated for this research were
limited to a maximum electrode density of four pairs. This was
the largest number of electrodes that could reliably be placed
on a hand-made cuff. A cuff electrode constructed using
microfabrication techniques on a flexible thin-film substrate
could achieve much higher electrode density. This means more
views of the nerve activity could be generated resulting in im-
proved clustering of the data in the neural network’s input space
and better accuracy. Additionally, there is the possibility of in-
tegrating the buffer amplifier stage and the electrodes on the
thin film to further improve the SNR.

Finally, it is not necessary to reconstruct the signal follow-
ing wavelet decomposition. The entropy can be computed on
the wavelet coefficients directly, thus saving several moder-
ately expensive computing steps. This performance tweak
would improve system efficiency allowing more wavelet lev-
els to be processed in real time, thus improving accuracy.

The system’s misclassifications on patterns 2-12 proved
to be instructive. Referring to Figure 9 (top) we see that pat-
terns 2 and 3 are frequently misclassified as patterns 5 and 9.
Referring back to Table 1, we see that with the exception of
pattern 2, the regions stimulated lie within the least recep-
tor-dense portion of the eye. Thus, much of the activity pro-
duced by stimulating location 3 yields data that cluster in the
same region of the neural net’s input space as patterns 5 and
9. Furthermore, some of the activity produced by stimulating
location 5 clusters in the region for pattern 9.

Pattern 2 stimulates an area of high receptor density that
presumably produces a maximal response. However, the
nerve fibers from the center of the eye are located in the cen-
ter of the optic nerve and thus in the approximate center of
the differential electrodes. A source in the exact center of a
differential pair of electrodes would not be detectable since
it would be seen equally by both the positive and negative
electrodes. Though it’s doubtful a given source could ever be
at the exact centers of all four pairs in a hand-made cuff, be-
ing near the centers impacts the SNR and thus the accuracy
for that pattern. Additionally, we speculate that there may be

shielding effects that reduce the received signal strength
from fibers lying in the center of a nerve. More analysis is
needed to determine if the misclassification results from
some deficiency of the hardware/software, the anatomy of
lateral eye/optic nerve, or both.

In the present study the DMJD was a useful measure of
the quality of the recorded data and an accurate predictor of
system performance. On-the-fly calculation of the DMJD
can easily be incorporated into future MINIS software to
provide an estimate of system performance when given
real-time streaming data. The mean or median of the com-
puted J p q( , ) provides a dynamic and reasonably accurate
method for computing a decision value for the DMJD (Fig-
ure 10). Further investigation is needed to determine if the
decision value computed using this method should be
weighted to improve its accuracy.

The current system represents a first step toward the re-
alization of the detector portion of a minimally invasive, di-
rect peripheral nervous system interface. While the system
is targeted at producing an interface to the peripheral ner-
vous system, it would be relatively easy to adapt it to the
central nervous system. The basic premise of the technol-
ogy is that multiple electrodes placed around a volume con-
ductor can detect the fluctuations in the field produced by
electrically active sources in that volume. Theoretically, it
should not matter if that volume is the space within a cuff
electrode or the space between an array of electrodes in the
brain or spinal cord.

Thus far the results are encouraging; however, more work
is needed before this system could be used to reliably drive a
prosthesis or interact with a virtual environment. As this arti-
cle goes to press work is underway to greatly enhance the
performance of the system both in terms of accuracy and
speed. The focus of the ongoing research is to first improve
the accuracy of the system to near 100% on the simple stimu-
lus set. Following that, the next experiments will utilize
more complex monochrome/greyscale patterns to enable
further refinement of the imaging capabilities of the system.
The goal of these experiments is to produce a near real-time
stream of images from the lateral eye while the animal is in
its natural environment.
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