
COMPUTERS AND BIOMEDICAL RESEARCH 31, 348–362 (1998)
ARTICLE NO. CO981486

Multigrid Solution of the Potential Field in Modeling Electrical
Nerve Stimulation

Rudi Hoekema,*,1 Kees Venner†, Johannes J. Struijk,* and Jan Holsheimer*

*Institute for Biomedical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands; and †Faculty of Mechanical Engineering, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands

Received March 3, 1997

In this paper, multilevel techniques are introduced as a fast numerical method to compute
3-D potential field in nerve stimulation configurations. It is shown that with these techniques
the computing time is reduced significantly compared to conventional methods. Consequently,
these techniques greatly enhance the possibilities for parameter studies and electrode design.
Following a general description of the model of nerve stimulation configurations, the basic
principles of multilevel solvers for the numerical solution of partial differential equations are
briefly summarized. Subsequently, some essential elements for successful application are
discussed. Finally, results are presented for the potential field in a nerve bundle induced by
tripolar stimulation with a cuff electrode surrounding part of the nerve.  1998 Academic Press
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INTRODUCTION

Modeling field potentials imposed on neural tissue by electrical stimulation,
as a tool to predict the effects of the stimulation, is being used for several
clinical applications, such as spinal cord stimulation (1, 2, 3, 4), peripheral nerve
stimulation (5, 6, 7), and sacral root stimulation (8). The aim of these studies is
to selectively stimulate either a specific part of the nervous tissue or nerve fibers
of a specific diameter range or spatial orientation. Physico-mathematical models
of the conducting biological media are often applied in combination with a model
representing the electrical properties of the neural elements, usually myelinated
nerve fibers (9). These models can be used to improve the understanding of the
exact mechanisms involved in the stimulation process or to validate models used
in the design of electrodes for clinical applications.

Due to differences in the electrical properties and the complex shapes of the
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various tissues involved, the potential field cannot be obtained analytically and
a numerical approach is needed. This involves discretization of the region of
interest and deriving a system of equations (by means of a finite element method
or finite difference method) from which the potential must be solved. Unfortu-
nately this numerical solution is often hampered by computing time problems.
To describe the potential field accurately for a 3-D configuration requires a grid
with a large number of nodes. For example, taking 50 grid points in each direction
results in a discrete system of O(105) equations and associated unknown variables
to be solved. Since most common numerical algorithms available for solving this
system of equations require a computing time proportional to n2–n3 (with n, the
number of unknowns), excessive computing times may result. This limitation
partly accounts for the use of restricted models such as 2-D representations (1)
or 3-D models assuming rotational symmetry (5, 8). Nevertheless, studies using
a full 3-D geometry have been performed as well (2, 3).

The objective of the present study is to develop a fast solver for the potential
field in nerve stimulation using multilevel techniques (10, 11). These techniques
have the prospect of solving a problem in a computing time proportional to n.
This textbook efficiency was first obtained for elliptic partial differential problems
with constant coefficients. Nowadays they are widely used in computational fluid
dynamics, find increasing application in engineering, and have resulted in major
reductions in computing time.

In this paper the specific aspects of the application of these techniques to
the numerical solution of the potential field in electrical nerve stimulation are
described. Subsequently, results are presented and discussed for a nerve and cuff
configuration. To demonstrate the efficiency of the developed algorithm the
computing time needed to solve the problem to a certain accuracy is compared
with the time needed to obtain this same accuracy with a standard iterative
method, i.e., Gauss–Seidel relaxation.

VOLUME CONDUCTOR MODEL

The problem can be described as the solution of the unknown potential field
u in a 3-D domain V from the 3-D Poisson’s equation:

=(s=u) 5 f x 5 (x1 , x2 , x3) [ V [1]

with u 5 g on the boundary ­V. In this equation s denotes the conductivity
tensor. Characteristic for a nerve stimulation problem are anisotropy and a
strong inhomogeneity, in accordance with the different electrical properties of
the various tissues.

Typically V will be taken a 3-D rectangular domain including part of the nerve
and the stimulating electrode. Assuming that the boundaries are sufficiently far
from the electrodes and the location of the neural structure(s) to be activated,
g 5 0 is an acceptable choice. Finally, f is the so-called forcing function which
contains the current sources, i.e., the electrode(s)
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f 5 A(xe)d(xe), [2]

where d is the (3-D) Dirac function and xe is the location of the electrode.
For the numerical solution the domain is divided into cube shaped cells with

each of these cells having a specific size and an (an)isotropic conductivity. For
the present work the model consists of 56 3 56 3 56 cells. The conductivities
were chosen to model the nerve and cuff configuration. Assuming a Cartesian
coordinate system and a diagonal conductivity tensor equation [1] can be writ-
ten as

Od
k51
S ­

dxk
Ssk

­u
­xk
DD5 f, [3]

where d is the dimension of the problem, i.e., d 5 3. Subsequently, using Taylor
series, in each point i ; (i1, i2, i3), Eq. [3] can be approximated by

Od
k51

(sk , ui21 2 (sk,i 1 sk,i11)ui 1 sk,i11ui11) 5 fi , [4]

where i 6 1 denotes the nearest neighbors of the point i in the kth dimension,
i.e., if k 5 1, i 6 1 5 (i1 6 1, i2, i3), etc. The coefficient sk is defined as

sk,i 5
2sk,i21/2

hi(hi11 1 hi)
,

where hi is defined as the distance between the points with index i and i 2 1.
Furthermore, sk,i21/2 denotes the value of sk at the center of the grid line connect-
ing the points i and i 2 1, i.e., between (i1, i2, i3) and (i1 2 1, i2, i3) if k 5 1. This
value can be computed from the value of sk in the neighboring cells. Function
fi in Eq. [4] is defined as

fi 5
Ai

p
d

k51
hi

[5]

for all points i within the region covered by the electrode, and fi 5 0 elsewhere.
The coefficients Ai are not known in advance. Their values are obtained by using
current scaling, i.e., they are solved iteratively using the total electrode current
and the physical condition that the potential is uniform over the electrode. Finally,
the (Dirichlet) boundary condition is gi 5 0 for the points at the boundary ­V.

MULTIGRID TECHNIQUES

Introduction

For a uniform grid with mesh size h, Eq. [4] can be written as

Lhuh 5 f h on Vh, [6]

where Lh is a matrix, uh is a vector containing the potential field to be solved,
and f h is a vector representing f in the grid points.
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For the solution of uh various (direct or iterative) methods can be used. In
general, these methods require a computing time of O(np), if n is the total number
of grid points, with the value of p depending on the chosen algorithm and the
dimension of the problem. For most algorithms p P 2. As a result these methods
are poorly suited for configurations in which n is large (in our case n 5 553).
Since in parameter or design studies large numbers of solutions are required,
an alternative method is needed.

This alternative was found in the application of multilevel techniques (10, 11).
These techniques have the prospect of attaining p 5 1, i.e., solving the problem
in a computing time linearly proportional to the number of grid points.

Application of multilevel techniques in problems similar to the problem consid-
ered here is described in (12, 13).

Relaxation

Characteristic for iterative processes is that a given approximation to the
solution is improved by visiting all grid points in some prescribed order, at each
site changing the value of ui according to a rule specific for the process.

To solve Eq. [4] using, e.g., Gauss–Seidel relaxation, the current approximation
ũi at each grid point is replaced by ũi

ui 5 ũi 1 gri S­L
­ui
D21

i
, [7]

where ri denotes the dynamic residual

ri 5 fi 2 Od
k51

(sk,iui21 2 (sk,i 1 sk,i11)ũi 1 sk,i11ũi11) [8]

and

S­L
­ui
D

i
5 2 Od

k51
(sk,i 1 sk,i11); [9]

g has a value 1 # g # 2. When applied repeatedly this iterative scheme converges
to the solution of Eq. [4].

However, when monitoring some norm of the residual or the error, it will
show that in the first few iterations large reductions occur, but then the speed
of convergence slows down and the iterative process becomes inefficient. This
is characteristic for ‘‘local’’ iterative processes, like Gauss–Seidel relaxation. The
iterative process is well capable of reducing errors with a wavelength of the
order of the mesh size h, but smooth errors (with a larger wave length) are
hardly affected, which causes the slow asymptotic convergence.

The consequence is that after a few iterations the remaining error in the
solution will be smooth relative to the mesh size. In fact, it can be accurately
represented and solved on a coarser grid. This concept forms the basis of a
multigrid solver: instead of continuing the iterative process when convergence
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has slowed down, one switches over to a coarser grid for the solution of the
(smooth) remaining error. Solving the error on the coarse grid can be done more
efficiently because the number of nodes is smaller and (due to the larger mesh
size) the iterative process converges faster. Once an accurate approximation to
the error is obtained on the coarser grid it is used to correct the solution on the
fine grid.

Coarse Grid Correction

Consider the solution of Eq. [6] and let ũh denote the approximation to the
solution obtained after some relaxations. The error in this approximation is
defined as

vh ; uh 2 ũh. [10]

Using ũh, residuals can be calculated according to

rh 5 f h 2 Lhũh. [11]

By definition Lhuh 5 f h. Hence, this equation can be written as

rh 5 Lhuh 2 Lhũh. [12]

If Lh is a linear operator. Equation [12] can be written as an equation for the error

Lhvh 5 rh. [13]

Since, after some relaxations, vh will be smooth compared to the mesh size, it
can be represented and solved (by the same iterative procedure) on a coarser
grid. A coarse grid approximation vH to vh is solved from Eq. [13] on grid H

LHvH 5 IH
h rh. [14]

LH is the representation of the matrix operator Lh on the coarse grid and IH
h in

Eq. [14] is a restriction operator from the fine to the coarse grid.
After an approximation ṽH–vH has been calculated, it is used to correct the

approximation ũh on the fine grid according to

uh 5 ũh 1 Ih
HṽH, [15]

where Ih
H is an interpolation operator. Because the corrections calculated on the

coarse grid are smooth, a linear interpolation generally provides sufficient ac-
curacy.

Coarse Grid Correction Cycle

If the number of nodes on the fine grid is large, the number of nodes on a
coarse grid H may still be relatively large and after a few relaxations convergence
on the coarse grid will also slow down. At that point the same reasoning applies
as described before. On a coarser grid, the remaining error can be accurately
described and solved. This process of coarsening can be repeated recursively
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FIG. 1. Flow chart of a multigrid coarse grid correction cycle V(n1, n2).

until a grid is reached, where the number of nodes is so small compared to the
original fine grid that the equations can be solved exactly or almost exactly in
only a few operations.

This leads to the so-called coarse grid correction cycle. For a situation of four
levels (grids) such a cycle is displayed in Fig. 1. n1, n2, and n0 denote the number
of relaxation sweeps on the respective grids. Generally n1 and n2 are small, i.e.,
1 or 2, whereas n0 is in general larger, e.g., n0 5 10 . The cycle displayed in Fig.
1 is referred to as a V(n1, n2)-cycle.

A coarse grid correction cycle as explained here in principle reduces the error
by a factor of e(n11n2), where e is the worst of the factors by which a single
relaxation reduces the ‘‘high frequency’’ components in the error, i.e., those
components that have to be resolved on the fine grid, and cannot be seen by
the coarse grid. With the standard choice of coarsening H 5 2h, these are the
components that have an oscillating character in at least one of the spatial
dimensions. For elliptic partial differential problems with coefficients that vary
on a large scale compared to the mesh size, a simple scheme such as Gauss–Seidel
relaxation, already has a e independent of the mesh size. For example, for the
present problem (3-D) with constant coefficients and discretized on a uniform
grid, it has e 5 0.56. Consequently a cycle with n1 5 2 and n1 5 1 already reduces
the error by almost a factor of 6. The computational cost of the cycle is just a
little larger than the work invested in the (n1 1 n2) relaxations that are actually
performed on the finest grid (7/8 times this work for a three-dimensional prob-
lem). This clearly illustrates the potential gain in efficiency that can result. For
practical problems, large jumps in coefficients, strong anisotropies, more elabo-
rate relaxation schemes may be needed to obtain such e. Alternatively, if certain
components cannot be reduced by the relaxation, one can modify the coarsening
strategy, i.e., only coarsen the grid in one direction (at the time). This would
then be at the expense of extra computational effort on the coarse grids.

Summarizing, a coarse grid cycle is not a given strictly prescribed device.
Various choices can be made in its design. The principle guideline however is
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always to obtain a cycle with a convergence factor that is independant of the
grid size. This means that in the course of developing a coarse grid correction
cycle for a problem, a number of such choices have to be made, depending on
the character of the problem. For the problem considered here some specific
aspects are discussed in the next section. It may be obvious that aside from these
algorithmic compromises, often additional compromises have to be made in
practice, i.e., textbook efficiency is not the goal, but simply solving the problem
as it is given sufficiently fast is.

IMPLEMENTATION

Implementation of the method described to the problem at hand requires a
number of modifications. First, the grid used was not uniform and thus, a linear
interpolation to describe the (smoothed) error on a coarser grid is not suitable.
Second, in the nerve and cuff model large jumps of the conductivity in the domain
exist. These large jumps cause large differences between the coefficients of the
discrete system of equations for grid points in different parts of the domain.

Grid Structure

The first objective of this study was to improve upon the Gauss–Seidel-like
solver used by Struijk et al. (4). Therefore, their nonuniform grid structure of
56 3 56 3 56 cells was used as the finest level. Subsequently the coarser grids were
constructed by each time discarding every second grid line in all three directions.

Coarse Grid Conductivity Tensor

To solve the error on the coarse grid, a coarse grid representation LH of the
fine grid operator Lh is needed. This requires the definition of the conductivities
at the center of the coarse grid links, i.e., (sk,i21/2 in Eq. [4]). Various alternative
definitions are presented by Alcouffe et al. (12) for a 2-D case. From the one
yielding the best efficiency for the coarse grid correction cycle a 3-D version was
constructed as follows (see Fig. 2).

An efficient coarse grid correction requires that the coarse grid coefficient on
the link between A and B accurately reflects the conductivity relation between
the fine grid points coinciding with A and B. This can be ensured if the coarse grid
coefficient is taken as the weighted average of a number of fine grid conductivity
coefficients between A and B. However, between every pair of adjacent coarse
grid points, on the fine grid one can distinguish many pathways. In the present
study only the pathways consisting of at most four fine grid links are considered.
In that case five paths remain. In Fig. 2, these paths are indicated with the solid
lines. Thus, the coarse grid coefficient was defined as

sk,I1,I2,I3
5 Ah(3s h

AB 1 s h
ACDB 1 s h

AEFB 1 s h
AGHB 1 s h

AIJB), [16]

where (I1, I2, I3) is a coarse grid index, and
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FIG. 2. Coarse grid points (black circles) and fine grid points (white circles) involved in the
definition of the coarse grid conductivity at the center of the link (AB).

1
sAB

5 S 1
s2,i1,i2,i3

1
1

s2,i1,i221,i3
D [17]

1
sACDB

5 S 1
s1,i111,i222,i3

1
1

s2,i111,i221,i3

1
1

s2,i111,i2,i3

1
1

s1,i111,i2,i3
D. [18]

Intergrid Transfers

For the simple case of constant conductivity, multilinear interpolation of the
potential itself provides a sufficiently accurate basis for the intergrid operators.
The interpolation itself will serve well in the process of correcting the fine grid
approximation (Ih

H in Eq. [15]), and its transpose (full weighting) can be used
for the restriction of the residuals to the coarse grid (IH

h in Eq. [14]). Also, for
changes of sk values over the domain of up to one order of magnitude, a coarse
grid correction cycle in which these operators are used will provide sufficiently
large error reductions. However, to attain fully efficient coarse grid correction
cycles in the case of conductivity jumps of two orders of magnitude or more,
the intergrid transfers should be based upon the continuity of s=u (12). To
satisfy this continuity, the conductivity values and the mesh size are incorporated
in the interpolation. The resulting interpolation for a 3-D configuration is given
in the Appendix. The restriction operator was subsequently obtained by taking
its normalized transpose.

Coarse Grid Operator

For the operator Lh, the fine grid conductivities between the grid points are
used. LH can be chosen as the same operator but defined on the coarse grid and
using the definition of the coarse grid conductivity. The resulting 7-point operator
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will very well describe the characteristic behavior of Lh for smooth components
if the conductivities vary moderately. However, in the case of conductivity jumps
of magnitude of two orders or more, it is better to use variational coarsening (11)

LH ; IH
h LhIh

H . [19]

This yields a 27-point coarse grid operator (instead of a 7-point operator). In
the nerve and cuff model, the use of Eq. [19] became essential in obtaining an
efficient coarse grid correction cycle. Unfortunately, when using this operator
the computing time for each relaxation sweep on the coarse grid increases by a
factor 27/7 P 4. However, as the number of coarse grid points is 8 times smaller
than the number of fine grid points (3-D problem), the relaxation on the coarse
grid is still faster. Another disadvantage of the 27-point operator could be its
significant storage requirement, i.e., all 27 coefficients of the operator for all
coarse grid points.

Relaxation

A relaxation scheme that efficiently reduces high frequency error components
forms the core of a multigrid solver. As mentioned before, it should reduce all
components that cannot be solved on a coarser grid. With standard coarsening
H 5 2h in all directions for a 3-D problem this implies that it should in fact
reduce 7/8 of the harmonic components, i.e., all components that are ‘‘high
frequency’’ in at least one of the grid directions. This puts quite a strain on the
relaxation process. As long as the jumps in the coefficients are moderate the
required smoothing is sufficiently well ensured by pointwise Gauss–Seidel relax-
ation. However, for the ‘‘pathological’’ cases where large jumps in coefficient
values occur, such a pointwise scheme is no longer suited. Instead, in such cases
the relaxation should solve the discrete equation in ‘‘blocks’’ of strongly coupled
points simultaneously (12). Various alternatives can be chosen, depending on
the specifics of the problem. In the present study we have used alternating
line relaxation.

In the case that an electrode is placed in biological tissue, the electrode potential
will be uniform. This is a constraint that should be applied in the model as well:
the potential at all grid points describing the electrode should be equal. In the
results described in the next section, the current flowing to each of the electrode
points is scaled such that the total current is constant and the constraint is
satisfied. This is done iteratively: after each V-cycle, the electrode potential is
evaluated and the current to each point is adjusted if necessary using

Ai 5 g p Anew,i 1 (1 2 g) p Aold,i , [20]

where g is an under relaxation factor (0 , g , 1) and Anew,i is calculated in two
steps: the electrode potential is calculated using Lhuh 5 f h, treating all electrode
points of the electrode as one point. Secondly, fi to obtain this potential is
calculated for each electrode point, which yields Anew,i when divided by Pd

k51 1/hi.
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FIG. 3. Schematic representation of a nerve with a tripolar cuff electrode.

RESULTS

The multilevel solver was applied to compute the potential field in a spinal
cord model and in a nerve and cuff model. Of these two problems the latter is
the most demanding and results for this problem are presented here. Figure 3
shows the nerve and cuff model. Three 1-mm wide ring-shaped electrodes are
embedded at the inner surface of the cuff: a central cathode and an anode at
3-mm distance on each side. The conductivities used for the various compartments
in the model are given in Table 1. The indices in the first column of this table
correspond to the numbers in the Figs. 4(a)–4(b).

From Table 1 it can be seen that in this model, only the nerve bundle (fascicle)
has an anisotropic conductivity. The largest jumps in conductivity occur from
the silastic cuff to the saline (both inside and outside the cuff), and from the
(inner) saline to the epineurium. Both jumps are about a factor 2500. Because
the largest current density will occur at the inner surface of the cuff where the
cathode is positioned, the grid spacing was minimal in this area (0.05 mm). The
stimulation amplitude was taken 1 mA for the cathode and 0.5 mA for each anode.

In Fig. 4(a), the isopotential lines of the computed field in a transverse plane
through the center of cathode are shown. Figure 4(b) shows the isopotential

TABLE 1

Conductivity Values Used in the Nerve and Cuff Model

Index Compartment Conductivity [V m]21

1 saline 2.0
2 fascicle (transverse) 0.08

fascicle (longitudinal) 0.50
3 surrounding layer 0.02
4 silastic cuff 0.0008
5 perineurium 0.003
6 epineurium 0.008
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FIG. 4. Calculated potential field in the nerve and cuff model (tripolar stimulation); (a) transverse
cross-section and (b) longitudinal cross-section.

lines in a longitudinal plane. The displayed isopotential lines are 20 mV apart.
Due to the symmetrical electrode configuration, in which the two anodes had
the same potential, current flowing outside the cuff is almost zero. Almost no
current is crossing the surrounding layer.

Notice that the transverse potential gradient is rather small in the fascicle
itself. This is due to the shunt effect of the saline between the cuff and the fascicle.

To demonstrate the efficiency of the multigrid solver, the convergence behavior
has been studied and compared with the convergence behavior of two single-
grid solution methods applied to the same model.

For this purpose the average residual norm (the average over all grid points
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FIG. 5. Average residual norm as a function of invested CPU time for the developed Multigrid
Algorithm, classical Gauss–Seidel (g 5 1.0) (single grid), and Gauss–Seidel SOR (g 5 1.7) (sin-
gle grid).

of the absolute value of the residual of the discrete equation, see Eq. [8]) is
monitored as a function of the CPU time (on an HP 9000/730 workstation). This
is indeed the appropriate quantity to monitor as it is directly related to the error,
and a given reduction of the residual norm implies the same reduction of the
error in the solution.

Three cases are considered: Gauss–Seidel relaxation on a single grid (g 5
1.0), Gauss–Seidel relaxation successive over relaxation (SOR) on a single grid
(g 5 1.7), and the multigrid solver. Note that by multigrid solver we mean only
repeated coarse grid correction cycles, i.e., techniques such as full multigrid are
not used. The initial approximation on the finest grid was the same for each case.

Figure 5 presents the results for the nerve and cuff model. Both single grid
algorithms show a fast initial convergence after which the convergence speed
rapidly levels off to its low asymptotic value. This is exactly the behavior described
in the multigrid section. Using the multigrid coarse grid correction cycles, how-
ever, the initial high speed of convergence is maintained. In that case each error
component is reduced on a grid at which it is nonsmooth. The eventual slowdown
shown by the multigrid results is due to the limitation of machine accuracy. The
presented calculations were performed using 7-digit accuracy. Eventually the
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curves for the one-grid algorithms will stop declining completely as well, but due
to the slow convergence they simply do not reach this stage until far beyond the
time scale of Fig. 5. It was found that the computing time needed for a reduction
of the error by a factor of 10 when considering the characteristic part of the
curves was 15 times as long for Gauss–Seidel relaxation.

DISCUSSION

Multilevel techniques were shown to be a fast and efficient alternative method
for the solution of the potential field in a 3-D model for nerve stimulation. For
the nerve and cuff model it was demonstrated that, compared with previously
used methods, the required computing time is reduced by more than one order
of magnitude. The algorithm described in this paper has also been applied success-
fully in the computation of the potential field in spinal cord stimulation. This
potential field was generated by an epidurally placed tripolar electrode. The
finite difference model included the white and grey matter, cerebrospinal fluid
and vertebral bone and the electrode. Compared to Gauss–Seidel SOR., the
multigrid solver reduced the computing time from 20 min to only 1 min CPU
time. These computing time gains obviously greatly enhance the possibilities for
further practical research, e.g., parameter studies and electrode design. Further
research can also be directed to other problems, i.e., the developed algorithm
can be applied to surface stimulation for wound healing or activation of muscles,
intramuscular stimulation, and pacing of various organs such as the heart (12).

At some point further improvement to the algorithm as presented merits
investigation. First we will consider modeling. In the present work electrodes
were modeled as current sources. This is indeed justified for an electrode that
consists of only a single grid point. However, in reality the electrodes cover a
group of grid points. In such cases the solution should satisfy the additional
condition that all such points have the same potential. This was ensured iteratively
by using a procedure of current scaling, which unfortunately has a slight but
noticeable adverse effect on the asymptotic convergence speed. Therefore, the
next step will be to really model the electrodes as voltage sources, i.e., as an
internal Dirichlet boundary condition, or in fact as a group (small island) of
points of fixed potential.

Second, future research may address some numerical/mathematical aspects of
the coarse grid correction cycle that was designed. At present the first approxima-
tion is simply given on the target (finest) grid, and coarse grid correction cycles
are used to converge. This implies that the total work needed to solve the problem
to the level of the discretization error still depends logarithmically on the number
of points, i.e., a finer target grid requires a larger error reduction starting from
the same first approximation. This logarithmic factor could be removed using
full multigrid techniques, i.e., using the coarser grids not only to accelerate
convergence on the target grid, but also to generate an accurate first approxima-
tion. Also, attention could be directed to finding a computationally ‘‘cheaper’’
alternative to the full variational coarsening which was needed in relation to



MODELING NERVE STIMULATION 361

large conductivity jumps as present in the nerve and cuff model. However crudely
said, this coarsening puts a significant effort into a device that given the choice
of coarsening used here only corrects 1/8 of the harmonic components in the
error. It may be more profitable to consider alternative coarsening strategies,
where more grid points are maintained on the coarser grids to improve the effect
of the coarse grid correction. These matters are however of little importance for
the present problem, where the goal was to obtain a fast solver for the given
target grid problem. However, they may become more pressing if very dense
grids are required.

APPENDIX

The interpolation used in the multigrid implementation is a modification of
multilinear interpolation, i.e., the interpolation is performed such that it accounts
for the continuity of s=u. This interpolation can be performed in the following
way with each step using results of the previous step. Let the quantity to be
interpolated, i.e., potential or coarse grid correction be denoted by u.

(1) First the values of the u in coarse grid points I are injected to the
coinciding point i on the fine grid:

ui 5 uI . [21]

Next, in three steps values are obtained for all fine grid points that do not coincide
with coarse grid locations.

(2) First, using the values given to points that coincide with coarse grid
locations, values for u in the points i which are on the center of a link between
two coarse grid locations are computed according to

ui 5
sk,iui21 1 sk,i11ui11

sk,i 1 sk,i11
, [22]

where k 5 1, 2, or 3, if the link is in the x1, x2, or x3 direction, and i 6 1 stands
for (i1 6 1, i2, i3) if k 5 1 and for (i1, i2 6 1, i3) if k 5 2, etc.

(3) Then values for all fine grid points i located in the center of the rectangle
formed by four coarse links, i.e., the center of a side of the ‘‘cube’’ formed by
eight coarse grid points are computed according to

ui 5
sk1,iui21 1 sk2,iui21 1 sk1,i11ui11 1 sk2,i11ui11

sk1,i 1 sk2,i 1 sk1,i11 1 sk2,i11
, [23]

where k1 and k2 stand for the two directions which define the plane in which
the rectangle lies.

(4) The last step consists of giving a value to the remaining fine grid points.
These points are located in the center of a coarse grid cube:

ui 5
sk1,iui21 1 sk2,iui21 1 sk3,iui21 1 sk1,i11ui11 1 sk2,i11ui11sk3,i11ui11

sk1,i 1 sk2,i 1 sk3,i 1 sk1,i11 1 sk2,i11 1 sk3,i11
. [24]

Note that this step uses the result of the steps 1, 2, and 3.
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Together the steps outlined above describe the interpolation, i.e., they form
the recipe to obtain values for all fine grid points from a function given on the
coarse grid points. An alternative to carrying out these steps each time is to
realize that they together define an interpolation matrix Ih

H, which can be com-
puted at the start of the algorithm and stored. Its transpose can then be used as
restriction operator IH

h .
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