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On Statistical Properties of Whole Nerve
Cuff Recordings

Sǎso Jezernik,*Student Member, IEEE,and Thomas Sinkjaer,Member, IEEE

Abstract—Whole nerve cuff electrodes can record an electric
signal generated by the superposition of single fiber action poten-
tials (AP’s). Using a simple stochastic model for the superposition
of AP’s, the statistical properties of nerve cuff signals are math-
ematically derived in this study. Consequences of common signal
processing methods like rectification and time-averaging are also
explained. The nerve cuff signals are found to be approximately
identically, independently distributed Gaussian signals with zero
mean and varying variance. The spectral properties of the cuff
signals generated by single AP shape or different AP shapes
are also addressed and investigated by examining the properties
of the autocorrelation functions of the nerve cuff signals. The
theoretical results were found to be in accordance with computer
simulations and processing of actual recorded data.

Index Terms—Action potentials (AP’s), cuff electrode nerve
recording, nerve signals, statistics.

I. INTRODUCTION

SINCE a method for recording nerve activity by means of
cuff electrodes was introduced by Hoffer [1] and Stein [2],

the method has been extensively applied in neurophysiological
and neural prosthesis research, e.g., [3] and [4]. Stein described
the physical principles behind the method, however, not much
theoretical work has been done toward explaining statistical
properties of the recorded signals. Contributions presented in
the present paper try to establish a basis for the application
of advanced signal processing methods to the neurographic
recordings. Some application examples could be, e.g., classifi-
cation of nerve signals, optimal filtering and signal detection.
Specifically, mathematical derivations of the statistical prop-
erties of nerve cuff signals are carried out, complemented by
computer simulations, and some actual nerve cuff recordings
are analyzed with respect to the theoretical results of the
manuscript.

The electroneurogram (ENG) from a whole nerve results
from superposition of electric potentials generated by active
nerve fibers present in the nerve. Extracellular electric cur-
rent flow generated by traveling action potentials (AP’s) is
restricted and confined by an insulating cuff, which is placed
around the nerve. One or more electrode contacts along inner
side of the cuff are then used to measure potential differences
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due to longitudinal resistive potential drops. Cuff electrode
geometry and configuration have a filtering effect on the
waveform of each recorded AP traveling through the cuff
[5]. This filtered version of superimposed AP’s generated
by nerve fibers with similar axonal size distribution, thus,
make up a signal recorded by whole nerve cuff electrode.
The number of AP’s in a fixed time window is a function
of the firing frequency in active nerve fibers and also of
the number of active fibers. For a constant number of active
nerve fibers the number of recorded AP’s is proportional to
the rate of firing of the neurons (nerve activity), which for
sensory fibers encodes stimulus intensity. The goal of signal
processing is, thus, generally to derive a signal proportional
to the nerve activity. It will be shown that the recorded
nerve cuff signal is approximately independently identically
distributed (i.i.d.) Gaussian signal with zero mean and varying
variance and that the common signal processing method of
rectifying the recorded signal and averaging it is proportional
to the square root of number of AP’s present in a fixed time
window. Furthermore, it will be shown that the autocorrelation
function of the nerve cuff signal is primarily determined by
the single AP shape, and is a scaled version of the single
AP autocorrelation function. In case of several different AP
shapes, the autocorrelation function will be a weighted average
of the different single AP autocorrelation functions.

II. M ETHODS

A. Mathematical Derivation of Statistical Properties

It is assumed that the signal is analyzed in a finite, fixed
length time window and results from superposition
of AP’s, each having length

AP (1)

where AP has a zero mean, and are uniformly distributed
random variables on interval [ ] that determine positive
shift of each AP. Only one single AP shape is assumed to be
summed in this simple model, and AP represents voltage
as a function of time. AP is deterministic, but signal
is random due to random shifts ( is, thus, a stochastic
process). Each given set of values for the shifts
represents a single realization of the stochastic process.

can be arbitrarily large, causing multiple overlaps of AP’s.
The central-limit theorem [6] is used to prove a Gaussian

probability density function for signal . Here, we also
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recall the value of the ratio

(2)

for Gaussian random variable. stands for the statis-
tical expected value.

B. Computer Simulations

A triphasic compound AP (CAP) of duration 1 ms was
extracted from a porcine pelvic nerve cuff recording following
the threshold current stimulation of the sacral root S3 [7].
It, therefore, resulted from a superposition of several AP’s
that probably belonged to the nerve fibers with same/similar
fiber diameters. The recorded CAP was, thus, a representative
of a small subpopulation of nerve fibers and is a good
approximation of the single AP shape, which is also supported
by its triphasic form. In the remaining part of the manuscript
we refer to it as AP. The mean amplitude of the recorded
AP was slightly adjusted (correction of the direct current
offset present in the recording equipment) to give a perfect
zero mean. Artificial zero mean nerve cuff signals were then
generated on a time interval [0,100 ms] resulting from linear
superposition of 1–61 790 AP’s. Superposition of more than
100 AP’s resulted necessarily in overlap of AP’s. For each
of the resulting 61 790 signals we calculated the time-average
estimate of the variance and of the rectified signal .
The time-average estimate of the single AP variance was
calculated as well: AP . denotes time averaging on

interval.

C. Real Nerve Cuff Recording Processing

Nine feline sacral root S1 nerve cuff recordings (from five
cats) [8] were sampled at 8 kHz (for 125 ms) during rapid blad-
der injections that excited bladder wall afferents, during rectal
mechanoreceptor stimulation, or during the stimulation of the
sacral dermatomes. Activity in the S1 nerve root increased
due to increased firing frequency of different receptors. It was
possible to detect the onset of bladder pressure rise caused by
rapid bladder injection by maximum likelihood (maximizing
cumulative sum of likelihood ratios CUSUM algorithm)
detection of change in signal variance [9].

Histograms were computed for the actual nerve cuff record-
ing and for the artificially generated nerve cuff signals. Also,
goodness-of-fit tests (Pearson’s method) [6] were performed to
verify the hypothesis of the Gaussian probability density func-
tion. Distributions computed from 1000 and/or 2000 samples
of the artificial and actual nerve cuff signals, respectively, were
tested for Gaussian probability distribution having zero mean
and the variance estimated from the signal. 18 intervals
(classes) were used in the goodness-of-fit tests that covered the
peak of the distribution as well as the tails. Goodness-of-fit test

Null hypothesis:

The random variable used in the test (if is lower than
the significance level of chi-squared distribution with

degrees of freedom, the hypothesis is accepted)

Autocorrelation functions were computed for the actual
nerve cuff recordings, the artificial nerve cuff signals, and
the single AP. They were compared with respect to their
amplitude and time course and may be used to explain the
spectral properties of the nerve signals.

III. RESULTS

A. Theoretical Results

Consider first time-average estimate of the variance of the
nerve cuff signal [due to linearity the signal has a zero mean,
since AP has a zero mean]

AP

(3)
Squaring the quadratic term gives

AP

AP AP (4)

Next, the expected value with respect to indepen-
dent, uniformly distributed random variables (ensemble
average) is taken resulting in cancellation of the cross terms
and, thus, the second term in (4), since

AP AP

AP

for (5)

Neglecting the cross-terms for ( ,
boundary effects) and noting that the first term in (4) does
not depend on random variables after integration by time,
the final result is

AP (6)

Thus the expected value of the time-average estimate of the
nerve cuff recording variance is proportional to the number
of AP’s and to the time-average variance estimate of the
single AP waveform.

The second part of our analysis concerns the probability
density function of the nerve cuff signal. Fixing time at

produces a random variable .
It is convenient now to view each AP as being
an independent random variable . The random variable

is then given by a sum of identically
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(a)

(b)

Fig. 1. In the top graph, the artificial nerve cuff signal is shown, generated by
61 790 AP’s, with each AP having a duration of 1 ms. One thousand samples
correspond to 100 ms. The bottom graph shows the convergence of the ratio
square root(hs2i)=hjsji for artificial nerve cuff signals toward theoretically
expected value of 1.2533 (dashed line) as a function of the number of AP’s.

distributed random variables (since are identically
distributed). As the number of AP’s goes to infinity,
the central limit theorem applies [6] stating that the result-
ing probability density function will be Gaussian with mean

and variance
. The latter result agrees with (6). Due to the finite

nonzero length of each AP, is only corre-
lated to for . Signal samples
separated in time by more thanare, thus, uncorrelated and
also independent. Each realization of is, thus, approxi-
mately i.i.d. Gaussian signal.

The autocorrelation function of is given by

AP AP (7)

Again it can be observed that the above expression reduces to
{AP AP }. Autocorrelation of the

nerve signal is, therefore, equal to times the autocorrelation
of the AP. The Wiener–Khintchine theorem, thus, implies that
the power spectral densities of the nerve signal and the single
AP will have the same shape, scaled byin amplitude.

B. Simulations and Real Nerve Cuff Recording Results

Fig. 1 shows an artificial nerve cuff signal generated by
61 790 AP’s and the left side of (2), calculated for the artificial
signals generated by to 61 790 AP’s. The ratio
(2) assumes the values around theoretically expected value
1.2533 for signals generated by more than 5000 AP’s (mean

SD 1.28 0.02 calculated for signals between 10 000
and 60 000). Good agreement of (2) is also found for an
actual nerve cuff recording (Fig. 2), when the nerve fibers are
active (samples 700–1200). The ratio from (2) is higher than
1.2533 when the nerve fibers are not active (probably due

Fig. 2. A good agreement between the standard deviation of the raw actual
nerve cuff signal and 1.2533 times the time-averaged rectified raw nerve
cuff signal is found during the increased bladder afferent activity. This result
follows from (2) and (6). The ratio is higher during the beginning of the
recording, when most of the fibers were probably silent and most of the
signal was, thus, electrical noise.

(a)

(b)

(c)

Fig. 3. (a) Variance of the artificially generated nerve cuff signal increases
proportionally with the number of AP’sN that generated the artificial signal,
(b) shown is the exact proportionality of variance toN , the number of AP’s
(the expected value of the plotted ratio is one), and (c) the time-averaged,
rectified artificial nerve cuff signal is proportional to the square root ofN .

to the properties of the noise present during this recording).
Fig. 3(a) depicts the time-average estimate of the variance of
the signal depending on the number of AP’s used in
generating . Also shown is the ratio AP
which should ideally be close to 1 [Fig. 3(b)]. The time-
averaged rectified signal values are shown to follow the square
root of sqrt relation as can be seen in Fig. 3(c). This
can be explained by (2) and (6).

The actual nerve cuff recording and its histogram are
shown in the top of Fig. 4 and compared to those for an
artificial nerve cuff signal in the bottom. Plotted is also the
ideal Gaussian probability density function of the artificial
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(a)

(b)

Fig. 4. Compared are the time course and the histograms of the actual nerve
cuff recording (top) and the artificially generated nerve cuff signal (bottom).
Both histograms are approximately bell shaped.

Fig. 5. Values of 1=c laying above the solid line at 0.036 indicate the
acceptance of the Gaussian probability distribution of the artificially generated
nerve cuff signal (at 0.05 significance level). First value above the solid line
occurred atN = 480. Goodness-of-fit test (Pearson’s method with 18 classes)
was performed using 1000 samples of each artificial nerve cuff signal. Plotted
is also the mean value of 1/c that crosses the 0.05 significance level line at
about 2500 AP’s.

nerve signal (dotted line). Both histograms are approximately
bell-shaped. Fig. 5 depicts inverse values of the chi-square
distributed random variableused for testing the hypothesis of
Gaussian probability density function for artificially generated
nerve cuff signal (goodness-of-fit test). The values above the
0.05 significance level (solid line at 1/27.6 0.036)
indicate the acceptance of hypothesis that the distribution is
Gaussian. The significance levels of the test were 27.6, 30.2,

(a)

(b)

Fig. 6. Top trace (a) shows the rectified and time-averaged S1 nerve cuff
signal recorded during rapid bladder distension. Bladder afferent activity
increased with the increased bladder pressure. (b) Testing of the Gaussian
probability distribution hypothesis for the actual nerve cuff signal shown in
(a). During increased nerve activity the signal had a Gaussian distribution
(values of1=c above the dashed line). Each value of1=c represented by a
circle was calculated by goodness-of-fit test (Pearson’s method) using 1000
samples of the actual nerve cuff signal.

and 33.4 for 5%, 2.5%, and 1% levels, respectively (chi-square
distribution with 17 degrees of freedom). Signals generated
by more than 500 AP’s start having Gaussian distribution.
The mean of the test variable is also plotted in the Fig. 5
and crosses the 0.05 significance level at about 2500 AP’s.
This means that for more than one half of artificial nerve cuff
signals (64%) generated by 500–30 000 AP’s the Gaussian
distribution hypothesis was accepted.

A total of nine actual nerve cuff recordings was tested for
Gaussian probability density function with the data originating
from five cats. In cat 1, the Gaussian hypothesis was clearly
accepted in both analyzed recordings, when the bladder re-
ceptors became active. Also in cat 2 (three recordings) the
increased nerve firing made the signal “more” Gaussian (the
Gaussian hypothesis was accepted more times and also with
higher confidence intervals: the values of became higher).
The results of the test in cats 4 and 5 are less obvious (one
recording was analyzed for each cat), but some tendency
to higher values of test variable was observed during
increased nerve activity. In cat 6, the values increased in
one recording during the activation of the receptors, but stayed
more or less the same or decreased in another recording, for
which we have no explanation. It needs to be said, however,
that the goodness-of-fit testing of the actual nerve cuff signals
was impaired due to low signal to noise ratio. There was
also a background nerve activity present in the sacral root
recordings when we did not excite specific receptors targeted
in our study and, thus, the Gaussianity test was also testing
the distributions of the background nerve activity at low signal
levels. The goodness-of-fit test applied to an actual nerve cuff
signal recorded during rapid bladder distension is shown in
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(a)

(b)

(c) (d)

Fig. 7. Bottom left trace (c) shows the CAP recorded in the pig pelvic
nerve cuff after stimulation of the sacral root S3. This AP was used for
generation of the artificial nerve cuff signals. The other three graphs show the
autocorrelation functions of the (a) actual nerve cuff recording, (b) simulated
nerve cuff signal, and the (d) autocorrelation function of the single AP. They
all approach zero after�1 ms as expected, since the duration of the single
AP is 1 ms.

Fig. 6. Test is performed on 1000 samples throughout 320 000
samples (40’s). First trace shows the rectified and time-
averaged nerve cuff signal that increases when the bladder
afferents increase their activity due to increase in the bladder
wall tension caused by rapid injection of saline into the
bladder. It can be seen that in the beginning, when the afferents
are silent, the signal is not Gaussian, but acquires Gaussian
probability density function when the afferents become active.

Theoretical results regarding autocorrelation functions were
also in agreement with the simulated and actual nerve cuff
recordings. The autocorrelation functions of an actual nerve
cuff recording during bladder distension, artificial nerve cuff
signal and of the single AP are shown in Fig. 7 together with
the typical triphasic AP used in simulations. The triphasic
form of the AP is a consequence of the filtering effect of
the cuff electrode (second difference filtering) on the form
of monopolarly recorded AP. Note the great similarity of
the shapes of the three autocorrelation functions. They all
approach zero at time-lags larger than1 ms (since the
duration of the AP is approximately 1 ms). The amplitude
of the autocorrelation function of the artificially generated
nerve cuff recording is about 45 000 times the amplitude of
the autocorrelation function of the single AP. Ideally this ratio
should be close to 61 790, so it is reduced by 18.2% of
the theoretically predicted value [see (7)]. The first minimum
peaks are reached at 0.625, 0.30, and 0.32 ms, the first zero
crossings at 1.36, 0.50, and 0.56 ms, and the first maximum
peaks at 1.75, 0.68, and 0.72 ms for the actual, simulated
and single AP autocorrelation functions, respectively. Thus,
qualitatively, the simulated nerve cuff signal autocorrelation
function and the single AP autocorrelation function are similar
in the shape, and the actual nerve recording autocorrelation
function is stretched out in time. The likely explanation for
this is that the bladder afferents are small A-delta myelinated

fibers that are slowly conducting. The recorded single AP
shape was however extracted at threshold current stimulation,
where bigger, faster conducting fibers were stimulated.

IV. DISCUSSION

Although some simplifications were undertaken during the
mathematical derivation of the statistics of the nerve cuff
recording (assumed single AP shapes), the results obtained
with computer simulations and actual nerve recording data
are comparable with the theoretical results. In practice, nerve
fibers with different axonal size are expected to be active
at the same time. In that case, the shape of different AP’s
will not be the same [5], [10]. Slower conducting fibers will
have AP’s stretched out in time, resulting in a wider nonzero
autocorrelation function and lower frequency content of the
power spectral density. However, nerve cuff signal model
using summation of only one distinct AP waveform was
found sufficient to explain statistical properties of nerve cuff
recordings. Moreover, it can easily be seen that in the case
of several different AP’s, the variance of the superimposed
signal will be proportional to the linear combination of single
AP’s variances with the numbers of corresponding AP’s
as coefficients of the linear combination: Var
Var AP Var AP Var AP . This
is true when the sources are independent, and the power, thus,
adds linearly.

Specifically, we have shown that rectifying and averaging
a nerve cuff signal results in a signal proportional to square
root of the number of AP’s, . To yield a signal directly
proportional to firing frequency or number of active nerve
fibers, squaring is, thus, required. It was also shown that the
same information about the number of AP’s is contained in
the variance of the raw nerve cuff signal. Since the signal
was proven to be approximately Gaussian with zero mean,
it becomes clear, that it is the variance of the signal that is
really changing with varying nerve activity. The problem of
signal detection can, thus, be addressed by detecting changes
in variance of the raw nerve signal or, analogously, changes in
mean of the rectified and time-averaged nerve signal. One way
of doing this is by applying maximum likelihood detection
(CUSUM algorithm) [9].

The nerve cuff signal will still have Gaussian distribution
even when generated by fibers belonging to several differ-
ent axonal size populations, since a sum of normal random
variables is still a normal random variable. The latter result
might explain difficulties of some denoising algorithms that
try to differentiate between Gaussian additive noise and nerve
cuff signals to separate signal and noise [11]. Furthermore,
results shown in Fig. 6 actually indicate that the amplifier
noise is not Gaussian (although its distribution is symmetric).
Results published in [11] that show non-Gaussian nerve cuff
signal distribution might have been a consequence of the EMG
pickup, which is minimal or absent during recording from
bladder afferents in an acute experiment.

Information on the active nerve fibers can be obtained from
the autocorrelation function of the raw nerve cuff signal. The
shape of the autocorrelated single AP should become evident,
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allowing determination of the length of AP, and indirectly
of the nerve fiber conduction velocity (using information on
nerve cuff geometry). The power spectral density of a nerve
signal generated by differently shaped AP’s will however
deviate from the shape of the signal generated by only one
single AP shape. We expect the spectrum to be a weighted
average of different single AP spectra. The nerve cuff signal
autocorrelation function could be used to differentiate between
the nerve signals and would allow classification of the most
active nerve fibers.

V. CONCLUSIONS

ENG recordings made by means of whole nerve cuff elec-
trodes have approximately i.i.d. Gaussian statistical distribu-
tion. This follows from the fact that the signal is generated
by superposition of several independent, random AP’s, since
whole nerve contains hundreds of single axons firing with
frequencies up to 1 kHz. This signal has a zero mean and
variance proportional to number of AP’s, , counted in a
fixed length time window. The detection of the nerve activity
increases can, therefore, be addressed by detecting an increase
in the raw ENG variance, or detecting an increase in the mean
of the rectified and time-averaged nerve signal. The latter
signal is proportional to the square root of, and should
be squared to yield a measure proportional to nerve activity
( ). The autocorrelation function and, thus, the power spectral
density (frequency spectrum) of the nerve cuff recording is
primarily determined by the shape of the single AP, but
will deviate from it in case where several different AP’s
are recorded in the same time window. The autocorrelation
functions could allow classification of the active fibers that
are making up the composed nerve cuff signal. The statistical
analysis of the simulated nerve cuff signals and the actual
nerve cuff recordings was found to be in accordance with the
mathematical derivations presented in the manuscript.
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