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Abstract—This paper is part of a project whose aim is the imple-
mentation of closed-loop control of ankle angular position during
functional electrical stimulation (FES) assisted standing in para-
plegic subjects using natural sensory information. In this paper,
a neural fuzzy (NF) model is implemented to extract angular po-
sition information from the electroneurographic signals recorded
from muscle afferents using cuff electrodes in an animal model.
The NF model, named dynamic nonsingleton fuzzy logic system
is a Mamdani-like fuzzy system, implemented in the framework
of recurrent neural networks. The fuzzification procedure imple-
mented was the nonsingleton technique which has been shown in
previous works to be able to take into account the uncertainty in the
data. The proposed algorithm was tested in different situations and
was able to predict reasonably well the ankle angular trajectories
especially for small excursions (as during standing) and when the
stimulation sites are far from the registration sites. This suggests
it may be possible to use activity from muscle afferents recorded
with cuff electrodes for FES closed-loop control of ankle position
during quite standing.

Index Terms—ENG signal processing, functional electrical stim-
ulation (FES), muscle afferents, natural sensors, neural fuzzy sys-
tems.

I. INTRODUCTION

FUNCTIONAL electrical stimulation (FES) has proven
to be a valuable technique to restore motor function in

spinal cord injured persons due to the remaining excitability of
the peripheral nerves distal to the lesion level. Unfortunately,
the highly nonlinear and time-variant characteristics of the
effector system (the neuromuscular system) have made the
use of open-loop control techniques inadequate in terms of
stimulation efficacy and acceptability for the final users. This
problem can be solved by using closed-loop control techniques,
but this requires reliable sensory information about the ongoing
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motor task. Artificial external sensors have been widely used
as a source of information during the stimulation of the neu-
romuscular system but they present problems such as the need
for frequent calibration, subject encumbrance, and cosmetic
unacceptability due to sensor dimensions and appearance.
Thus, natural sensors are receiving growing attention as an
alternative means to provide the necessary feedback informa-
tion. For example, cutaneous afferents have been used for the
control of grasp force in quadriplegics [1] and for the correction
of footdrop in hemiplegics [2], while muscle afferents have
been used for ankle angular control in animal models [3], and
for bladder control [4]. In the above cases, the efficacy of the
approach was strictly related to the possibility of extracting the
relevant information from the signals recorded from the afferent
nerves. This is the most important requirement for their use
and many efforts are currently being made to implement better
processing algorithms for the different applications [5]–[7]. To
this end, emerging techniques such as artificial neural networks
(ANNs) and fuzzy systems (FSs) can be valuable tools for
natural sensory signal interpretation.

ANNs and FSs are two processing techniques whose efficacy
has been proven in many applications [8], [9]. Their most impor-
tant characteristic is the numerical-model-free structure which
is important when the system under study is complex. Moreover,
in the last few years, many attempts have been made to integrate
the advantages of these two complementary algorithms (namely,
the learning and generalization capability of the ANNs; and the
ability of the FSs to incorporate human knowledge) to obtain
hybrid systems often named neural fuzzy (NF) networks [10].

A. GOALS

This paper is part of a project whose aim is to implement
closed-loop control of ankle angular position during standing in
paraplegic subjects using muscle afferent information [11]–[14]
(see Fig. 1 for a schematic of the overall system).

Different aspects are to be addressed; namely, 1) the need for
better characterization of the behavior of natural sensors during
posture control; 2) extraction of the kinematic and dynamic in-
formation from the natural sensors; and 3) the implementation
of a real-time control system. This paper presents the first at-
tempt to solve problem 2) using the above mentioned properties
of NF systems. Here, we illustrate the application of a NF net-
work to extract angular information from muscle afferent elec-
troneurographic (ENG) signals recorded using implanted whole
nerve cuff electrodes.

0018–9294/01$10.00 © 2001 IEEE
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Fig. 1. Diagram of the implementing system for standing control using natural
sensory information. The information extracted from the ENG signals recorded
from muscle afferents will be used to modify the stimulation parameters in a
closed-loop paradigm.

The system implemented for this purpose was a recurrent
ANN whose structure was used to implement a set of fuzzy
rules [15], [16]. Moreover, this network used a nonstandard al-
gorithm for the fuzzification (the transformation of real data into
fuzzy data) of the input signals, named “nonsingleton” fuzzifier,
which is very useful when the processing data are noisy [15].

II. M ETHODS

A. Experimental Setup

1) Animal Preparation: Acute experiments were performed
using four female rabbits1 (identified by progressive numbers).
The animals were initially relaxed using an intramuscular
injection of 2.0-mg/kg Midazolam (Dormicum) and then
anesthetized using 0.095-ml/kg Fetanyl and 0.30-mg/kg Flu-
ranison (combined in Hypnom). Supplemental intramuscular
injections were administered every 20 min to maintain the
anesthesia during the experiments. Two tripolar, whole nerve
cuff electrodes were implanted: one around the tibial nerve and
the other around the peroneal nerve (which are major branches
of the sciatic nerve) in the rabbit’s left leg. The cuff lengths
were approximately 20 mm and the inner diameters were 2 and
1.8 mm for the tibial and peroneal nerves, respectively. The cuff
electrodes were produced according to the procedure described
in [17], except that a straight cut was used as a closing method.
The sural nerve was cut immediately distal to the peroneal cuff
to minimize recording unwanted cutaneous afferent activity
during the experiments. In the case of trajectories #2 and #4
(see Table I for a description of the different trajectories), two
wires were inserted in the lateral head of the lateral gastroc-
nemius (LG) muscle for bipolar electrical stimulation (0.1
mm in diameter, approximately 3-mm deinsulated; separation
between the electrodes approximately 3 mm). In Fig. 2, a
schematic of the implantation sites for the cuff electrodes is
presented (similar rabbit preparations have been used in other
experiments, see [12]–[14]).

2) Apparatus: In all the experiments, the equipment used
consisted of a computer controlled servomotor to passively ro-
tate the rabbit’s ankle in the sagittal plane (see [12]).

A support and fixation device equipped with four strain
gauges was used as torque transducer (sensitivity 10 Nm/V). An
optics-based rotation transducer was used to record the position
of the ankle during the movements (sensitivity10 /V). The

1The Danish Committee for Ethical use of Animals in Research approved all
procedures used in the experiments.

TABLE I
SUMMARY OF THE DIFFERENT TRAJECTORIESUSED DURING THE

SIMULATIONS. FOR EACH TRAJECTORY THEINITIAL POSITION OF THERABBIT

ANKLE, THE EXCURSION (PEAK TO PEAK), AND THE PRESENCE(OR ABSENCE)
OF THE LG MUSCLE STIMULATION ARE GIVEN

Fig. 2. Schematic illustration of the implantation sites. The cuff electrodes
were used to record the ENG signals from the tibial and peroneal nerve while
the ankle joint of the Rabbits was rotated by using a servo-motor.

position and torque signals were sampled at 500 Hz. The rabbit
was placed on its right side, and the left foot was mounted in a
cradle. The knee and ankle joints were also fixated during the
experiment.

An detailed description of the experimental apparatus can be
found in [14]. The whole nerve cuff recordings were pre-am-
plified 200 000 times, bandpass filtered using a second-order
Butterworth analog filter (500 Hz–5 kHz), and sampled at

10 kHz (12-bit National Instruments analog-to-digital
board) [2].

3) Movement Trials and Stimulation Protocol:The rabbit’s
ankle joint was rotated passively by the servomotor using seven
different trajectory profiles, while the ENG signals from the
tibial and peroneal nerves were recorded. In Table I, the dif-
ferent trajectories are summarized.

Four of the seven position profiles were used in the exper-
iments with Rabbits #1 and #2 and mimicking movement of
the ankle joint of both a normal and a paraplegic subject during
standing as follows. A male subject with no known neurological
disorders participated in this study. He was instructed to keep his
knees and hips extended and to primarily use the calf muscles
to initiate and maintain body sway about the ankle joint while
the movement was recorded. In addition, postural sway about
the ankle joint was recorded from a male T4/T5 paraplegic sub-
ject, but in this case, standing was initiated and maintained with
open-loop electrical stimulation of the quadriceps muscles. The
paraplegic subject stood quietly until fatigue of the quadriceps
occurred. The fatigue caused increased knee and ankle flexion.
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When the subject could no longer maintain standing, he sat
down. In all the experiments with the normal and paraplegic sub-
jects, the ankle angle was recorded using an electrogoniometer
XM110 (Biometrics ltd, Gwent, U.K.).

When the rabbit’s ankle joint was rotated, flexion of the joint
simulated forward sway of the human subject, and extension
simulated backward sway. A description of the protocol for the
human standing and the rabbit model is given in [12]. In trajec-
tories #1 and #3, the rabbit’s ankle joint was rotated using the
angular position profiles recorded during standing of the normal
and paraplegic subjects, respectively. In trajectories #2 and #4,
the same profile of trajectories #1 and #3 was imposed while
continuously stimulating the LG muscle. The stimulation fre-
quency was chosen to be 80 Hz, at which fused contraction was
obtained for both muscles. The duration of the rectangular stim-
ulus pulses was 100s. The amplitude was adjusted for each
rabbit to obtain recruitment levels equal to 25% of the maximal
force.

Two ramp-and-hold profiles constituted for the fifth and sixth
angular trajectories and were used during the experiments with
Rabbits #3 and #4. For the fifth trajectory, the ankle was moved
from an initial position of 80 with an excursion of 5 and a
velocity of 10 /s. For the sixth trajectory, the ankle was moved
from an initial position of 100 with an excursion of 30and
a velocity of 20 /s. The trajectory was chosen to assess the ro-
bustness of the NF model when the excursion of the ankle is
large (e.g., when the ground reaction force vector in a standing
human goes behind the knee, causing it to bend). The last tra-
jectory used was a sinusoid causing the ankle joint to be rotated
from an initial position of 100 with a peak-to-peak excursion
of 5 . The frequency of the sinusoidal wave was 0.5 Hz. This
trajectory was used during the experiments with Rabbits #3 and
#4. Three trials were recorded for each movement.

4) ENG Data Processing:All ENG recordings were rec-
tified and bin integrated during a 9-ms window regardless of
whether electrical stimulation was applied or not. When stimu-
lation was applied, the window duration allowed periods of ar-
tifact free ENG to be obtained in between the stimulus artifacts
that occurred every 12.5 ms [18]. In this way, artifacts did not
interfere with the recordings. The position and torque data were
low-pass filtered at 100 Hz (twelfth-order digital Butter-
worth filter) [12]. All data were normalized as follows:

(1)

where is the normalized variable, andis the original data
point.

5) Afferent Nerve Response Characterization:The ENG
signals recorded during different passive movements have been
used to characterize the response of the muscle afferents in
different conditions. The results are extensively described in
[14] and can be summarized as follows.

• While passively rotating the ankle at a velocity of 30/s
through a 60 excursion [from a fully extended (130) to
a fully flexed ankle (70)], the tibial and peroneal nerves
showed a reciprocal behavior (see Fig. 3). The former was
active during the flexion ramp movement while the latter
was active during the extension ramp.

Fig. 3. The ENG signals recorded from the tibial and peroneal nerves during
passive trapezoidal ankle movements. Trace (a) indicates the profile imposed to
the rabbit ankle. Traces (b) and (c) show the raw ENG signals recorded from the
two nerves. Traces (d) and (e) show the rectified and integrated activities of the
two nerves. (Reproduced with permission from R. Risoet al.[14].)

• Reciprocal activity was confirmed also for other passive
movements.

• The afferent origin of the ENG signals recorded during
the different ankle movements was demonstrated when the
recorded nerve was transected distal to the recording cuff
(see Fig. 4).

B. The Inverse Model Problem

The problem in question here is the well-known “inverse
model problem.” Here, we had an unknown variable(the
ankle joint position), and two derived and known variables

(the ENG signals recorded from the muscle afferents)
whose relation with can be expressed as follows:

(2)

where in our case the functionrepresents the coding of posi-
tion information implemented by the peripheral nervous system.

A NF model was implemented to solve the inverse model
problem, i.e., to find an approximation to the function to
extract the unknown variable

(3)

NF models have been shown to be able to adequately
approximate dynamic systems [19], [20]. They can be very
useful when traditional quantitative techniques of systems
modeling have significant limitations. In most cases, in fact,
it is quite difficult to adequately describe the behavior of a
nonlinear system by mathematical models, especially when
the structure of the system is unknown. Even if one knows
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Fig. 4. Experiments to verify the afferent origin of the ENG signals recorded.
Trace (a) indicates the profile imposed to the rabbit ankle. Trace (b) indicates the
peroneal nerve recorded activity before any transection. Trace (c) indicates the
peroneal nerve recorded activity after a transection proximal to the cuff. Trace
(d) indicates the peroneal nerve recorded activity after a transection distal to the
cuff. (Reproduced with permission from R. Risoet al.[14].)

the structure, numerical model representations usually become
irrelevant and computationally inefficient as the complexity
adds making impossible its use in real-time applications.
Moreover, some soft-computing models (beside being faster)
have been shown to work much better than descriptive models
of the neuromuscular system [21], [22]. Finally, the NF models
can incorporate thea priori knowledge (see Section II-C) in
the fuzzy rules (as the FSs).

All these considerations make the use of a NF recurrent model
very appealing with respect to the approach previously proposed
(i.e., the use of a look-up table [3]) which is not able to deal with
the complexity of the system we want to model, especially the
system’s time-variance.

C. The Neural-Fuzzy Model

A FS is generally composed of four different subsystems: the
fuzzifier; the fuzzy rule base; the inference engine; and the de-
fuzzifier as described in Fig. 5 [10].

1) Fuzzifier: In order to use fuzzy logic properties, the real
data have to be transformed into a set of
new “subjective” input values characterized by a membership
function. The proposed NF model uses a “nonsingleton” proce-
dure. In this case, the input valueis transformed into a fuzzy
membership function which is equal to one for
and decreases from one to zero, asmoves away from . This
means that is the most likely value to be correct, but because
of the presence of noise in the data, the neighboring points are
also likely to be the correct ones even if to a lesser degree. This
fuzzification procedure has been shown to be able to take into
account the uncertainty in the data [15]. Gaussian-like mem-
bership functions were implemented for the fuzzification. This
choice allowed us to use simple equations to implement the NF
model, as described in [16].

Fig. 5. Diagram of a FS. A FS is composed by four subsystems: 1) the
fuzzifier which tranforms real data into subjective fuzzy values; the fuzzy rule
base which represents the core of the FS incorporating the knowledge used
(in this application) to extract the angular information; the inference engine
which is used to infer the fuzzy rules with respect to the fuzzified data; and the
defuzzifier which transforms fuzzy variables into real data.

2) Fuzzy Rule Base:FSs are composed of severalIF

antecedent—THEN consequentrules. In particular, the im-
plemented NF model is a Mamdani-like FS, i.e., both the
antecedent and the consequent parts of theIF–THEN rules are
expressed using fuzzy membership functions [23]. The structure
of theIF–THEN rules in the case of multiple-input–single-output
is the following (the generalization to the multioutput case is
straightforward):

is and is

and is is (4)

where and are the th input membership functions (
) and the output membership function in theth rule

( ), respectively.
3) Inference Engine:The engine is based on a compo-

sitional rule of inference [10]. In this case the membership
function of theconsequentfor a particularantecedentcan be
obtained as follows:

(5)

where is the membership function of theth rule obtained,
in our case, with the product operation, andis the composi-
tion operator. It is worth noting that by using the “nonsingleton”
fuzzifier, the membership functions are not evaluated inbut
in a new point , as described in [15] (for “singleton” fuzzi-
fication ).

4) Defuzzifier: The last component of a FS is the defuzzifier.
Its aim is to transform the fuzzy output obtained after the infer-
ence of the fuzzy rules into a crisp output which can be used in
the “real” world. In the proposed NF systems, we implemented
the modified height defuzzifier [24] as follows:

(6)

where
output of the NF network;
point where reaches the maximum value [24];
measure of the uncertainty thatis close to the point
where 1 (it is equal to the standard deviation for
Gaussian-like membership functions);
membership function of theth rule after its inference.
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(a)

(b)

Fig. 6. (a) Scheme of the membership functions implemented for the inputs
of the NF model. (b) The architecture of the NF model implemented as a
recurrent network. The “FZ” blocks represent the “nonsingleton” fuzzification
procedures, the “mf” blocks represent the membership functions of the different
rules for the different variables, the “N” blocks represents the operation to
calculatex (for i = 1, 2, 3), and the “T” blocks represent the application
of the fuzzy operators for the inference of the rules.

5) The NF Model Proposed in this Paper:The structure of
the NF system described above has been implemented in the
framework of a recurrent neural network as illustrated in Fig. 6.

The inputs to the NF network were the two rectified and
bin-integrated (RBI) ENG signals (recorded from the muscle
afferents) plus the delayed output of the network (the predicted
trajectory) as feedback input, frame by frame [i.e., and

are the RBI-ENG signals at time, while
]. The fuzzy rules (before the training procedure de-

scribed in the next section) were set by using the knowledge
about the relationship between the ENG signals extracted from
the tibial and peroneal nerves and the ankle angular trajectory.
In fact, we know that the tibial nerve activity is related to the
dorsiflection of the ankle [14]. Therefore, for the tibial ENG
signal, if the membership function with the maximum degree is
“greater” in a fuzzy way (e.g., is greater than ) than the

TABLE II
RMS OF THEPREDICTION ERROR(E), MAXIMUM PREDICTION ERRORe ,

AND CORRELATION COEFFICIENT� BETWEEN THEPREDICTED AND THE

ACTUAL ANKLE PROFILE FOR THETESTSETS OFRABBITS #1–#4

membership function with the maximum degree of the bin-inte-
grated peroneal ENG signal, we can suppose that the ankle an-
gular position is becoming more dorsiflexed, and we can write
a fuzzy rule according to this information.

6) Training Procedure:The training procedure was im-
plemented using the description in [16]. It was stopped when
the maximum prediction error was under 0.75. In this way
we could be sure that the prediction error will always be less
than 1 , as suggested in [25]. Moreover, this choice allowed us
to avoid the overfitting problems (i.e., the network is not able
to generalize well during the test phase) which can occur if a
stricter training goal is adopted. In any case the simulation was
also stopped if the improvement in the maximum prediction
error was less than 0.0001. The “leave one out” method is used
for validation [26]: one trajectory is randomly excluded and
the NF model is trained on the remaining ankle profiles; then,
the selected sample is used to test the NF model prediction
capability (henceforth named as “test set”).

7) Performance Evaluation Criteria:To evaluate the pre-
diction ability of the NF model, the root mean square (rms) of
the prediction error was calculated

(7)

The correlation coefficient between the desired and the ac-
tual trajectories, and the maximum prediction error were
also used for performance analysis.

III. RESULTS

The prediction ability of the NF model was tested by using
the trajectories and the ENG signals as described in the previous
section. Prediction results for the test sets of the different Rab-
bits are summarized in Table II.

Simulated Standing Trajectories—Normal Subject:In both
Rabbit #1 and #2, when no stimulation of the LG muscle was
applied, the NF model was able to predict the ankle angular
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Fig. 7. The predicted ankle profile (dash-dotted line) and the actual one (solid
line) for the test set of trajectory #3 (Rabbit #1).

trajectory of the simulated standing profiles recorded during a
normal subject sway in accordance with the criterion suggested
in [25] (maximum prediction error below 1) as indicated by the
value of the different parameters.

When the LG muscle was stimulated, the performance levels
for the NF model were still good for Rabbit #1 while a dramatic
deterioration of the performance occurred for Rabbit #2. This
was probably caused by some artifacts generated in the recorded
ENG signal during the stimulation. In fact, even if we tried to
minimize all the possible sources of noise (e.g., by cutting the
cutaneous information), we cannot avoid to have some artifacts
due to the LG muscle stimulation.

Simulated Standing Trajectories—Paraplegic Subject:For
the simulated standing trajectories recorded during standing
of a paraplegic subject, the NF model prediction was not
satisfactory in terms of maximum error (because it is not below
the value suggested in [25]) but was quite good in terms of
rms of the prediction error and correlation coefficient for both
Rabbits #1 and #2 (see Fig. 7). This shows the robustness
of the NF model even in this case, which should not be a
common situation since during FES-based closed-loop control
of standing we want to stabilize the ankle angular profile about
the starting position.

“Ramp-and-Hold” Trajectories: For trajectories #5 and #6
(“Ramp-and-Hold” trajectories), the NF model was able to pre-
dict the trajectories quite well as suggested by the values of

, , and . From Figs. 8 and 9, it is evident that most of the
error is concentrated in the constant part of the profile. This is
probably due to the choice of only one input parameter (the rec-
tified and bin-integrated ENG signal) which is not able to give
enough information to the NF model related to this part of the
trajectory. Additional parameters (such as, the coefficients of a
wavelet decomposition of the signal) might be useful as input to
the NF model to improve its performance.

For trajectory #5 (large excursion ramp-and-hold profile) the
maximum error is quite large especially when the trajectory goes
near zero probably due to the normalization procedure we have
chosen. However, the network seems to be robust enough in this

Fig. 8. The predicted ankle profile (dash-dotted line) and the actual one (solid
line) for the test set of trajectory #5 (Rabbit #3).

Fig. 9. The predicted ankle profile (dash-dotted line) and the actual one (solid
line) for the test set of trajectory #6 (Rabbit #3).

case as suggested by the favorable values of the other parame-
ters related to prediction error. In fact, in this case the NF model
is required to give a rough prediction of the ankle angular trajec-
tory to permit adequate control actions to manage this extreme
situation (i.e., when the angle excursion is far from the middle
position).

Sinusoidal Trajectory:For trajectory #7 (sinusoidal trajec-
tory), the NF model prediction was satisfactory in terms of max-
imum error—especially for Rabbit #3 (see Fig. 10).

IV. DISCUSSION ANDCONCLUSION

The aim of this paper was to assess the feasibility of using
muscle afferent signals to control standing in subjects affected
by spinal cord injury. To show this, we recorded different “pas-
sive” (i.e., without stimulation during the movements) and “ac-
tive” (i.e., with LG stimulation during the movements) ankle
profiles in an animal model.
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Fig. 10. The predicted ankle profile (dash-dotted line) and the actual one (solid
line) for the test set of trajectory #7 (Rabbit #3).

The use of an animal model has permitted us to preliminary
test our hypothesis about the feasibility of extracting position
information from muscle afferent activities in a very simple and
controllable situation (for example, we removed the cutaneous
sensory information as described in [14]). Moreover, in the fu-
ture, we could carry out further studies, e.g., on the possibility of
extracting more restrictive sensory information rejecting signals
which are not useful (such as the above mentioned cutaneous in-
formation). Finally, we tried to make the experimental situation
more closely mimic the real condition by applying to the an-
imal model standing trajectories recorded from human subjects
(as previously described).

Most of the profiles consisted of a small angular excursion
because this is the usual situation during human sway. More-
over, to test the robustness of the implemented system, we
also recorded the ankle profile of a paraplegic subject during
FES standing as well as ramp-and-hold profiles having a large
peak-to-peak excursion.

The proposed NF model showed good performance during
the prediction of ankle angular position in the small passive ex-
cursion trajectories respecting (or obtaining results very near to)
the criterion suggested in [25] (maximum prediction error below
1 ) for Rabbits #1 and #2. On the other hand, when these trajec-
tories were replicated in conjunction with the stimulation of the
LG muscle (i.e., in trajectory #2), the NF model performance
dramatically decreased as for Rabbit #2.

In the large excursion curves, the prediction performances
were not as good in terms of maximum error. However, with
these large excursions, the NF model still yielded good results as
suggested by the high correlation coefficient and the low value
of the rms of the prediction error.

Thus, it appears that the NF model proposed in this paper
can be used for control purposes in real applications where the
movement excursions are small (as during standing), and pro-
viding that the FES stimulation sites are far from the nerve
recording sites (to avoid the presence of artifacts in the ENG
signals we want to use for the prediction). It is worth noting that
for control purposes we may not need the exact prediction of

the trajectory but only some qualitative information during the
movements and this may always be furnished by the NF model
as suggested by the good values of the correlation coefficients.
A strategy similar to that proposed in [6] may be used for ex-
ample to keep the Center of Pressure of a disabled person within
a region under the foot which can assure his/her stability [27].
Finally, it is worth noting that the prediction of ankle angular
information the ENG signals recorded during different trials of
the same ankle trajectories seems to be quite similar [14].

Future work will deal with other steps needed to achieve the
final goal of this project. For example, we will implement a
closed-loop control of the ankle joint will be implemented in
a rabbit model. Moreover, to improve the prediction capability
of the system, different features extracted from the ENG signals
will be tested, and possibly, other models will be evaluated.
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