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Detection of Nerve Action Potentials Under Low
Signal-To-Noise Ratio Condition

H. Nakatani*, T. Watanabe, Member, IEEE, and N. Hoshimiya, Fellow, IEEE

Abstract—We propose a method for detection of action poten-
tials (APs) under low signal-to-noise ratio condition. It is based
on multiresolution analysis. Three parameters are used for detec-
tion. Two of them are for determining if there is an AP or not, and
the other is for the estimation of waveforms. Our method provides
better estimated waveforms than the conventional de-noising ap-
proach.

Index Terms—Cuff electrode, low signal-to-noise ratio condi-
tion, multiresolution analysis, nerve action potentials, wavelet
transform.

I. INTRODUCTION

SENSORY and motor command information is considered
to be represented by neural activity patterns. Recordings of

neural activity provide us a clue to estimate this kind of infor-
mation from peripheral nerves. Therefore, neural recordings are
of significant importance to applications in both scientific and
clinical areas.

There are several types of recording electrodes. Cuff elec-
trodes [1] can be used for long-term recording [2] because they
cause less damage to the nerve fibers than intrafacicular elec-
trodes such as wire electrodes, regeneration microelectrode ar-
rays [3], [4] and slanted multielectrode arrays [5]. However, it is
sometimes difficult to detect action potentials (APs) from cuff
recordings by conventional amplitude detection scheme because
the signal-to-noise ratio (SNR) of cuff recordings is smaller than
that of intrafacicular recordings.

In order to compensate for the shortcoming of the cuff
electrode, we developed a method for detection of APs under
low SNR condition. If the noise process contributes the same
frequency bands as the signal, conventional filtering approach
faces serious difficulties [6]. De-noising approach [7], [8],
which is the noise removing scheme based on multiresolution
analysis (MRA), with proper threshold can suppress white
noise process by damping or thresholding wavelet coefficients.
In this paper, we focused on a new thresholding rule to obtain
a better estimation of the waveforms of APs than the conven-
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Fig. 1. Electrical circuit representation of a myelinated nerve fiber. The
membrane capacitanceC , the resting potentialV , and the nonlinear
membrane conductanceG represent the gating of the ionic channels and
decide the value of the ionic currentI at noden. V andV are the
internal and the external potentials,G andG are the axoplasmic and the
extracellular conductance, andI is the membrane current at noden.

tional de-noising approach. Our method uses three parameters,
whereas the conventional de-noising approach uses only one.
Two of them are for determining if there is an AP or not, and
the other is for the estimation of waveforms.

We evaluated the performance of our method with both a sim-
ulated signal generated by a peripheral nerve model and a real
signal recorded with a cuff electrode.

II. M ETHODS

A. Simulated Signal

The simulated signal has some advantages over the real neural
signal for evaluating the performance of the algorithm, because
it provides known solutions with different conditions, like firing
time and various SNRs.

The simulated signal was generated by a peripheral nerve
model. The assumptions for developing the model generally
follow those of McNeal [9], except that we assumed there
is variation in potential over the nodal surface. The nerve
fiber was expressed by an electrical circuit (Fig. 1). Franken-
haeuser–Huxley equations [10] specified the membrane
capacitance , the resting potential , and the nonlinear
membrane conductance which represent the gating of
the ionic channels and decide the value of the ionic current

at node . When the membrane at the end of the fiber is
depolarized, an AP is generated and it is conducted along the
fiber following the first-order differential equation:

where is the transmembrane voltage
at node , and and are the axoplasmic and extracellular
conductance/unit length of axon, respectively. The nerve trunk
was assumed to be an infinite homogeneous volume conductor
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Fig. 2. The arrangement of recording electrodes. A neural signal related to the
angle changes of the MTP were recorded from both inside and outside of the
tibial nerve with the cuff and the wire electrodes, respectively. The nerve was
cut at the proximal side in order to block spinal reflexes.

for calculating the surface potential of the nerve trunk, and the
neural signal was obtained by bipolar recording. The frequency
components of generated neural signal were limited to between
100 Hz and 2 kHz with a bandpass filter.

A Gaussian noise process was generated by the minimal stan-
dard generator and the Box–Muller method [11], and the fre-
quency components were limited with low-pass filter whose
cutoff frequency was 4 kHz. The simulated signal was obtained
by adding a Gaussian noise process to the neural signal.

B. Cuff Electrode and Recording Methods

We used 75-m stainless-steel wire with Teflon coating
(SUS316, A-M systems) as a recording electrode, because the
excess noise generated from stainless-steel was smaller than
from other metals [12]. Teflon coating was removed from the
wire at the tip of it for recording, and it was sewn on the cuff,
which was made from silicone tube. Internal diameter of the
cuff was 2 mm and length was 8 mm. The cuff electrode was
designed for bipolar recording. The distance between recording
electrodes was 5 mm. The peak-to-peak amplitude of the noise
process generated from the recording electrode was about
3 when the frequency components were limited by an
analog bandpass filter with cutoff frequencies at 15 and 3 kHz.

As shown in Fig. 2, the cuff electrode was placed on the tibial
nerve of a Japanese white rabbit which was anesthetized by pen-
tobarbital sodium. Wire electrodes were inserted into the nerve
at the proximal side of the cuff electrode to record the neural
signal simultaneously. The distance between the cuff electrode
and the wire electrode was about 10 mm. In order to block spinal
reflexes, the nerve was cut at the proximal side of the wire
electrodes. The neural activities related to the angle changes
of the metatarsophalangeal (MTP) joint of the forefinger were
recorded. Neural signals were amplified with a differential am-
plifier (MEG-2100, Nihon Koden) with a gain of 80–100 dB,
filtered by an analog bandpass filter with cutoff frequencies at
15 and 3 kHz and recorded with a tape recorder (RD-135T,
TEAC). After the experiment, recorded signals were sampled
at 20 kHz and analyzed with a personal computer (Power Mac-
intosh 7600/132, Apple Computer Inc.).

C. Estimation of Statistical Characteristic of the Noise Process

With the amplitude histogram of the recorded signal, we es-
timated the mean and the standard deviation (SD) of the noise
process in the presence of the neural activity. The estimated sta-
tistical characteristic was used to decide the value of parameters
for detection of APs.

Fig. 3. The recorded time series and their amplitude histogram. (a) The neural
activity related to the angle changes of MTP were recorded with wire electrode.
(b) The amplitude histograms of the recorded noise process and the recorded
neural activity, andy = log(p(x)) are plotted. Wherep(x) is the probability
density function of the normal distribution.

The amplitude distribution of the Gaussian noise process fol-
lows the normal distribution and the probability density function

is defined as

R (1)

where
mean;
SD, respectively;
constant.

Although the amplitude distribution of the recorded signal does
not follow the normal distribution in the presence of neural
activities, the main contributions to classes which have large
frequencies are not neural activities but the noise process and
the amplitude distribution of those classes almost follows the
normal distribution as shown in Fig. 3. The number of classes

of the histogram was decided by the following equations:

(2)

where is the number of sampling data. We estimated the sta-
tistical characteristic by means of fitting (1) to the distribution
of the classes whose frequencies are greater than two-thirds of
maximum frequency with the least square method.

D. Detection of Nerve Action Potentials

The hierarchical structure of the MRA generated by wavelets
(Fig. 4) was used for the detection of APs. Although the or-
thogonal wavelets of Daubechies have been dominantly used
in most of the wavelet analyses, their values may not be com-
puted in a straightforward way. On the other hand, the compactly
supported cardinal B-spline wavelets constructed by Chui and
Wang [13], which are biorthogonal functions, have several de-
sirable properties in applications. Some of them are as follows
[14].



NAKATANI et al.: DETECTION OF NERVE ACTION POTENTIALS UNDER LOW SNR CONDITION 847

Fig. 4. The hierarchical structure of the MRA generated by wavelets.f(t) is
time series data,a (t) is discrete approximation off(t), andd (t) is discrete
detail signal at scalej.

Fig. 5. Our method uses three thresholds for detection of APs. The higher
thresholdp determines if there is an AP or not.q is used as a threshold
to confirm the presence of an AP, if an AP has been probably detected at a
continuous scale. Once the presence of an AP is confirmed, we use the lower
thresholdr to estimate the waveform. Wavelet coefficients which are greater
thanr and consecutive with respect to timet are used for the reconstruction
of the time series.

• The algorithm can be constructed using only the convolu-
tion of discrete data of real numbers and, hence, it is fast.

• Easy interpolation algorithms are available to find the rep-
resentation of the time series data in terms of the scaling
functions.

In this paper, we used the cubic cardinal B-spline [14].
Detection of APs with conventional de-noising approach has

three steps [8].

1) Obtain the wavelet coefficients (discrete detail signal)
at scale (frequency band)of the recorded signal.

2) Apply the hard-thresholding to each scale

where
;

number of sampling data;
SD of the noise process at scale.

3) Reconstruct time series with the threshold wavelet coef-
ficients .

In conventional de-noising approach, if the thresholdis set
to be large, the number of false positive decreases. However,
more and more components of waveforms of APs are zeroed out
and the distortion of the waveforms becomes large. Therefore,
we used three parameters. As shown in Fig. 5, two of them are

for determining if there is an AP or not, and the other is for the
estimation of waveforms.

A threshold amplitude at scale , to determine if there is
an AP or not, was defined as

(3)

and if the wavelet coefficients at scaleof the time series at time
, , satisfied

(4)

we supposed that it is possible that there is an AP at time.
is the probability and is significance level of the normal
distribution for the null hypothesis that there are no APs,
is the SD of the noise process at scale. The number of false
positives was limited to be less than 1/20 s, namelysatisfied

(5)

where is the number of sampling data/s at scale.
We used another threshold amplitude for verifying the

presence of AP at time. The value of was . In case
of an AP, the signal usually appears on two or three continuous
scales simultaneously, but in case of the noise process, there is
no such correlation. Therefore, if the wavelet coefficients at time

satisfied inequality (6) and/or (7)

(6)

(7)

we determined that an AP was in the time series at time, and
information about waveforms were in the scaleand the next
scales which satisfied inequality (6) and/or (7)

A threshold amplitude at scale to estimate waveforms of
APs was used. The value ofwas . The wavelet coef-
ficients for estimation of waveforms of APs were selected from
the scales which had information about waveforms of APs. The
absolute values of coefficients were greater thanand consec-
utive with respect to time (Fig. 5). Time series was recon-
structed with these coefficients.

III. RESULTS

A. Detection from the Simulated Signal

Our method was evaluated with the simulated signal. Fig. 6
shows the detection ratio against various SNR of the signal. The
detection ratio with our method is almost the same as that with
the conventional de-noising approach. There was no false pos-
itive in both our method and the conventional de-noising ap-
proach.

In order to evaluate the distortion of the waveform, we calcu-
lated the Euclidean distance between the noise-free and the de-
tected waveforms of APs. Fig. 7 shows the average value of cal-
culated distance of 20 APs. The value is normalized by the dis-
tance when the conventional de-noising approach is used. The
value of the threshold amplitude for estimation of waveforms
was defined as in this paper. We also calculated the
Euclidean distance for various values offrom to
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Fig. 6. The detection ratio against various SNR. The frequency components
of the neural signal are from 100 Hz to 2 kHz, and those of the noise process
are limited with low-pass filter whose cutoff frequency is 4 kHz. The detection
ratio of our method is almost same as that of conventional de-noising approach.

Fig. 7. The distortion of the waveforms of the detected APs. The distortion
was evaluated with the Euclidean distance between the noise-free and the
detected waveforms of APs. Vertical axis is normalized by the value when
the conventional de-noising approach is used. Horizontal axis is the value of
x which defines the value of the threshold amplituder for estimation of
waveforms byz(x )� .

. Fig. 7 shows that our method provides better esti-
mated waveforms than the conventional de-noising approach.

B. Detection from Cuff Recordings

The neural activity was recorded only when the MTP joint
was extended. We could record stably while we conducted the
experiment. Fig. 8 shows recorded waveforms with both the cuff
and the wire electrodes, and detection result. The SNR of cuff
recordings is much lower than that of wire recordings. It is dif-
ficult to find APs in cuff recordings. Our method detected two
APs, although conventional de-noising approach detected one.
The firing time of detected APs correspond to those of wire
recordings. The detection result by our method is valid if we
assume that both the cuff and the wire electrodes recorded the
activity of the same units.

IV. DISCUSSION

Our detection method and conventional de-noising approach
are based on MRA. The signal is decomposed into a number of
scales, the wavelet coefficients, which have information about
waveforms of APs, are selected, and the signal is reconstructed
with these coefficients. Therefore, advantages of our method
and conventional de-noising approach over conventional
filtering approach are that they do not need to decide the cutoff
frequency for removing the noise process which has different

Fig. 8. The recorded neural activity and the detection result. (a) The recorded
neural activity, which was related to the angle changes of the MTP joint of
forefinger, with the cuff electrode from the tibial nerve. (b) Result of detection
from the cuff recordings with our method. (c) Result of detection from the
cuff recordings with conventional de-noising approach. (d) The recorded neural
activity with the wire electrode which was placed at the proximal side of the
cuff electrode.

frequency components of the signal, and if the noise process
contributes the same frequency bands as the signal, they can
suppress this kind of noise process.

Our method uses three parameters for detection of APs,
whereas the conventional de-noising approach uses only one.
This makes possible to obtain better estimated waveforms
than the conventional de-noising approach. The probability
of occurring false positive decides the value of parameters

and for determining if there is an AP or not. However,
there is no criteria to decide the value the parameterfor the
estimation of waveforms of APs, because the optimal value of

depends on the waveforms of the APs and it is difficult to
know them under low SNR condition. As shown in Fig. 7, large
value of makes the distortion large because the coefficients
for reconstruction do not have enough information about the
waveforms of APs, and small value of also makes the dis-
tortion large because some coefficients have more information
about the noise process than about the waveforms of the APs.
We assumed that when the value of is between 40% and
60% significance level of the normal distribution for the null
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hypothesis that there is no APs, is not too large or too small
for any kind of waveforms.

Diagnostic device for clinical use requires a real-time system.
There were some reports about a digital signal processing (DSP)
system to perform wavelet transform in real-time [15]. Applying
this kind of DSP systems to our method, our method could be
implemented in real-time.

V. CONCLUSION

In this paper, we have developed the method for detection of
APs under low SNR condition. Our method is based on MRA,
and uses three parameters. Two of them are for determining if
there is an AP or not, and the other is for the estimation of wave-
forms. Our method provides better estimated waveforms than
the conventional de-noising approach.
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