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ABSTRACT 
Human, afferent, whole nerve signals recorded using an 

implanted nerve-cuff electrode were analyzed using two algorithms 
based on the statistical properties of the signals. The processing 
method typically described in the literature (RectiJication and Bin- 
Integration - RBI) has serious shortcomings in processing these 
signals, which have very poor signal-to-noise ratios. Algorithms 
based on a Singular Value Decomposition @4l) of the signal’s 
2nd and Higher-Order Statistics @OS) have resulted in more 
robust signal detection. Reliable detection of afferent nerve 
signals is essential if such signals are to be of use in artificial 
sensoy-based Functional Electn’cal Stimulation neuralprosthetics. 

INTRODUCTION 
It has been demonstrated that afferent nerve signals can 

be used as a replacement for artificial sensors (switches, 
strain gauges, etc.) in Functional Electrical Stimulation 
(FES) neuralprosthetic devices, [I]. Unfortunately, these 
signals are difficult to use in practice since they are plagued 
with high background noise levels, resulting in poor overall 
signal-to-noise ratios (SNRs). We present two advanced 
signal processing algorithms, both based upon signal and 
noise subspace orthogonal decompositions using the signal’s 
statistical distribution. The first algorithm, which is based 
on a 2”d order signal statistic (autocorrelation), is quite 
similar to the well known “super-resolution” algorithms 
(MUSIC, for example). The second algorithm is based on a 
Higher Order Statistic (HOS) of the data. Both utilize a 
Singular Value Decomposition (SVD) to perform an 
orthogonal decomposition and derive an eigen-spectrum. As 
a baseline, both are compared to the standard processing 
method most frequently employed in nerve signal analysis. 

METHODS 
Afferent, whole nerve signals were recorded from the 

calcaneal nerve of a patient afflicted with a mild, Multiple 
Sclerosis induced “drop-foot”, using an implanted nerve-cuff 
electrode, in accordance with the guidelines suggested by the 
local ethical committee. These nerve signals are intended to 
bc uscd as a replacement for an external heel-contact switch 
in controlling a drop-foot correction FES neuralprosthetic. 
The output of this switch and the raw (unprocessed, 
amplified) nerve signal were recorded simultaneously, 
during slimulation assisted gait. The raw signal was 
digitally filtered, and stimulation artifacts removed, as de- 
scribed in 121. This signal was Rectified and Bin-Integrated 
(RBI) to produce the baseline signal for comparison. In 
addition, an estimate (using the first 10 lags) of the standard, 
Toeplitz, autocorrelation matrix, R, was computed using a 
block of 512 data samples. It is well known that, if an 

orthogonal decomposition of this matrix is performed using 
a Singular Value Decomposition (SVD), then the resulting 
singular (eigen) values provide an ordered measure of the 
relative importance (in a least-squared energy sense) of the 
principal signal components in the eigen-spectrum domain, 
[3]. The eigenvalue-spread (the difference between the larg- 
est and smallest eigenvalues) can be used as a measure of the 
separation of the signal and noise subspaces. A small spread 
means that there is little statistical dfference between the 
orthogonal signal components, indicating a purely stochastic 
(i.e. noise-only) signal. Conversely, a large spread points to 
the presence of a signal component (i.e. the signal+noise 
case). This is readily explained by noting that an eigen- 
decomposition of a purely “white-noise” signal yields a 
single degenerate eigenvalue. Thus. in the ideal noiseady 
case, there is no spread. Due to the linearity property, the 
noise component simply adds an offset (correspondmg to the 
noise variance) to all of the eigenvalues when a signal (non- 
stochastic) component is present, and is, therefore, removed 
when the eigen-difference is computed. 

Unfortunately, this separation of noise and signal+noise 
subspaces is complicated when the noise is “colored’ (non- 
white). Although methods for modifying the standard 2nd 
order decomposition methods have been described (pre- 
whitening, for example), another solution is the use of a 
higher-order (greater than 2’ld) statistic of the signal as a 
basis for a subspace decomposition. It can be shown that the 
3‘d order cumulant (which is equivalent to the 3rd moment 
for zero-mean signals) is immune to the contribution of all 
symmetrically distributed signals (Gaussian, or otherwise), 
[4]. Thus, 3rd order cumulants provide a tneasure of the 
“skewness” (difference from a symmetric distribution) of a 
signal. Like 2nd order statistics, cumulants are also linear 
operators (i.e. additivity holds). Therefore, the 3rd order 
cumulant of a signal+noise space is equal to thc sum of the 
individual cumulants of the signal and noise subspaces. 
However, if the distribution of the noise subspace is 
symmetric, as is the case with the ENG signals analyzed 
(where the noise follows a Gaussian distribution), then it is 
suppressed in the 3‘d order cumulant domain. It is important 
to note that this noise suppression also holds for colored 
noise sources, such as the typical amplifier’s 1/s noise. 

As with the 2nd order subspace decomposition method, it 
is possible to use an estimate of the true 3‘d order cumulant 
value, obtained by selecting an appropriate subset of thc 2-D 
cumulant matrix. First, a vector, cjX , is computed from the 
first Q lugs (r0, q), along the main diagonal (T,, = r,), where 
Q is determined empirically (typically 10<Q<20), using: 
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1 c,,(z,,z,) = (11 N ) C , x ( n ) x ( n +  z,)x(n+z,) 
This is equivalent to computing the autocorrelation of x(n) 

and J(n), when ro= rl (N=512). Next, a Toeplitz matrix C3 
is formed (analogously to the 2nd order H matrix), and it’s 
maximum eigenvalue computed. Since, given an accurate 
estimate of c3x, the minimum eigenvalue (corresponding to 
the noise subspace) should, ideally, be zero, it is sufficient in 
this case to compute only the maximum eigenvalue for use in 
discriminating the noise-only and signal+noise cases, [5].  

RESULTS 
Figure 1 compares the performance of the 3 algorithms 

when applied on human nerve signals recorded during FES 
assisted gait. The traces, from the top show: 1) the output of 
a mechanical heel-contact sensor placed in the subject’s shoe 
where a “high” level indicates stance phase; and the outputs 
from the 2) RBI, 3) 2”d order, and 4) 3rd order detectors, 
respectively. Note that, because the cuff-electrode primarily 
records signals from Fast Adapting (FAI) receptors, the raw 
signal contains short “bursts” of activity, corresponding to 
the change (derivative) of the applied mechanical stimuli. 
This is evident in the output from all three processing 
algorithms as a marked increase in level within a short 
window around the onset/offset of heel contact (the “edges” 
on the top trace, indicated with dashed lines). It is also 
important to point out that it is possible tal obtain a real-time 
implementation of all three of these processing algorithms 
using a portable neuralprosthetic system based upon a 
commercial Digital Signal Processor (DSP), [ 2 ] .  

DISCUSSION 
It is evident from Fig. 1 that the RBI ( I  st order) algorithm 

has very poor noise rejection ability, which results in a poor 
SNR in the processed signal (i.e. the activity “peaks” which 
occur during edges are not much greater in amplitude than 
the “background’ activity). This is as expected, since there 
is no separation of signal and noise spaces using this method 
(i.e. signal and noise contribute with equal weighting to the 
final result). The situation is improved in the 2”d order case, 
where signal and noise subspaces are, in the ideal case, 
completely separated (orthogonal). In practice, as can be 
seen, this is not the case. Although the noise floor is lower 
(or, conversely, the signal peaks higher), resulting in a 
correspondingly higher SNR, noise is not completely 
rejected. This can be explained by 1) the non-ideal (non- 
white) nature of the noise, and 2) the use of a subset 
(approximation) of the complete subspace decomposition. 
These limitations are, largely, overcomc by thc 31d ordcr 
algorithm. It’s output closely resembles the ideal case (the 
derivative of the “square-wave” heel-contact signal). Here, 
the noise floor is negligible, resulting in a very high SNR, 
which, in turn, yields more reliable detectors. Such detectors 
can either be based upon a threshold comparison (the 
simplest case), or more complex analysis methods (Adaptive 
Neural or Logic Networks, Hidden Markov Models, etc.). 
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Figure 1 - A comparison of the results from the 
three algorithms using data from FES assisted gait. 

CONCLUSION 
In order for natural sensory signals to be truly applicable 

in FES neuralprosthetic devices, robust signal processing 
algorithms must be developed to cope with poor SNRs and 
non-stationarity, yielding reliable signals under a variety of 
“real-world conditions. Such devices should simply “work”, 
without requiring frequent parameter adjustments or user 
interaction. Given the state-of-the art of cuff-electrodes, and 
the “poor” signals obtainable from them, standard process- 
ing methods prove inadequate. We have demonstrated that 
subspace decomposition methods based on the statistical 
properties of nerve signals can be used to improve the situa- 
tion markedly, yet are simple enough to be implementable 
within a realistic hardware and power consumption budget 
on commercial or custom DSP devices. 
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