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Abstract 

Afferent, whole nerve signals recorded using an ini- 

planted nerve-cuff electrode were analyzed using three 
detectors based on the lst, 2nd and 3rd order statistical 
properties of the signals. Results based on standard 
Rect@ed, Bin-Integrated (1st order statisticall processing 
are compared with two algorithms based upon a Singular 
Value Decomposition (Sm) of the signal’s 2nd and 3rd 
order correlation (cumulant) matrices. Due to the very 
low signal levels obtainable from nerve-cuff electrodes 
and the high levels of interference from adjacent muscles, 
the overall signal-to-noise ratio (SNR) is very poor. In 
addition, the noise level is non-stationary. The inherent 
properties of the 3rd order statistics of these signals yield 
a detector that performs better than the other two. 

1. Introduction 

It has been known for more than 100 years that animal 
muscle tissue can be made to contract through application 
of electrical current. More recently, this has been applied 
in the development of Functional Electrical Stimulation 
(FES) systems, with the goal of restoring lost motor func- 
tion in paralyzed individuals. More than 30 years of FES 
development have lead to the now generally accepted con- 
clusion that, in order to reduce muscle fatigue and 
increase reliability, closed-loop systems, in which some 
sort of “feedback information is used to control the 
stimulator’s parameters, yield better results than simple 
open-loop systems. In restoring muscle function via FES, 
the goal is to emulate, as best possible, the body’s lost 
natural functionality. Given the choice of using artificial 
sensors (goniometers, strain-gauges, accelerometers, etc.), 
versus utilizing the subject’s still intact sensory system, 
the latter is llkely to provide us with the closest emulation 
of the body’s natural control system. In order for the 
body’s natural sensors to be used effectiveiy. the level of 
information obtained from them should be comparable to 
that obtainable from artificial sensors. This requires a 
reliable, stable. implantable transducer which is able to 
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record the sensory signals (known as “afferent” nerve sig- 
nals) being passed along the body’s nerve fibers, from 
local touch receptors, to the brain. The only appropriate 
such device presently suitable for use in humans (where 
nerve damage must be avoided) is the nerve-cuff 
electrode. Such cuffs are typically constructed from a 
silicone insulating tube, in which 3 non-insulated rings of 
stainless-steel or platinum wire act as electrodes. The 
cuff. which is slit longitudinally, is opened, placed around 
the nerve, and sutured closed. Lead wires connecting to 
the ring electrodes are routed to an appropriate exit site 
and through the skin, where they are attached to an 
external connector. For our purposes, these electrodes are 
connected to a special hgh-gain (1 lO,OOOx), low-noise 
amplifier. The resulting amplified nerve signal is 
commonly referred to as the Electroneurogram (ENG). 

We have constructed a prosthetic device utilizing this 
ENG signal (a “neuralprosthetic”) in which a custom 
designed DSP-based system controls an 8-channel FES 
stimulator. The entire device is small enough to be easily 
born by the subject. and uses standard rechargeable 
batteries. Natural sensory information can be applied to a 
varietJl of FES tasks. We have primarily been concerned 
with two: Hand Grasp Restoration in Tetraplegia, and 
Hemiplegic Drop-foot Correction. Tetraplegic subjects, 
who have limited use of their arms, are typically unable to 
firmly grasp objects. Through stimulation of the muscles 
in the hand and forearm, simple grasp functions can be 
restored, using the processed nerve signal as a feedback 
signal indicating when, due to insufficient stimulation, 
the grasped object begins to “slip”. Subjects suffering 
from a “drop-foot’’ are unable to fully activate the muscles 
which rotate the foot up/down. Thus, because they can not 
achieve adequate toe clearance, they are unable to walk 
normally. Stimulation of these muscles can improve such 
subject’s gait, provided it occurs at the correct time in the 
gait cycle. Timing has. traditionally, been detemiined via 
a mechanical switch placed in the subject’s shoe, which 
turns stimulation off upon closure (heel-contact) and on 
upon opening (heel-lift). We have previously shown that 
the nerve signal recorded by nerve-cuff electrodes can be 
used as a sort of “natural” heel-contact switch, [2]. In 
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both applications, the fundamental problem is the reliable 
detection of the presence of nerve signal activity in 
background noise. Essentially then, the problem reduces 
to one of pure endpoint or transition detection in the drop- 
foot application. 

2. Considerations Specific to this Problem 

There are certain aspects of the present problem (in the 
use of human nerve signals) that coqplicate detection: 

The noise is some non-deterministic combination of 
tonic nerve firing, electrode thermal noise, and am:plifier 
llf noise. Although, in the strictest sense, due to the: pres- 
ence of background (tonic) nerve firing, this isn’i. pure 
noise, in practice, it is dominated by the thermal and Ilf 
components of the electrodes and amplifier. In order to 
fully activate the paralyzed muscles using FES. it is often 
necessary to apply stimulation voltage pulses in excess of 
140V to the skin’s surface. These pulses (typically under 
300msec in duration) propagate through the body (acti.ng 
as a volume conductor) and induce large stimulation 
artlfact impulses in the recorded neive signal. Also, the 
Electromyographic (EMG) signal from adjacent muscles, 
either naturally occumng though voluntary activation, or 
stimulation induced, acts as a high level noise source. In 
addition, external EMF sources (typically mains power) 
are often of sufficient intensity to induce large noi.se 
potentials. The nerve signal amplitudes typically recorded 
are in the 1-10 pVolt range for common sensory stimuli. 
Therefore, the initial S N R  of these raw nerve signals is 
often as low as -6OdB! Fortunately, it is known that the 
majoriv of nerve signal information is confined to a 
narrow frequency band. from 1 .O to 3 OkHz. Therefore, an 
important first step in the detection process is the 
application of a simple (non-adaptive) bandpass filter. 
This filter, combined with other processing (windowirg 
adaptive thresholding, etc.) yields nerve signals wi.th 
typical SNRs in the range from 0 to +3dB. 

0 The nerve signals recorded by cuff-electrodes are 
dominated by the activity from what are termed &lst 
adapting sensory receptors. These receptors respond, 
primarily. to the 1st derivative (i.e. velocity) of applied 
force. Consequently, during a period. of activity. defined 
by the application of a mechanical stimulus to the skin 
within the nerve’s innervation area, onLy the onset a,nd 
offset of contact initiate detectabtv increased nerve 
activifv. Thus, activity occurs in short bursts where it is 
usually not possible to distinguish between force 
application and force removal. The practical implication 
of this fact for the use of afferent nenie activity in a drop- 
foot correction system. is a contact onset/offset ambiguih, 
that must be resolved by other means. 

0 AI1 methods we have tried to-date rely upon a single 
variable test against a fixed threshoki. When the value of 

the proce!;sed ENG signal is below the threshold level, the 
null hypothesis Ho is true. and the present state (gait 
phase) is unchanged. Upon exceeding the threshold, the 
alternative hypothesis, H I ,  is indicated. and the present 
state is toggled (i.e., an edge occurred). Of particular 
significance is the constraint that the number of False 
Positives (FPs). or erroneous edge detections be, 
essentially, zero. The consequences of an FP are that the 
stimu1ato:r will be erroneously deactivated while the leg is 
still in iniotion, sufficient toe clearance will not be 
maintained. and the subject may fall. Thus, the detection 
threshold must be set sufkiently high such that the Fp 
percentage is low. Conversely. if the threshold is too high, 
resulting in missed detections. the stimulator will not be 
turned off during the stance (standing) phase, the 
subject’s muscles will tire rapidly and. again, the subject 
may fall. Thus, ideally, the processed ENG signal, as the 
input to the threshold detector, should have a very high 
S N R  (i.e. the signal amplitude during transitions should 
be high, whide the background level during constant force 
presencehbsence should be close to zero). Given low S N R  
inputs (+3& ma..;.). and very non-stationary conditions 
(variable foot contact pressures, variable gait cycle timing, 
plus variable muscle and external EMF interference 
signals), the demands upon the signal processing 
algorithm for robust ENG processing are. indeed, strict! 

Final.ly, it is important to note that this is an uncon- 
ditionally real-time processing application. Most ENG 
processing algorithms have. up until now, primarily been 
designed to characterize the properties of afferent nerve- 
cuff recordings off-line, and typically used inherently non- 
real-time methods, such as ensemble averaging. to 
enhance SNRs. When rcal-time information is desired. 
the standa:rd processing method still widely used is to bin- 
integrate (over thc inter-stimulation pulse interval) the 
rectified. filtered signal. Commonly referred to as the RBI 
(Rectified. Bin-Integrated) signal, this yields. essentially a 
standard lpnorm detector (or the energv over a window. 
if the squaired signal is integrated), based on the signal’s 
1 st order statistics. Unfortunately, while simple to imple- 
ment (even with analog circuitry). energy detectors per- 
form poo’rly on low SNFt signals. nith non-stationary 
noise. In order to improve detection reliability. specifi- 
cally for the drop-foot application. an adaptive noise 
threshold was incorporated into the standard RBI algo- 
rithm, along with a windowed detector, [7]. Using these 
modifications, we obtained an average detection ratio of 
85%, with no FPs. Since this was deemed unacceptable, 
we began investigating more robust detectors, in which a 
fundamental criterion is the ability to reject non- 
stationary, wide-band (essentially white) noise. 

It has previously been shown. [A], [5 ] ,  that good 
detection reliability is achievable using second- and 
higher-order statistics (HOS) on speech signals with 
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SNRs in the range mentioned above. This observation has 
prompted us to investigate the performance of detectors 
used for speech signals in the present problem. There are 
many similarities between the problems of detecting 
speech in noise and nerve-cuff signals in noise, indicating 
that similar methods may be applicable. However, one 
fundamental difference between speech and nerve signals 
is the onset/offset ambiguity issue mentioned above. 

2.1 Autocorreldiora-based detectors 

The first, more advanced. detector investigated is based 
upon the signal’s 2nd-order statistical properties. The 
method is based on the fact that the autocorrelation 
matrix R of a signal that contains only white noise is 
diagonal, with all diagonal entries equal to the variance 
of the noise. 0’. All (say 0) eigenvalues of this matrix 
are. therefore. equal to 0’. as well. If an information 
(non-white) component is also present in the signal, then 

longer diagonal. and consequently its (real: 
positive) eigenvalues are not all equal. Testing for the 
presence of activity in the signal thus becomes equivalent 
to testing for (non)equality of the eigenvalues of R, under 
the assumption that the additive noise is white. Given 
that R can be estimated from a record of h’ samples 
through the observation matrix X. as R = X XT, the 
singular values of X can be used for the test. These are 
obtained using a Singular Value Decomposition (SVD). 
It has been shown that a computationally efficient method 
of solving the SVD problem, when the data is real-only, is 
the use of the Jacobi rotation algorithm, 13 J .  

The actual test is performed by comparing the differ- 
ence or the rafio of the maximum and the minimum 
eigenvalues, not to zero or one, respectively (as would 
ideally be the case), but to appropriately set thresholds. In 
theory. a significant advantage of this detection method 
over the RBI (or energy) method is that it is immune to 
the noise level (variance). This is because the white noise 
variance acts as a DC offset in the eigenvalue domain, 
which doesn’t affect the eigenvalue difference. In prac- 
tice. this detector is much more immune to non-stationary 
noise levels than the RBI detector, and yields better 
detection SNRs. Yet, since it primarily acts as a whiteness 
versus non-whiteness test, it is sensitive to the color of the 
noise. Note that in our case a significant proportion of 
the noise is due to the amplifier’s colored (l/f) noise. 

2.2 ~ ~ ~ ~ ~ ~ ~ t - b ~ s e d  detectors 

is 

In order to overcome this limitation. detectors based on 
the higher-order statistics (HOS) of the data were also 
tested. The 3rd-order statistics of a signal provide a 
measure of the skewness (difference from the Gaussian 
distribution) in the signal’s statistical distribution, 
whereas the 2nd order statistics (autocorrelation -and 

spectrum) only provide information about the signal‘s 
variance. Detectors based on 3rd-order cumulants have 
been successfully employed for speech signals due to the 
fact that quadratic phase coupling, present in voiced 
speech due to non-linearities in the vocal tract, [4], [l], 
can be detected using 3rd-order statistics. Although a 
precise model for the signals recorded by nerve-cuff 
electrodes has yet to be developed, it has been shown, [6]. 
that these signals result in the non-linear combination of a 
series of action potentials, themselves modeled by a non- 
linear combination of sinusoidal functions. Thus it seems 
reasonable to assume that, in analogy with speech signals. 
there are significant (i.e. detectable) non-linearities in 
nerve-cuff electrode signals. In this case. it can be proven 
that the 3rd order cumulant of such signals cannot be zero 
for all lags. Thus a detector, using a method similar to 
that employed in the eigenvalue-spread algorithm. can be 
designed using only this diagonal vector as follows: 

The 3rd order cumulant of a record of data. x(n), is 
computed as: c , ~  = (1 / N)x, x(n)x (n  + Z,)x(n + Z, ) 
for an appropriate set of lugs (ro, r,), lying on the main 
diagonal ( r ,  = r,) of the 2-D plane. This is. essentially. 
equivalent to computing the autocorrelation of x(n) and 
x-’(n). The 0 x 0 Toeplitz matrix C3 is formed from the 
first Q diagonal lags (where Q is chosen empirically) and 
its SVD is computed, as in the 2nd order case. In the 3rd 
order case, however, it is sufficient to simply use the 
maximum eigenvalue (rather than the difference between 
maximum and minimum) as the single test parameter. In 
this case, we are testing the matrix entries against zero as 
an indication of the presence of skewed components in the 
data (here, noise is assumed to be colored, but non- 
skewed). In practice. the maximum eigenvalue is 
compared against an empirically determined threshold. 

The 3rd order method requires slightly more computa- 
tions than the 2nd order case; yet, it is substantially less 
sensitive to additive (non-stationary) noise variance than 
either the RBI or 2nd order methods. This is important in 
a neuralprosthetic application where noise levels (and 
signal properties in general) vary not only amongst 
applications (i.e. the nerve used, its size. the size of the 
CL& electrode, etc.), but also amongst patients. and even 
with the time after implantauon. Finally. the storage 
requirements of both the 2nd and 3rd order algorithms are 
well within the bounds of the on-chip memory of most 
commercial DSPs in contrast to most frequency domain 
(FFT or wavelet) methods. which generally require the 
addition of exqemal memory. This is an important 
consideration for portable (or implantable) systems. where 
low power consumption is essential. 
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3. Results, Discussion and Conclusion 

Figures 1 and 2 show a comparison of the 3 algorithms 
described, under non-stationary noise conditions. Iin 
Figure 1, linearly increasing white-noise (up to 100% of 
nominal) was added to a typical aSerenit nerve-cuff (ENG) 
signal in the region from 6000 to 10000 samples. Thle in- 
creased amplitude between samples 3000 and 5000 corre- 
sponds to increased nerve activity resulting from a single 
mechanical stimulation of the skin in the innervated areal. 
This is also indicated by the arrow in ]Figure 2. The ordi- 
nate is in Volts. The nerve-cuff outpul signal was annpli- 
fied by 220,000, filtered with a 4th order Buttemortlh 
bandpass (5OOHz-3kHz) filter. and diigitized to 12-bits 
( i5V range) using a sampling frequency of 10,OOOHz. 

Figure 2 shows detection results when the 3 detectors 
are applied on the noisy signal in Figure 1. Note that all 
three detect the true ENG activity (arrow), although the 
noise baseline, which defines the SNR of the detector 
(since the data is normalized to the peak value), is highest 
for the RBI detector and lowest for the cumulant detector. 
Thus the cumulant detector yields the: highest S N R  and 
the RBI detector the lowest, with the eigen-spread detec- 
tor’s SNR falling in between. As is evident in Figure 2 ,  
the S N R  of the RBI detector decreases markedly with in- 
creased noise power. Both the eigen-spread and cumidanit 
detectors continue to function at 100% added noise power. 

In order for a natural sensory based device to be 
accepted in clinical applications, the amount of parameter 
adjustment required by the user (or physiotherapist) imust 
be minimal. This has proven to be a severe drawback with 
RBI based detectors. Although we have obtained 
reasonable success by adding adaptive noise thresholding 
to the basic algorithm, we have not yet achieved a truly 
robust RBI implementation that does not require freqjuerit 
parameter adjustments. Although it (cannot be clailmeal 
that HOS offer the best solution for ad1 types of signals, 
our preliminary results show that they hold great promise 
in the detection of afferent nerve signals in noise. Further 
improvements are anticipated through the use of (11) 

automatic thresholding based on a fixed, specified Fp 
ratio, or (ii) a bi-frequency domain bi-cohexence 
magrutude/phase detector, [I]. Furthler characterization 
of the statistical properties of nerve-c:uiT signals will be 
required to fully optimize future detectiion algorithms. 
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