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ABSTRACT

This research presents a uniform approximation to the formu-
las of Benade and Keefe for the propagation constant of a cylindri-
cal tube, valid for all tube radii and frequencies in the audio range.
Based on this approximation, a simple expression is presented for a
filter which closely matches the thermoviscous loss filter of a tube
of specified length and radius at a given sampling rate. The form
of this filter and the simplicity of coefficient calculation make it
particularly suitable for real-time music applications where it may
be desirable to have tube parameters such as length and radius vary
during performance.

1. INTRODUCTION

In practical implementations of acoustic tubes using digital wave-
guide synthesis, it is necessary to account for the losses associated
with viscous drag and thermal conduction which take place pri-
marily within a thin boundary layer along the bore walls [1, pp.
127–129]. Though these losses are distributed over the length of
the tube, in a digital waveguide implementation it is more effi-
cient to lump these effects by commuting a characteristic digital
filter to each end of the waveguide (and any intervening observa-
tion points) [2, 3], as illustrated in Figure 1. ��� ���
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Figure 1: A waveguide model of a cylindrical tube with commuted
wall loss filters,

������
, at upper and lower delay line observation

points, a reflection filter � ����� and a transmission filter � ���� .
In [4] Benade gives formulas for calculating the propagation

constant in a cylindrical tube of arbitrary radius, and presents sim-
ple approximations, valid for either low frequencies (and/or small
tubes) or high frequencies (and/or large tubes). Later Keefe [5]
presents separate higher-order approximations for large and small
tubes. The propagation constant gives the phase velocity and the
attenuation coefficient necessary for designing the loss filter

������
which is commonly derived using the large tube approximation [1,
pp. 27–29].

In this work we present a uniform approximation to the at-
tenuation and phase velocity models of Benade and Keefe. Based
on this uniform approximation we observe that the loss filter is
minimum phase and evaluate several minimum phase filter design
methods, including a cascade of first-order shelf filters with param-
eters specified by simple functions of tube radius, tube length, and

sampling rate. All filter design methods have comparable accuracy
for a given order of digital filter, while the shelf filter cascade has
the advantage of design simplicity and is nicely parameterized for
time varying tube geometries.

2. THERMOVISCOUS LOSSES IN CYLINDRICAL
CONDUITS

In a cylindrical conduit, the walls contribute a viscous drag depen-
dent on the ratio of the pipe radius � to the thickness of the viscous
boundary layer given by the parameter����� � � ��"!$#&%(')�* (1)

where
!

is the density of air,
�

is the viscosity and
�

the radian
frequency [6, pp. 193–196].

Further losses may occur due to a thermal exchange between
the air and the walls with a magnitude dependent on the ratio of
the tube radius � to the thermal boundary layer thickness given by
the parameter ��+,� � �.-�"!�/"01# % ') * (2)

where
-

is the thermal conductivity and
/"0

is the specific heat of
air at constant pressure [6, pp. 193–196]. The two ratios are related
by the square root of the Prandtl number 243 [4], that is,� + � 2 ��� * 2 �65 /"0 ��7 -�8 ')�9 (3)

Values for gas constants for air are given in Table 1.
The effects of the viscous and thermal losses lead to an atten-

uation in the waves propagating down the length of the pipe. The
propagation constant is given by: ����� �<; �����1=?> �@ ����� * (4)

where ; ����� is the attenuation coefficient,
�

is the radian frequency
and @ ����� is the phase velocity of wave disturbances [4].

Benade gives the following approximations for both the phase
velocity @ ����� and the attenuation coefficient ; ����� in the limit of
small and large tube radius boundary-layer thickness ratios [4]:

@ ����� �BACCCD CCCE
F ���GIH J * ����KML
FONPLRQ L��� H G � L = � J Q L �2 #(S * ����TML

(5)
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; ����� � ACCCD CCCE
� � F�� GIH J� � * ����KML
� � F � L��� H G � L = � J Q L �2 # * ����TML 9

(6)

Constant Symbol Value Unit

air density
! L 9 L���� L�� %
	 � 7 F� 3viscosity
� L 9 ����� L�� %
� � 7 ��� � F�� �Prandtl 2 3 � 9 ��� L

ratio of
specific heats

J � / 0 7 / � L 9 ���
free space
sound speed F � 9 �����?L�� � F� 7 �

Table 1: Gas constants for air evaluated at
G�� 9 � � / .

It is possible to account for attenuation due to wall losses sim-
ply by multiplying delay line outputs by a single coefficient � [7,
page 466]. For a tube of length � and radius � , with observation
points at the ends of the upper and lower delay lines, the constant� has the following approximate value:

��� L�Q G ; � * ; � G � L�� %! � ') 7 � * (7)

where the approximation is valid for tubes sufficiently short that �
is near one.

Since losses are frequency dependent, this coefficient is only
a rough estimate. In practice, the simple large � � expressions are
commonly used to design wall loss filters for musical wind in-
strument physical models (see, e.g. [1, page 129]) and given the
relatively large bores of most instruments, this is likely an accept-
able approximation. These expressions may not, however, be suf-
ficiently accurate for smaller tubes like those found in some bi-
ological sound production mechanisms such as the bronchi and
trachea in birds [8]. Therefore, in order to have a more versa-
tile acoustic tube model, it is preferable for the wall loss filter to
make use of a single less restrictive expression for phase veloc-
ity and attenuation—one that is compatible with all tube sizes and
frequencies.

3. A UNIFORM APPROXIMATION FOR PHASE
VELOCITY AND ATTENUATION

The asymptotic behavior of phase velocity and attenuation for large
and small � � is given by (5) and (6). The following single expres-
sion is a uniform approximation for the phase velocity, valid for
any � � : @ ����� � F " � � � � L = � � 7$# �L = " � � � �&% � = � � 7$# � * (8)

where the parameters " � and
% � , given by

" � � LG H J * % � � L = 5 L = � J Q L � 7 2 � 8H G # *
(9)

were selected to match the limiting phase velocity behavior and
the parameter # � G�J (10)

marks the ratio ��� delimiting the small and large tube regions.
Similarly a uniform approximation for the attenuation coeffi-

cient is ; ����� � � �F � � # "(' =)% ' � � � 7$# �L = � � 7$# *
(11)

where the parameters " ' and
% ' were again selected to match the

limiting attenuation coefficient behavior and are given by

" ' � G H J * % ' � 5 L = � J Q L � 7 2 8H G 9 (12)

Figures 2 and 3 show the uniform approximations for phase
velocity and attenuation along with their limiting behaviors.
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Figure 2: Modeled uniform phase velocity (solid) and the limiting
behavior (dashed).
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Figure 3: Modeled uniform attenuation (solid) and the limiting
behavior (dashed).

4. WALL LOSS FILTER

4.1. Filter Characteristic

The propagation constant
: �����

in (4) gives the per unit length at-
tenuation of waves propagating along an infinitely long tube act-
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ing as a transmission line. Accordingly, the following frequency
response approximates the attenuation and phase delay over a tube
of length � : �

% ��� ����� �
�
% ' � ����� % 	
���� � �������� 9 (13)

Removing a pure delay of duration � 7 F , we have the desired wall
loss filter frequency response

������
, given by������ � �

% ' ������ % 	����� � ���� % �������� 9 (14)

Noting that the attenuation ; ����� increases with the square root
of frequency, the wall loss filter

������
is seen to have a gentle

low-pass characteristic. This low-pass characteristic is more pro-
nounced with decreasing tube radius � or increasing tube length � ,
as illustrated in Figures 4 and 5 respectively.
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Figure 4: Wall loss filter magnitude � ������ � , showing a low-pass
characteristic that is more pronounced with a decreasing tube ra-
dius (radius values, � , given in F�� ).
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Figure 5: Wall loss filter magnitude � ������ � , showing a low-pass
characteristic that is more pronounced with an increasing tube
length (length values, � , given in F�� ).

While not yet confirmed analytically, numerical results indi-
cate that the wall loss filter

������
is minimum phase. In the se-

quel, we assume this property holds, and consider only those de-
sign methods which produce minimum phase filters.

4.2. Filter Design

Given the desired wall loss filter transfer function
������

expressed
in terms of the tube parameters and physical constants, what re-
mains is to compute the coefficients of a digital filter approximat-
ing the desired transfer function for frequencies up to the Nyquist
limit. The wall loss magnitude is a relatively smooth function of
frequency, and computationally efficient low-order rational filters
are expected to provide a good fit.

Warped Prony [9] and Hankel norm methods [10] were used
to fit low-order rational filters to

������
. While the fit to the atten-

uation filter is good, as shown in the examples of Figures 6 and 7,
these methods require considerable computation and are not con-
venient for a filter based on tube parameters likely to change in
real-time. Additionally, in settings where tube parameters are time
varying, the fit may produce real poles for some parameter values
and complex poles for other making it difficult to smoothly transi-
tion between wall loss filters.
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Figure 6: Warped Prony fifth-order model and computed wall loss
filter transfer functions illustrating an excellent fit at all frequen-
cies.

To circumvent problems with standard modeling techniques,
consider a cascade of minimum-phase first-order shelf filters ��� �����
[11], ������� � ��

����� � � ���� � + �"! � * �$# �"!P� � * (15)

with each shelf filter having a DC gain of one, a band edge gain

� # �"!P� , and a gain % � # �"!P� at its transition frequency
� + �"!P� . As

shown in the Appendix, the shelf filter coefficients are easily com-
puted in real time. Also, since the shelf filters are first order, they
have real poles and zeros, and are relatively free of artifacts when
made time varying.

First-order shelf filters have transfer functions which slowly
transition between their DC and band edge values. It therefore
seems reasonable that a cascade of shelf filters with judiciously
chosen transition frequencies and gains could approximate the de-
sired wall loss transfer function.

As seen in Figures 4 and 5, the desired wall loss filters as a
function of tube length, radii, and sampling rate are strikingly self
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Figure 7: Hankel norm fifth-order model and computed wall loss
filter transfer functions illustrating an excellent fit at all frequen-
cies.
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Figure 8: Computed and modeled wall loss filter illustrating an
excellent fit at all frequencies using a cascade of first-order filters
to produce a fifth-order IIR filter.

similar under the appropriate stretching of the log magnitude or
frequency axes. Initially, the idea was to design via brute-force
optimization a low-order shelf filter cascade which matched the
desired transfer function at a particular sampling rate and tube ge-
ometry. This prototype filter could then be stretched in response to
sampling rate and conduit geometry.

In designing the prototype filters for different orders however,
a pattern emerged and we discovered that the cascade of shelf fil-
ters with band-edge gains (in units of amplitude) and transition
frequencies (in radians

7��
) given by

� # �"! � � ����� � 5 �"! Q �3 � 7	� 8 ')
 �� � � 5 � # Q �3 � 7�� 8 ')����� � �� G � ��� 7 G � ��� *
� + �"! � � N �"! Q LG � 7	� S 	 * (16)

has a transfer function which, as illustrated in Figures 9–11, is an
excellent approximation to

������
for a wide range of filter orders

�
, tube lengths � , tube radii � , and sampling rates

���
.
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Figure 9: Computed and shelf filter cascade wall loss filter magni-
tude at various tube radii (values given in F� ) with the filter order,�

, and the tube length, � , constant.
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Figure 10: Computed and shelf filter cascade wall loss filter mag-
nitude at various tube lengths (values given in F�� ) with the filter
order,

�
, and the tube radius, � , constant.

In the presence of a changing tube geometry, we recommend
that the filter

�����I�
be implemented as a cascade of first-order sec-

tions, with coefficients linearly or exponentially interpolated be-
tween computed values. In this way, the dynamic range of the fil-
ter coefficients is minimized, and filters having interpolated coef-
ficients are guaranteed to be stable with transfer functions roughly
matching those associated with intermediate values of geometric
parameters. Note that fifth-order filters are sufficient to give trans-
fer functions accurate to withing a fraction of a dB across the audio
band for typical audio sampling rates.

5. CONCLUSIONS

Wall attenuation filters are an important part of acoustic tube mod-
els (used by a large body of musical instruments) and should not
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Figure 11: Computed and shelf filter cascade wall loss filter mag-
nitude using

G * � * 9 9 9 * L�� first-order shelf filters.

be neglected for the sake of simplicity. Though their audibility
may be slight for certain tube geometries, they can contribute sig-
nificantly to the reduction of high frequency components that lead
to aliasing and can also eliminate some sources of instability in
the model. Though approximations will often be satisfactory, it
is worthwhile to aim for a more robust, scientifically sound and
versatile solution.

As exemplified by Figures 9–11, a cascade of first-order shelf
filters provides an excellent approximation to the cylindrical tube
wall loss transfer function

������
for a wide range of filter orders,

tube lengths, tube radii, and sampling rates. It is also efficient to
compute for continually changing parameters making it an ideal
choice for modeling wall losses in acoustic tubes.

6. APPENDIX: FIRST-ORDER SHELF FILTER
COEFFICIENT COMPUTATION

This appendix presents formulas for computing the coefficients of
the first-order shelf filters used above.

The transfer function for the first-order shelf filter is given by

� ���� � + * � # � �����
=
� � � % �L = � � � % � 9 (17)

Having unity gain at DC, a band edge gain � # � � (the gain at
the Nyquist limit) and a gain

H �$# at the transition frequency
� +

measured in radians
7��

, the coefficients in (17) are given by

��� � � � = ! � �L = ! ; � * (18)

� � � � � = ! � �L = ! ; � * (19)

� � � ! = ; �L = ! ; � * (20)

where

� � � � L = � # � 7 G = � L�Q � # � ; � 7 G * (21)� � � � L�Q � # � 7 G = � L = � # � ; � 7 G * (22)

and ; � � AD E
� * � # � L� Q sign

� � � � � 3 Q L � ') * � # �� L 9 (23)

To form the coefficients of a prototype shelf filter with a transition
frequency of

�,7 G
,
�

from (23) is set to the following:� � � � # = L � 7 � �$# Q L � * �$# ��6L 9 (24)

The parameter! ���
	 � � � � + 7 G Q ��7 � � 7 �
	 � � � � + 7 G = ��7 � � (25)

is the coefficient of the first-order allpass transformation warping
the prototype filter to the proper transition frequency.
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