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The role that thermo-viscous effects play in the propagation of finite level sound in a 
waveguide has been reexamined from a fundamental perspective. In the past, nonlinear 
acoustic interactions have been described by energy conserving modulation of spectral 
amplitudes as wave packets travel axially down the waveguide. To account for thermo-viscous 
effects in this modulation, investigators have included without formal justification into the 
modulation equations dissipative terms with a magnitude corresponding to the Kirchhoff rate 
of attenuation encountered in linear theory. In this investigation, the problem of the 
propagation of finite magnitude p, lane waves is analyzed in a different manner. As opposed to 
previous investigations, all three modes (acoustic, vorticity, and entropy) are considered from 
the outset. The boundary conditions are extended to 'include vanishing normal and tangential 
fluid velocity, as well as vanishing fluid temperature perturbations. A new solution at second 
order is presented (second order being the first correction due to nonlinearity), which is 
uniform in the spatial variables. As a consequence, it is shown that the thermo-viscous effects 
are incorporated into the spectral amplitude modulation equations through one of the 
boundary conditions. These modulation equations apply to both plane and higher-order 
modes, including the region arbitrarily near the cutoff frequency for the higher-order modes. It 
is shown that the small parameter 1/x/•, where N = poDc/p (the acoustic Reynolds number), 
is a special scale for analysis of nonlinear interactions in a waveguide. In particular, the relative 
magnitude of the sound source and l/f•- is a determining factor that predicts whether 
nonlinear interactions will be significant. 

PACS numbers: 43.25.Jh, 43.20. Mv 

INTRODUCTION 

The behavior of finite level sound propagating in a 
waveguide has been the object of several investigations. 
These investigations have shown that when sound levels be- 
come finite (say greater than 125 dB re: 20pPa in air at 200 
Hz), the effects of nonlinearity under quite general circum- 
stances become measurably significant. Because of this fact, 
the prediction of the qualities of the nonlinear effects are of 
practical engineering importance. 

It has been known for some time that finite level plane 
waves at all frequencies will mutually interact in a rectangu- 
lar waveguide, generating sum and difference harmonics as a 
result of their interaction. •'• Using various techniques, it 
was shown that the interactions are described by an infinite 
set of bilinear first-order differential equations governing the 
amplitude of each plane wave, • or a similar nonlinear coor- 
dinate transformation, 2 each dependent upon the axial dis- 
tance traveled by the waves. In this theory, the interaction of 
plane waves is energy conserving, and therefore identical 
with the behavior associated with the Earnshaw solution) 

Furthermore, the behavior of finite level higher-order 
modes has also been investigated using the same methodolo- 
gies as for the plane modes. Vaidya and Wang 4 and Gins- 

berg 2 have shown that a particular subset of higher-order 
modes will interact, this subset being those higher-order 
modes having equal phase velocity. The amplitudes of these 
modes were also observed to modulate as the waves travel 

axially down the waveguide, the modulation being deter- 
mined by bilinear first-order differential equations or equiv- 
alent nonlinear coordinate transformations. Again, this the- 
ory predicted energy conservant nonlinear interactions. 

In all of the preceding investigations, the fluctuations 
occurring in the waveguide were presumed to be governed 
by a nonlinear wave equation that includes the effect of qua- 
dratic nonlinearity originating from the continuum equa- 
tions but ignores dissipation and requires that the velocity 
fluctuations be isentropic and irrotational. In effect, these 
methodologies neglected the presence of the vorticity and 
entropy modes. As a consequence, the boundary condition 
applied at the waveguide walls is vanishing normal velocity. 
This means that the viscous and thermal boundary layer pro- 
cesses are not included in the problem solving philosophy 
from the beginning. To achieve practical results, however, 
Vaidya and Wang 4 and Hamilton and TenCate 5 have ac- 
counted for the boundary layer processes by incorporating 
dissipative terms in the first-order differential equations that 
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model the attenuation presumed to effect the nonlinear mod- 
u!ation of the interacting higher-order modes. 

An exception to the methodologies adopted in the pre- 
viously described work is the investigation undertaken by 
Burns 6 in the 1960s. Burns calculated the sound field that 

would occur in a cylindrical tube with a source generating 
fluctuations that are finite in magnitude. In his investigation, 
Burns required the normal and tangential velocity fluctu- 
ations to vanish at the boundaries, as well as the fluid tem- 
perature perturbations. The method applied by Burns to this 
problem was straight perturbation expansion, and as a con- 
sequence his solution c(•ntained secular terms. Due to the 
complexity of the procedure, only results for plane modes 
were presented, although in principle the procedure could be 
applied to determine the nonlinear interaction of higher-or- 
der modes as well. It was found that acoustic boundary layer 
processes did alter the nonlinear modulation of the plane 
waves that were considered. 

In the present investigation, we will reexamine the prob- 
lem of finite level sound propagation in a waveguide from a 
fundamental perspective. This perspective will incorporate 
the viscous and thermal boundary layer processes directly 
into the development of the equations that describe the non- 
linear interaction of plane waves by including the vorticity 
and entropy modes in the analysis. Inclusion of the entropy 
and vorticity modes will require that the boundary condi- 
tions at the waveguide wall are vanishing normal and tan- 
gential velocity, and continuity of temperature (in this case, 
we will consider the waveguide wall material to be a much 
better conductor of heat than the medium inside the wave- 

guide). The new perspective is made possible by a discovery ? 
in the application of the method of multiple scales to the 
corresponding problem of the propagation of linear sound in 
the same waveguide. The main results of the subsequently 
described work have been presented in a separate docu- 
ment. s 

I. PROBLEM DEFINITION AND GOVERNING 
EQUATIONS 

To analyze finite level sound propagation, we choose the 
two-dimensional waveguide shown in Fig. 1. A sound source 
is specified at x* = 0 (we will use the superscript asterisk to 
indicate dimensional field variables), and the duct is un- 
bounded as x*--, oo. To simplify further computations, the 
medium inside the waveguide is assumed to be air, but in 
principle could be any other fluid. The waveguide walls are 
assumed to be made of a solid material similar to metal, 

glass, or some kind of plastic, in order that the shear vibra- 
tions of the medium do not cause like vibrations in the 

boundary material of significant magnitude. 
In addition to specifying a sound source at x* = 0 and 

requiring that the radiation be bounded as x*-• 0o, boundary 
conditions must also be applied to the fluctuations of the 
medium at the waveguide walls aty* = 0 andy* = D. In the 
present investigation, we will require that the following 
boundary conditions are to be maintained at the waveguide 
walls: 

v,=0, v,*=0, and T*=0, (1) 

D 

FIG. 1. Two-dimensional waveguide geometry. The sound source is located 
at the x* = 0 location and the waveguide is bounded as x* 

where %* and v,* are the fluid velocities normal and tangen- 
tial to the waveguide walls and T* is the temperature pertur- 
bation of the medium. These boundary conditions are practi- 
cal for the majority of circumstances encountered. The 
objective of the investigation then is to predict and quantify 
the fluctuations in the medium as the specified sound source 
becomes intense enough so that the fluctuations are finite. 

We now address the equations that govern the fluctu- 
ations of the medium in the waveguide. In what follows, the 
governing equations will include the acoustic, vorticity, and 
entropy modes at first order (corresponding to those asso- 
ciated with infinitesimal fluctuations), but will limit the 
nonlinearities to the quadratic self-interaction of the acous- 
tic mode. The general closure equations for the medium in 
the waveguide are 
Continuity: 

Op_•_* + V*-(p*v*) = O, (2) 
Ot* 

Momentum: 

p, Dr* • --+ V'P*-- pV*(V*.v*) +/t?*X?*Xv* = O, 
Dt * 

(3) 

Energy: 

DT* DP* -- •cV*"T* +•- • •, (4) ,o*% Dt * Dt * .. 
State: 

P* =p*RT*, (5) 

where (I)•. 2 is the viscous dissipatation tensor, i.e., 
*• * 2 • •i• -vi.r + v•.,, - •SijVk.k*, 

and the symbols p*, P*, and T* are the fluid density, pres- 
sure, and temperature of the medium. In addition R, p, •, 
and c•, are the universal gas constant, shear viscosity, ther- 
mal conductivity, and heat capacity at constant pressure for 
air. These equations assume that the fluid is homogeneous, 
isotropic, Newtonian, and that the equation of state is that 
for an ideal gas. 

The closure equations can be nondimensionalized using 
the following scalings: 
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P* -P• p* - po* v* 
P-- , p----, v=--, 

PO* po* c 

T* -- TO* 
T-- , 

To* 

t- , (x,y,z) = - , , , 
D D 

where the "0" subscript denotes the ambient value of a field 
variable. In the above scalings, c is the isentropic speed of 
sound and D is a length scale that corresponds to the width of 
the waveguide under consideration. Implementation of the 
above scalings into the closure set [ (2)-(5)] results in the oa 
following nondimensional equations that govern the fluctu- 
ations in the waveguide: oat 
Continuity: 

OaP + V.v + V-(pv) = 0, (6) 
Momentum: 

Dv 1 

(p + 1) -•- +--¾P------ 

Energy: 

4 1 

3N V(V.v) + •VXVXv = 0, 
(7) 

DT y-- 1 DP 
(p+ 1) 

Dt 7/ Dt 

_ I V2T_ • 1 c 2 • NPr N cpTo •'•' (8) 
State: 

p= (P+ 1)/(T+ 1) - 1, (9) 

where 7/is the ratio of specific heats, Pr is the Prandtl num- 
ber, and N = po*Dc/g is the acoustic Reynolds number of the 
fluid, in this case air. The nondimensional set (6-9) retains 
all information associated with fluid motions. 

In the subsequent analysis, the set [(6)-(9)] will be 
analyzed using the perturbation method of multiple scales. 
In this context, nonlinear terms will be retained only 
through quadratic order. In general, the dependent variables 
will be expanded in a sequence similar to 

Or= al + -- a2 + -- 

1 

where a is a field variable and the quantity 1/x•- is the scale 
used in the expansion. Furthermore, similar expansions with 
the same scale will be applied to chosen independent vari- 
ables when necessary. As a consequence, if interest is re- 
stricted to the first correction due to nonlinearity, all activity 
of magnitude less than O(l/N) can be neglected. 

In the Appendix, it is shown that if the two-dimensional 
fluid velocity and temperature fluctuations are decomposed 
according to 

v=V• +Vde+ Vx(;ez), (10) 

T = - (7/- 1) + •VP oat 2 

+ NPr• + (3Pr-1) oa&• oa----•-, (11) 
then the closure equations can under certain assumptions be 
reduced to 

Vorticity: 

oat 1_ V=; = 0, (12) 
8t N 

Acoustic: 

+ I 7/-- I , 

= oaT \ at / + Vq•a.Vq•a , (13) 
Entropy: 

8• 1 V2•e = 0. (14) 
Ot N Pr 

The decomposition (10) splits the velocity field into its 
compressible and incompressible pa•itions, with the com- 
pressible partition further subdivided into those which pre- 
dominantly generate entropy, and those that do not. As 
such, 4, corresponds to the acoustic mode, 4• corresponds 
to the entropy mode, and • corresponds to the yogicity 
mode. In the set [ ( 12)-(14) ], only the nonlinear self-inter- 
action of the acoustic mode has been retained. Quadratic 
products containing 4• and • have been ignored. The precise 
terns that have been eliminated are stated in the Appendix. 

The fluid velocity and temperature decompositions 
[ ( 10),( 11 ) ] then allow the boundary conditions ( 1 ) for a 
two-dimensional waveguide to be written in terms of the 
field variables •, 4e, and • as 

--+• •-o, (•) 
& & Ox 

NPr• -- (Z-- 1) •" =0. (17) 
Ot 

In the temperature boundary condition (17), only the lead- 
ing-order terms in the decomposition (11) have been re- 
tained. The higher-order terms do not contribute to the 
problem solution because of the nature of the perturbation 
expansion to be described in the subsequent section. 

II. PERTURBATION ANALYSIS OF THE FINITE LEVEL 
FLUCTUATIONS 

The boundary value problem will be solved first for 
plane-wave sources with the perturbation method of multi- 
ple scales. ø Solutions for higher-order modes will then be 
stated. For the higher-order modes, it will be seen that the 
results will apply even in the case that the frequency is arbi- 
trarily near the cutoff frequency. In both cases, a special 
expansion of the independent and dependent variables using 
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the acoustic Reynolds number Nasa scale will be used. This 
expansion was applied successfully to the associated linear 
problem. ? The expansion used for the perturbation analysis 
is 

qSa = 1 qS•, (x,g,y,t) + ½•2 (x,g,y,t) 

+ "' + qL• (x,•,y,t), (18) 

I • 1 

+ '" + ½,, (x,•,rl,y,t), (19) 

1 2 1 

= (•-)•2(x,•,rl,y,t) • (•)•,(x,•',rl,y,t)+ 
+'" + ½n (X,½,'t,y,t), (20) 

where the new axial and tranverse coordinates ½ and r/are 

• = --, (21a) 

•/= .V•5•. (2lb) 
Note that the entropy and vorticity modes begin at smaller 
orders in magnitude as would be calculated in the case of 
infinitesimal fluctuations. The above expansions [( 18)- 
(20)] will effectively sort out the effects of singularity (in 
the entropy and vorticity modal equations) and nonlinearity 
(in the acoustic mode equation). 

After substitution of the above expansions [ (18)-(20) ] 
into the modal equations [ ( 12)-(14) ] and boundary condi- 
tions [(15)-(17)] and upon subsequently equating the 
coeftiecients of ( 1/x/-ff) • we obtain the following sequential 
system of problems: 

02½o• 02½• O•a• 
•-I- -- 
ax • • Ot • 

BCs: 

Pr• -- (•- 1) 0• =0, 
Ot 

-- 0• 

=-2 •+(y-1)•• 
Ot a9t • 

(23a) 

(23b) 

(23c) 

(25) 

=0, (26a) 

a.,,: =ø' 
and following at higher orders in the coefficient 1/x/-•, 

(26b) 

(26c) 

(27) 

--= o, (28) 

--=0. (29) 

The above sequential (BCs) set [ (22)-(29) ] of equations 
and boundary conditions is the same that results from appli- 
cation of the just described perturbation analysis to the lin- 
ear problem, with the exception of the extra forcing terms 
due to nonlinear interactions for the acoustic mode (24). 
Note that due to the expansions [ (18)-(20) ] chosen for the 
velocity potentials, the nonlinear sources for the acoustic 
mode are O(l/N), well within the range of accuracy for the 
modal decomposition. The source terms for the acoustic 
mode have been identified as being resonant for plane waves, 
and eventually lead to manifestations of nonlinear behavior 
in 

(22) The manner in which the boundary conditions 
[ (23),(26) ] appear in the problem gives special insight into 
the solution. At O(l/f•), the first-order acoustic mode is 
entirely determined by the boundary condition c•½o•/r•y = 
[(23b)]. The first-order quantities 4• and • are then 
uniquely determined by their governing equations 
[(25),(28)] and the remaining boundary conditions 
[ (23a),(23c) ]. At second order, we observe that the acous- 
tic mode •2 is uniquely determined by its governing equa- 
tion (24) and the associated boundary condition (26b), be- 
cause thefirst-order quantities • and ½• are already known. 
This means that the first correction to the acoustic mode 
due to nonlinearity is determined by the quadratic sources 
present in the equation and the first-order vorticity and en- 
tropy modes. 

Returning now to the solution of the problem for plane 
waves, we identify the solutions of the lowest-order set 
[ (22),(25),(28) ] subject to the boundary conditions (23). 
We choose a superposition of plane waves and calculate the 

(24) associated vorticity and entropy mode components 
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q•,• = • A,(2)e i"'ø(" ') A- [c.c.], (30) 

Xe i"'ø(x-'• + [c.c.], (31) 

q• _ iw(y-- 1) • nAn(•)(•,o + •n•) 
Pr .= • 

•e •-• + [v.c.], (32) 

where [c.c.] denotes the complex conjugate and the voni- 
city and entropy transverse mode shapes are 

•o = exp( -- [ ( 1 - i)•/•] 

•.• = exp(-- [(1 -- i)•/•] (•-- V)), 

= - [ - 

- [(1 - - 
In the above fo•ulations, the frequency has been nondi- 
mensionalized according to w = w*D/c. The supe•osition 
of plane waves (30) contains an infinite set at hamonics 
n = 1 ..... •, where w represents the "lowest common de- 
nominator." The infinite set is necessary because nonlinear 
effects will generate sum and difference frequencies from the 
fundamental (the fundamental being the ha•onics present 
at the source, x • • = 0) ad infinitum. For example, if two 
harmonics of 1• and 110 Hz are present at the source, then 
the lowest common denominator frequency is 10 Hz, which 
corresponds to the difference frequency. Note that the coef- 
ficients A,0) must be chosen so that the coe•cients 
•nwA• (0)• are of such magnitude to ensure a convergent 
series for specification of fluid velocity at the source. 

Now we proceed to solve the first correction system for 
the plane-mode source at the next higher order. Focusing 
first on the acoustic mode, we place the first-order solution 
4• into (24) to obtain 

8x • Oy • 8t • 

•e •(•-" + [c.c.], (33) 

where 

n-- 1 

• • • k(n - •)•_• 
k•l 

• • kn(n-k)•_•A•, 
k=n+l 

the overbar indicates the complex conjugate, and the prime 
indicates the derivative of a function with respect to its argu- 
ment. The bilinear • term represents the nonlinear self- 
interaction of the acoustic mode. 

It is immediately evident that the acoustic mode equa- 
tion (33) is apparently resonant, which has been pointed out 
previously in the literature. The resonance manifests itself in 
a solution for • that goes as 

• •xd •- '• • [c.c.], (•4) 

which is unbounded as x • •. Hence, the prevailing opinion 
has been to interpret the forcing terms in (33) as secular, and 
use the removal of secularity as the condition to determine 
the functional dependence of the modal coefficients A, (2) 
on the slow coordinate 2. Removal of the secular forcing 
terms in (33) will then result in the ordinary differential 
equations 

A•(2)=[o.•2(y+l)/2n]tb,, n=l ..... •o. (35) 

These equations determine the modulation of the source 
spectra as it travels axially down the duct. It can be shown 
that they are energy conservant in nature, and in fact corre- 
spond to the Earnshaw solution for plane waves as pointed 
out by Ginsberg/ Consequently, they do not include the 
viscous and thermal boundary layer processes. These equa- 
tions, however, have been in the past supplemented with dis- 
sipation terms that model viscous and thermal boundary lay- 
er processes as pointed out in the Introduction. 

In a previous application of the method of multiple 
scales to the corresponding linear problem, 7 it was pointed 
out that the unbounded solution (34) at second order is not 
the only one available. In fact, it can be shown that 

1 •2ointø(x -- t) X(y--•, • + [c.e.] (36) 

is also a solution of the apparently resonant acoustic mode 
equation (33). The alternative solution (36) is bounded in 
magnitude throughout the domain of independent variables, 
so that the perturbation expansion (18) for • is globally 
uniform (at least through order l/N). 

To complete the specification of •2 using the alterna- 
tive form (36), we place •b•2 into the balance of normal ve- 
locities (26b), which results in the ordinary differential 
equations 

A '. (2) -- 

+w•(Y+l) •,, n=l ..... •. (37) 
2n 

These equations incorporate the dissipation due to the vis- 
cous and thermal boundary layer processes directly through 
the applicable boundary condition, in contrast to the energy 
conservant set (35), which is based upon an argument of 
secularity. Since the functional form for the A,(2) for plane 
modes has now been determined, the second-order correc- 
tion •.• (36) can now be simplified. Using (37). •b• be- 
comes 

ž(y---•-) e '"'ø'x t) A- [C.C.]. '38) 
We see that, although 4•2 is bounded throughout the domain 
of the spatial variables, the convergence of the sum in the 
sense that 4,2 must remain O( 1 ) is in question. This conver- 
gence question is thought to influence the accuracy of the 
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modulation equations themselves, and is discussed in Sec. 
III. 

As shown for the plane modes, a corresponding uniform 
solution exists for analysis of higher-order modes. For high- 
er-order modes, we choose the following solutions for the 
first-order system: 

•,• = • A, cos nqrryei"ø'•'-""•+ [c.c.], (39) 
n I 

•, = (1--i) • xf•A,[7,-.o_ (_l),q7/-,, ] 
Xd "(*v'-'•'• + [c.c.], (40) 

q6•,- \0(y--l) •. nA.[g,.o+(_l).qg,., ] 
Pr n•, 

Xe i"k•'- ø'ø + [c.e.], (41) 

where k• is found from 

k• = [o•1 - (qrr/co) 2 for o>qrr, (42a) [ia•(q•r/co) •- 1 for o<qrr, q= 1 ..... oo. (42b) 
As for the specification of plane modes at the source, the 
coefficients •1,in this case must have magnitudes sufficient 
to ensure the convergence of a velocity series with coeffi- 
cients I n•t• (0) I- The acoustic mode solution (39) represents 
a wave packet that travels down the waveguide at the same 
phase speed. It is well known in the literature that these 
components will interact nonlinearly as they travel down the 
waveguide. 

If the first-order acoustic mode (39) is placed into the 
second-order acoustic mode equation (24), one obtains 

a 

ax ay at 

= • (.io'(•/+ 1)(I)• -- 2ik,.4•,(•')) , =, \ 4nqrr 

ß )<cos nqrrye •"{%'- o,• + Q + [c.c.], (43) 

where •, is as defined previously, and Q are those terms that 
do not manifest themselves at first order, unless the frequen- 
cy (o is much greater than qrr. In the case ofo>>qrr, some of 
the terms in Q will cause a detuned resonance with plane 
modes, as pointed out by Ginsberg and Miao. m If 
(a/qrr•O( 1 ) relative to O(1/x[•), the forcing terms in the 
Q term do not resonate because their dispersion relation does 
not correspond to the linear operator present in the acoustic 
mode equation. As shown for the plane waves, however, the 
apparently resonant forcing terms in (43) above admit a 
uniform solution for •,z, which is 

,, • \ 4nqrr qrr • -- 
Xsin nqrrye '"•'- o,,) + q•o + [c.c.]. (44) 

The symbol • corresponds to the second-order field corre- 
sponding the the Q forcing terms. As was the case for the 
plane waves, the functional dependence of the .4. on the 
coordinate • is determined by the balance of normal veloc- 
ities (26b) at second order, with the result 

(7)1 kq.4 •, (•') + ( 1 -- i)(a 2,,/•-• y -- 1 + 1 -- .4, (•) 

ro3(y+ 1) •,, n = 1 ..... m. (45) 
4n 

As with the case of the plane wav•, the dissipative terms 
•espond to the Kirchhoff rate. Note that the •uation 
•omes singular as k• •0, but admits a solution for eve• 
value of kq • 0. 

As was the c•e for the plane waves, determination of 
the • (•) through (45) for the higher-order modes allows 
the expr•sion (•) for •2 to be simplified. Application of 
(45) to (•) results in 

•2 _ (1 + i)• r--l+l_ 

Xsin nq•e •- • + • + [c.c.l. (46) 
Unlike the s•ond-order mrr•tion for plane m•es, the sec- 
ond-order field for the higher-order m•es does not seem to 
suffer a problem with asymptotic convergence. 

III. DISCUSSION OF THE RESULTS 

We have seen that the nonlinear modulation of a source 

spectrum is governed by Eqs. (37) for plane modes and (45) 
for higher-order modes. In general, these equations are simi- 
lar in behavior, so the properties of these modulation equa- 
tions will be discussed from the perspective of the plane 
modes, with the exception of the behavior of the higher-or- 
der modes near the cutoff frequency. 

The bilinear equations governing the amplitudes of 
acoustic modes derived in the present investigation are dif- 
ferent than those obtained in the past in that they account for 
viscous and thermal boundary layer processes. As such, the 
equations (37) governing the amplitudes of plane waves 
should give results similar to those obtained by Burns 6 for 
axial distances that do not manifest the secularity contained 
in the Burns expansion. We note that the results given by 
Burns are not directly comparable to those of the present 
investigation because Burns chose a cylindrical geometry, 
while we have chosen two-dimensional rectangular geome- 
try. The modulation equations (45) for higher-order modes, 
however, have not yet appeared in the technical literature. 

We would like to point out that the nonlinear modula- 
tion of the higher-order modes in the present derivation (45) 
apply arbitrarily near the cutoff frequency. Note that the 
modulation equations (45) become singular at k• = 0, but 
admit a solution otherwise. If we apply the coordinate trans- 
formation 

= 
to the modulation equations (45) for the higher-order 
modes, we obtain 

.• ;, (•) + ( 1 -- i)o 24Y•[ (r - 1 )/,/• + 1 - (err/o_,) • ] 
XA.(•) = {o'•(y+ !)/4nltl)•. (47) 
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This transformation shows that the modulation of the high- 
er-order modes remains invariant to the "actual" distance 

traveled by the wave, as it undergoes multiple reflections 
from the waveguide boundary. 

Some of the general properties of the bilinear modula- 
tion equations can be ascertained, including the existence 
and stability of equilibria. For example, it is immediately 
apparent that an equilibrium point of the modulation equa- 
tions is A i = 0 for all i. What is the stability of this equilibri- 
um point? Are there any other equilibrium points, and if so, 
are they stable or unstable? To answer these questions, we 
consider the Euclidean norm of the instantaneous "state" 

(the "state" being the values of A,, n = 1 ..... oo ) 

I = •,• Ak•k, (48) 
which also corresponds roughly to the intensity of the sound 
in the waveguide. It can be shown that the rate of change of/ 
with respect to the slow coordinate • is 
Plane: 

dI(•)_ • 2x/•'• •. (•')A. (•), (49a) 
HOMs: 

X •] x/•A.•)A.•), for c•>qz'. 
n•l 

(49b) 

This computation shows that the distance of the state from 
the equilibrium at Ai = 0 is always shrinking, and will as- 
ymptotically approach this equilibrium as •-, oo. This be- 
havior is as expected, because energy is always physically 
lost by the sound wave as it travels down the waveguide. 

In addition to assessing the stability of the equilibrium 
point at Ai = 0, we can also argue that Ai = 0 is the only 
equilibrium present in this dynamic model via contradiction. 
Suppose, for example, that an equilibrium existed at A• %0. 
We know then that this statement then contradicts the com- 

putation for dI(•)/d•, which states that, for all 
dI(•)/d•<O. Therefore, A• =0 is the only equilibrium 
present in the modulation equations. 

The nature of the perturbation expansion (18) for 
and the structure of the bilinear equations that govern the 
source spectra allows one to quickly assess the degree ofnon- 
linearity present in a given system. Referring to the pertur- 
bation expansion, we see that the magnitude A, is set by the 
relative magnitudes of the actual sound level and the acous- 
tic Reynolds number N of the fluid. For example, for a single 
frequency plane-wave source at 200 Hz and SPL of 128 dB 
(re: 20 •Pa), the magnitude of the corresponding A, is • 1. 
Referring now to the bilinear modulation equation (37), we 
see that the dissipation and bilinear term •,, are roughly of 
the same order in magnitude. For this source, then, we 
would expect to see nonlinear effects. If the same source was 
at a sound pressure level of 108 dB (re: 20 •tPa), then the 
magnitude of the corresponding A,, would be • 0.1. In this 

case we would expect the linear effect of dissipation to domi- 
nate over nonlinear effects. 

This characterization of the linear versus nonlinear ef- 

fects through the relative magnitudes of the sound level and 
acoustic Reynolds number is similar to but not identical to 
the parameter F as discussed by Blackstock • in his applica- 
tion of Burgers equation to the propagation of plane waves. 
The parameter F discussed by Blackstock would be o: l/N, 
while the scaling adopted in the present investigation is 
•c 1/x/•, the difference being that the attenuation mecha- 
nism discussed by Blackstock was from dilitational absorp- 
tion, while the predomoninat attenuation processes in the 
present investigation result from thermal and viscous 
boundary layer processes. The essence of the argument is 
that there exists an absolute scale relative to the particular 
medium from which to judge the qualitative behavior of 
sound propagation, and the acoustic Reynolds number N 
plays a fundamental role. 

Since the acoustic Reynolds number N seems to play a 
special role in the qualitative behavior of sound propagation, 
it is appropriate to discuss its physical significance. If we 
group the quantities that compose the acoustic Reynolds 
number N 

N = D(p•'c/iu), 

we see that N is composed of the ratio of two length scales; 
one is D, and the other is a length scale determined entirely 
by the properties of the medium. It can be shown •2 that this 
length scale is in fact related to the mean free path of the 
molecules in the gas (assuming a "hard sphere" model for 
air and a Maxwellian velocity distribution for the molecules 
modeled as hard spheres). The mean free path l s under these 
assumptions is 

= ( 

which is reasonably accurate in a small temperature range 
about 300 K. Therefore, we see that the linear versus nonlin- 
ear behavior of sound is governed by the relative magnitude 
of the sound level and the mean free path of the molecules in 
the medium. This argument of course is only relevant for air 
as, for example, in water intermolecular forces are much 
more complicated for such a simple analogy. 

At first glance it would seem that the amplitudes A, computed from the modulation equations (37) would be 

valid over axial scales when • O( 1 ) relative to 1/x/•. Inte- 
grations, however, show that the spectra predicted by the 
modulation equations are accurate until the axial distance 
reaches approximately 80% of the discontinuity distance. 
The authors believe that this limitation is caused by the gen- 
eration of higher and higher frequency harmonics as the axi- 
al distance is increased. 

To examine the hypothesis regarding the limitation on 
the validity of the modulation equations caused by the gener- 
ation of high-frequency harmonics, we present the integra- 
tion of a single frequency plane source at 2000 Hz whose 
magnitude corresponds to 148.4 SPL (re: 20/•Pa) and a 
duct width of 0.05 m. This example has been chosen to 
loosely correspond with waveforms whose measurement has 
been recorded in the technical literature (see Fig. 5 of Ref. 
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FIG. 2. Temporal pressure waveforms computed for a plane-wave source with the modulation equations (37). The source conditions for this example were 
•4• = 1.5 + O/and to = 0.302, which corresponds to 148.4 dB SPL (re: 20/zPa) at 2000 Hz in a waveguide of width 0.05 m. In the above graphs (a)-(f), the 
waveform is shown as it would be measured at various axial distances, measured in the slow coordinate •'. In the present circumstance, the discontinuity 
distance in terms of • is •' = O. 109. The nondimensional pressure on the vertical axis is P times 

13). Shown in Fig. 2(a)-(f) are the temporal waveforms 
that the modulation equations (37) predict would be record- 
ed at axial distances of • = 0.0, 0.04, 0.07, 0.08, 0.09,and 
0.10, respectively. The discontinuity distance in terms of the 

slow coordinate •'is •' = 0.109. In the integration of the mod- 
ulation equations (37) shown in Fig. 2, the infinite set of 
modes •1, has been truncated to 300. We see from Fig. 2 that 
the waveforms appear as expected through •'=0.08, after 
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which time an anomaly in the waveform is observed. 
In an attempt to discover the reason for the lapse in 

validity of the previous spectral evolution for •> 0.08, we 
have recorded the spread of energy into higher frequency 
ranges as the wave travels axially down the waveguide. 
Shown in Fig. 3 is a measure of the spread of energy into 
higher frequencies as the integration is carried out with vary- 
ing number of modes. We observe that for •<0.8, the spread 
of energy into higher frequency modes is moderate for all 
cases (and in fact is independent of the number of modes 
retained in the integration), but as • exceeds 0.08, the spread 
of energy into high-frequency harmonics rapidly acceler- 
ates. This spread into the high-frequency range is prevented 
by the integration of a truncated set of modes, and presum- 
ably leads to the anomaly observed in the waveforms shown 
in Fig. 2. 

The anomaly observed in the waveform shown in Fig. 2 
indicates that the modulation predicted by Eqs. (37) and 
(45) is invalidated by the spread of energy into higher fre- 
quency ranges as the wave travels axially down the wave- 
guide. Although this is an apparent cause and effect observa- 
tion, we can speculate further among two underlying reasons 
that are associated with the spread of energy. In effect, the 
spread of energy into higher frequency ranges is a symptom 
of more fundamental reasons why the modulation equations 
have a limited range in validity. These reasons are the exis- 
tence of frequency-dependent small signal attenuation, and 
an upper limit on frequency due to the effect of"near reso- 
nance" of higher-order modes with plane modes. 

The spread of energy into the high-frequency range 
seems to invalidate an integration of a finite set of plane 
modes. The authors believe, however, that even if one were 
able to integrate an infinite set of modes, the modulation 
predicted by the equations (37) could still suffer from the 
same problem for a different reason. A clue for this predicted 
breakdown is given by the correction (38) observed at sec- 
ond order for plane modes. These second-order corrections 
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FIG. 3. A measure of the spread of energy into higher frequency ranges as 
the wave shown in Fig. 2 travels axially down the waveguide. The measure 
of spread N• is the minimum mode number that contains a magnitude that is 
at least 10- • times the magnitude of the fundamental •. The different 
symbols correspond to the numbers of modes that were retained in the inte- 
gration. 

contain an (nca) •/• coefficient, which grows as the index n 
increases. By construction [requiring a convergent series 
(30) for velocity], we know that the coefficients ]ntoA• (0) I 
are sufficient for convergence. However, at second order, 

this convergence is not guaranteed because of the extra n• 
multiplier. This extra multiplier means that the second-or- 
der correction may contain components at high frequency 
that are at least as large as the components at first order at 
the same frequency. It is believed that the spread of energy 
into higher frequency ranges manifests frequency-depen- 
dent small signal attenuation, which has been relegated to 
second order by the perturbation expansion. The ordering 
sequence begins to fail when the frequency of a particular 
mode exceeds the smallness of the scale parameter l/•r•. 
This problem regarding the effect of small signal attenuation 
on nonlinear interaction has been identified in other circum- 
stances. •4 

A limitation on the accuracy of the equations (45) gov- 
erning the amplitudes of higher-order modes is that, for high 
frequencies •o >>q•r, a detuned resonance will occur between 
higher-order modes and plane modes, as alluded to earlier, 
and as pointed out by Ginsberg and Miao. •ø Otherwise, the 
equations (45) would also seem to suffer the same limitation 
on their accuracy due to frequency-dependent attenuation. 

IV. CONCLUSIONS 

The problem of the propagation of finite amplitude 
sound in a waveguide has been reexamined to explain the 
role of viscous and thermal processes in the corresponding 
mathematical theory. A new form for the second-order cor- 
rection due to nonlinear interaction has been discovered that 

allows the entropy and vorticity modes to be included in the 
perturbation analysis from the beginning, and shows how 
the viscous and thermal processes are incorporated into the 
nonlinear modulation equations through a boundary condi- 
tion, as opposed to removal of secularity, as has been the case 
in the past. 

A unique perturbation expansion scale •-• was applied 
to solve the nonlinear equations. Upon using this scale for 
the perturbation analysis, it was found that singular terms in 
the entropy and vortieity diffusion equations could be unam- 
biguously sorted. More important, it was shown that the 
parameter relative magnitude of the source sound field and 
the parameter x/• is a determining factor with respect to the 
degree of nonlinear interactions that will occur in the wave- 
guide. This fact is of interest, since the acoustic Reynolds 
number N depends entirely upon a fundamental length scale 
that is a property of the medium. On a practical level, com- 
parison of the magnitude of the source sound with • for 
the medium gives a designer a quick and dirty way to esti- 
mate the degree of nonlinear interaction present in a particu- 
lar system. 

Use of the modulation equations derived in this paper 
has limitations in the axial distance to which they can be 
applied. The limitation is thought to result from the type of 
perturbation expansion chosen, which does not allow for the 
encroachment of frequency-dependent attenuation as shock 
is approached. This limitation then predicates the question 
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of whether a new expansion scale can be chosen that will 
allow these effects to be included as their magnitude be- 
comes large enough to manifest themselves at first order. 

The methodology presented in this paper can be used to 
determine the nature of the finite level sound field for higher- 
order modes arbitrarily near the cutoff frequency. This in- 
eludes calculation of the modulation of the first-order fields 

as well as determination of the second-order correction, pro- 
viding that the equations are applied in their range of valid- 
ity. 

APPENDIX 

In the Appendix, the reduction of the general contin- 
uum equations from the usual form [ (6)-(9) ] to those cited 
in the present investigation [ ( 12)-(14) ] is detailed. In gen- 
eral, the reduction process follows directly from modal de- 
composition theory, I• which is the genesis for the notion of 
independent acoustic, vorticity, and entropy modes. In what 
follows, only the nonlinear self-interaction of the acoustic 
mode is retained as sources in the governing equations, non- 
linear sources involving the entropy, and vorticity modes 
will be ignored. Furthermore, quadratic terms containing a 
1/Ncoefficient will be neglected, as they will not play a role 
in the analysis due to the sealing [ (18)-(20)] chosen for 
expansion of the dependent variables. 

We begin by eliminating density p from continuity (6) 
with the equation of state (9) to obtain 

•P •T OT •P •T 

+r -2T 8t o•t 0t 

- V.(Pv) + V.(Tv) 

=F1 (P,T,v), (AI) 

where the quadratic nonlinearities have been represented 
with the symbol F•. Use of the above form (A 1 ) for continu- 
ity allows the elimination of the pressure P from the left- 
hand side of the equation of momentum (7) to obtain 
oa•v 1 4 I a9 

V(V-v) ?(V-v) 
a•t z y 3 N a•t 

+l•ttVXVxv_l 1 o•T_3F• i VF,, (A2) N y o9t 3t y 
where the symbol Fz is 

F• =p • -- v-Vv. 

To the same order in accuracy, the densityp may be replaced 
in F 2 above to obtain 

F:• = (P-- T) 0% _ v-Vv. (A3) 
3t 

At this point it is evident that the momentum equation can 
be split into two parts, each of which controls an indepen- 
dent velocity partition. One of the partitions is the gradient 
of a scalar potential function, and the other is an incompress- 
ible vector function. These velocity partitions can be shown 
to be mutually exclusive. 

Any arbitrary vector field can be decomposed into a 
sum of these partitions, so that the vector field F• can be 
symbolically decomposed into 

F• = VG + VXH, (A4) 

where G is the scalar function and H is the vector potential. 
Although a general decomposition is always possible, the 
convective acceleration terms v. Vv must be decomposed 
with spectral methods if a symbolic decomposition of the 
rotational part of the velocity field is desired. 

To split the momentum equation into its potential and 
incompressible parts, the velocity is decomposed according 
to 

v = V• + VX•,, (A5) 

so that the momentum equation becomes 

_ 0G) V(.o• I V• • 4 I • V2•+IFm •- k Ot • y 3 NOt y 

Ot \ Ot 

If the quantities in parentheses vanish, then the momentum 
equation will be satisfi•. The decomposition of the momen- 
tum equation then gives the following set: 

8t • y 3 NOt Ot y 

+ vxvx = H. Ot 

It is known (see S•. 5.2 of Ref. 16, for example) that, in the 
case of the lineariz• •uation, this d•omposition gives the 
complete solution even if the v•tor • is not divergence-free. 
It stands to rea•n that this proof can be extended to weakly 
nonlinear systems through the use of a •urbation expan- 
sion. Funhe•ore, if the disturbances in the medium are 
two-dimensional, then the incompressible fluctuations may 
• described by • = •(x,y)e• and H = •(x,y)e•, r•p•- 
tively, where e• is a unit vector denoting the dir•tion per- 
pendicular to the plane of the two-dimensional waveguide. 
Then •. (A7) constraining these fluctuations is governed 
by the scalar equation 

8• 1 .V• • = •. (A8) 
8t N 

The momentum equation then has been d•om•s• into 
one part that controls the •tential fluctuations V• and one 
paa that controls the incompr•sible fluctuations V X (•ez). 
The nonlinear sources are the potcritiCs F, and •, which 
are formed from products of •, •, and the fluid temperature 
T. 

Referring now at the energy equation (8), the pressure 
is again eliminated from the leahand side with the use of the 
equation of continuity (A1) to obtain 

• NPr y 8t y 
(A9) 

where the symbol F 3 corresponds to the quadratic nonlin- 
earlties in the energy equation, i.e., 

F3 = - v'VT--p •-• -T + Y-- 1 v-VP+ 
#t y 

1 c 2 

(AlO) 
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In vector matrix format, the closure equations now become 

a• i V• • = •/,, 
at N 

I 1 4 1 a y 3 NOt 
y-1 

(All) 

(A12) 

(A13) 

The set now consists of three equations and three unknowns: 4, •, and T. 
The final step in the derivation is to define a coordinate transformation between the {4 T}reoordinates to a new set that 

will decouple the momentum equation for the potential fluctuations (A 12) and the energy equation (A 13 ). This transforma- 
tion is readily available from the theory of modal decomposition applied to infinitesimal fluctuations. We define the coordi- 
nate transformation (see Ref. 15, Sec. 3, Chap. 10 for a discussion of the theory behind this transformation) 

(A14) 

where the symbols •a and •, represent the potential fluctuations that correspond to the acoustic and entropy modes, 
respectively. Application of the transformation (A14) to the left-hand side of the set [ (A12), (A13)] and subsequent 
premultiplication by the matrix 

, (A15) 

will diagonalize the left-hand operator of the coupled set. In 
theory, this decomposition can be applied to any degree of 
accuracy desired. In practice, due to the smallness of the 
parameter I/N, the leading-order terms are sufficient. 

In association with the diagonalization of the left-hand 
side of the set [ (A 12), (A 13) ], the same operations must be 
applied to the right-hand side, which are the quadratic non- 
linearities. In what follows, the philosophy will be to retain 
in the acoustic mode equation only the nonlinearities that 
are generated from 4• 40 productsß In general, combinations 
that are to be neglected are 4a4e, 4a•, 4e4•, 4•, and • 
interactions. In addition, all of the nonlinear sources in the 
entropy and vorticity modes are to be neglectedß The pres- 
sure P and density p can be replaced to the same order in 
accuracy by the following relations: 

p__, _ y J• 
8t 

-- -- y• (•a + •) (from Momentum), 
= __o 

8t at 

Additionally, it is evident that the Helmholtz decomposition 
(AS) for the vector field F2 can be rearranged to obtain 

F2 = ñ v ( i v(v4.v4) + + vxm 
(A16) 

where the symbols • and V X H correspond to those interac- 
tions that contain the vorticity and entropy potentials • and 
•. Following application of the coordinate transformation 
(AI4) and the matrix operator (AI5) to the right-hand side 
of the coupled set [(A12), (AI3) }, and after keeping only 
the •a•. interactions in the acoustic mode, one obtains for 
the previously coupled set 

V•. a2•b. el(r--1 4\ a z at • N\ Pr +T)• v • 

] = • \ at ! + v•.v•a , (A17) 

8•.- 1 V•4. = O. (A18) 
at N Pr 

In the above derivation, quadratic sources containing the 
1/N coefficient have also been neglected. If the nonlinear 
source • for the vorticity mode is then neglected, the final 
product [ (AS), (A17), (A18)] is obtained. 
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