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C. NOTES ON VOCAL TRACT COMPUTATION
Pierre Badin* and Gunnar Fant

Abstract

In the general frame of vocal tract computation in the frequency
domain, we describe experiments aiming at the evaluation of different
methods to handle the boundary conditions and the losses, that is, the
radiation load, the viscous and thermal losses. the wall vibrations, the
glottal and subglottal impedances, and the constriction resistances.
We also discuss a method to determine poles and zeros for any transfer
function in the tract. We give data for the Russian vowels (FANT, 1960)
in different conditions, including diver’s speech, and show an example
of application to the study of a constrictive consonant.

Introduction

Vocal tract computations in the frequency domain is nowadays well
established (FANT, 1960; PORTNOFF, 1973; MRAYATI, 1976; ATAL et al.,
1978; WAKITA & FANT, 1978; FANT, 1985). Thus, we will not enter into
detailed derivations of the classical equations and electrical network
representations of the acoustic propagation in the vocal tract. Our
aim, in this study, was to compare different methods to handle the
boundary conditions and the losses in the tract - that is, the radiation
load, the viscous and thermal losses, the wall vibrations, the glottal
and subglottal impedances, and the constriction resistances -, in order
to achieve a better accuracy and computational efficiency, and to eval-
uate the consequences of certain simplifications and alternative trans-
fer function algorithms. We mainly used the Russian vowels (FANT, 1960)
for these evaluations, and included some calculations on helium speech.
We also illustrate a simulation of constrictive consonants.

1. Vocal tract camputation: general frame
In this part, we outline the purpose and function of the vocal
tract computations: what kind of input data is to be processed, and what
kind of data can be derived. Then we describe the computational prin-
ciples. Comments are made on methods for pole/zero determinations.

1.1 INPUT AND OUTPUT DATA FOR THE SIMULATION

The general purpose of the system is to handle any vocal tract
configuration, and to derive the frequency transfer functions between a
pressure or volume velocity source in the vocal tract and the output
flow at the lips or radiated pressure, and the complex poles and zeros
of these functions.

* Guest researcher at KTH, March 1983-November 1984, granted from the In-
stitut National de Recherche en Informatique et Automatique, Paris
(France), and from KTH, Dept. of Speech Communication & Music Acoustics.
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The input data consist of two sets of items:

(1) Area function (the vocal tract is decomposed into a series of
finite length-tubes and -horns); location of sources, wall
impedances and constriction resistance can be specified also;

(2) Boundary conditionsand other features(type of losses, ra-
diation impedance, etc...); state of the glottis.

The area function values are put in a file; the boundary features
can be entered by means of the keyboard (see Fig. 16b).

The output data consist of the frequency transfer function between
the source and the output flow at the mouth, or the radiated pressure,
and of its complex poles and zeros (see Figs. loc and 16d).

1.2 VOCAL TRACT CONFIGURATION AND COMPONENTS
1.2.1 Vocal tract configuration

The basic configuration (see Fig. 1) is a single transmission line
for the subglottal system, a glottal impedance, and a subglottal net-
work. Cavity wall loading is introduced by distributed or lumped imped-
ances shunting the line (see Fig. 11). A nasal branch is under develop-
ment. A tentative model of the nasal system including two shunting
nasal sinuses has given promising results. It will be described in a
separate report. We are eventually aiming at a complete modular system
including the mixing in of oral and nasal outputs and the externally
radiated sounds from the walls of the tract. We do not intend toO review
the entire acoustic theory of speech production, but we have attempted
to test and to clarify some of the formulas and computational proce-
dures.

The subglottal system is represented by a three cell Foster network
(ANANTHAPADMANABHA & FANT, 1982). The glottis is represented by a
resistor and an inductor (see Section 2.4). The vocal tract itself is
composed of a series of electrical quadripoles corresponding to finite
length-cylindrical tubes, -conical horns, parallel impedances, and se-
ries impedances. A pressure source can be inserted between any two
quadripoles. The basic frequency function to be computed is either the
transconductance between the mouth output flow Ip and the pressure
source Eg or E,, or the ratio between Io and Iq, Iq being the input
current to the vocal tract if the subglottal system is supposed to have
an infinite impedance.

1.2.2 The electrical quadripoles
1.2.2.1 Cylindrical tube sections

The derivation which leads from the basic equations of the acoustic
waves propagation in a cylindrical tube to an equivalent electrical
quadripole representation is well known and has been extensively treated
in the literature (FANT, 1960; FLANAGAN, 1972; MRAYATI, 1976). In our
model, we make use of the network of Fig. 2, taken from FANT (1960).
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Zq=2Z. tanh (r-1/2)
Zp=Z¢ [sinh(r-1)

O, — Q
zZ =12 1-jR ¢
c o 3
= W =Pc
= ¢ % =&
ap = 2Pc dg 5 (R and G are defined in § 2.2.1)

Fig. 2. Network representation of cylindrical tubes.
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1.2.2.2 Horn sections

Cylindrical sections may conveniently be combined with horn-shaped
modules for modeling a vocal tract area function. Wave equations for
acoustic propagation in horns have been derived by MORSE (1976) and
equivalent circuits are given by FANT (1960). A corrected version of
the FANT (1960) models is shown in Fig. 3. It should be observed that
these hold for the case of area independent losses only. A technique
for overcoming this limitation is described in Section 2.7.

1.2.2.3 Parallel and series impedances

It is possible to insert either a parallel or a series impedance
between two quadripoles in the chain (see Fig. 4). Impedances paral-
leling the line are used to simulate wall effects (see Section 2.3.2).
This technique also applies to the representation of nasal sinuses.
Series impedances are used to represent additional lcsses at a constric-
tion (see Section 2.6) or internal end corrections of radiation induct-
ance from a narrow tube abruptly terminated in a wider tube, see FANT
(1960, p. 36). This latter term has not been included in the examples of
the present study, unless it is explicitely mentioned. Parallel and
series impedances also enter the horn models.

1.2.3 Camputation principles

The general purpose is to derive the freguency properties of the
network, that is, input impedances at certain locations in the system
and transfer functions between a pressure or a flow at a given location
and another pressure or flow at another location.

Different techniques can be used in order to compute this type of
functions. One well known is the matrix technique used by WRKITA & FANT
(1978) or ATAL et al. (1978). For a given freguency, each electrical
quadripole is represented by a matrix which gives the input flow and
pressure as a linear combination of the output flow and pressure. One
just needs to establish the product of all these matrices corresponding
to the vocal tract to obtain the transfer function.

An alternative is the method used by FANT (1960, p.28) and by
LILJENCRANTS & FANT (1975). It operates on hyperbolic finite length
acoustic tube analogs, which ensures greater accuracy and flexibility
than the lumped element modular approximation adopted by WAKITA & FANT
(1978). The input impedance of the cell of Fig. 5 may be written

zi’n = Zn"tgh {'En'*'ai'n_.lj F (l}

with
Ei,n—1 = arbgh{zim_1 "'IrznlI * (2)

Thus, by reccurence, the input impedance of the cell n is a func-
tion of the input impedance to cell n-1.

It is a classical theorem of electrical networks theory that the
input impedance at any point in the network has the same poles as any
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transfer function between two points. It is thus possible to derive the
poles from an input impedance. This technique is mainly of interest for
loss-free treatment of vowels. A disadvantage is that pole determina-
tions may become contaminated when zeros appear close to poles.

We shall now describe a new computationnally more efficient tech-
nique which leads itself to the handling of zero free transfer functions
such as the overall volume velocity transfer IO/ Ig' From Fig. 2, we may
derive a system of equations, for the cell number n, with flow and
pressure inputs U, and Pj:

P = (2, cothb )+ U, =~ simhe ~ U (3a)

Z
- _n_ - . (3b)
Pn—1 - sinhen Yn (Zn OOthen) Un—1 :

From that, we derive the recurrence equations, for T, = Un/ Up,-; and

Zi,n’
Z; 1_1__1-sinl'1—6n
T =cosh 6+ —L (4a)
n n Z
n
Zn
Zi,n = Sinh 6 (cosh en - 1/Tn). (4b)
n

Starting from the radiation load, the recurrence equations involve
(1) identify or calculate the load Zi n-1+ (2) calculate Un/Un-l' (3)
calculate Zi,n' and (4) update the transfer Un/UO' This procedure is
discussed in more detail in FANT (1985). One can verify that it is
possible, when using these equations, to insert at any point in the
cascade any quadripole of another type, for instance, parallel or series
impedances (see Fig. 4), or a horn network.

This is this latter method which has been implemented and used in

our model.

1.3 DETERMINATION OF POLES AND ZEROS

Once we have obtained the transfer function of the vocal tract at
any given frequency, the problem is to decompose this function into a
quotient of two polynomials in the form of:

eﬂo (s=s_) (s=s.*)/ (s_-s*)

e - 2L T X
- _ _ T N(s) ° (5)
nﬂ=1 (s-sn) (s—sn*)/ (sn°sn*)




STL~QPSR 2-3/1984

]

T

m

A x
A(x) = ® _ cosh? (=
) cosh? ¢ s (h t e

" 59

A, cosh? ¢

cosh? (;—: + e)

A(x) =

When ¢ = 0 the horn is catenoidal; when & = oo the horn is exponential; and when
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R
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- j%’ with A approaching infinity, the horn is conical.

1
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Nominal propagation constant
Horn cutoff frequency
Propagation constant
Transfer constant
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y = ol —wew) = yot
r=ry

Z = Z,/t (increasing area)
Z = Zyt (decreasing area)

Series element of T-network =27 tgh%l
Parallel element b = Z/sinhyl
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! Z, I}
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Fig. 3. Network representation of horn sections.
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In practice, we shall be looking only for a limited amount of poles
and zeros, up to a given frequency limit.

1.3.1 Principle

We use one of the methods proposed by FANT (1960, p. 41) for
dealing with all pole functions T(s) = 1/N(s). The same method also
applies to a zero function (these have to be dealt with separately, see
Section 1.3.4). First we should notice that a function T(s) containing
poles only is, in the loss~less case, the inverse of a product of terms
like (1—52/sn2), with s, = jw,. This function has a real part only, and
the poles correspond to the frequencies at which 1/T(s) = 0. In the
more general case, when the losses are not null but small, these pole
frequencies are slightly modified. An imaginary part appears in T(s)
and we can then write:

N(s) = Np(s) + jN4(s) = 1/T(s). (6)

The search for the poles involves two steps. The first is to
determine the values of s, = jW,; for which Ny(s) equals zero. Then we
use a first order approximation of N(s) in the vicinity of its zero:

N(s) = Nb(S)s=jwn1 + (s = Ju,) N (8) g L (7)

N(sn) = 0 leads then to

sp = Jw, - [N(s)/N' (s)] (8)

n 5=
If we write
S, = On + j((x)n»] +Awn) v (9)
and if we note that
N' (s;)s=j _ [dN(s):l 1 dN (s) Vs aN_ (s) (10)
“hi ds Js=ju, 3| dw J 7aw s=jw ,

the following results are obtained:
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N_-N'
o, = _.zii._ (11a)
N(_:1 + sz
Na (11b)

AU.)n::_dn.Ngl

with

aN_(s) [dNb(S)]
[ - a ! = | e——
N, = Na(s)s=jwn1 SN = [ s and NJ = - (12)
S=Jujg 5=3Wy4

The principle of the program is thus to calculate Nb(w) sampled
with a certain frequency increment to look for changes of sign. Zero
crossings are obtained by linear interpolation. The derivatives Na' and
Nb' are approximated by finite differences. In this way, we can
determine O, and AWp .

1.3.2 Applications

In order to check the validity of the previous equations, we ap-
plied these equations to two simple cases: the transfer function of a
uniform tube, which has the form :

T(s) = 1/cosh(d+s/c)l, (13)
and a single second order resonance or low-pass filter, with

. X
S8,

(s—sz) (5'52*)

T(s) = . ' (14)

The actual poles of the function, analytically solved from the
zeros of 1/T(s) are:

*x = 1 = - . E g
Sis Sy 0'1 * Jw, ac +J 57 (15)
for the uniform tube, and
Syr 82* = dz  Jw, (16)

for the single resonance.
The maximum amplitude frequencies of T(s) and the -3 dB bandwidths
are for the uniform tube and the single resonance, respectively:

1 Y o e = 2
ml - 2w ¢ Bm T T ! (a7




STL-QPSR 2-3/1984 63

_ 2 d.
21 2 _ 42 W2 1,9 9%
2 “2my Y2 ~% T O T2 Ve B T (18)

Finally, the method we want to test leads to the following results:

21
F, = 53 [w1 + o_‘l (19a)
__11_¢ _ac A
B, = n[ lthccl] el (19b)
for the uniform tube, and
2 2
=l o2 - 92,°. 1 ~ W2 1,92
Fa “oampf*e — % ", (“’—2) 7 2 -7[1 - 50 ] (20a)
2
1+ (=)
w2
B. = = _.1. T~ __1.___ (20b)
2 T 2 Ty 5 |
1+ ()
Cw

2

for the single resonance. One can notice that, for the uniform tube,
the three different estimates of the poles are identical. For the
single conjugate pole resonance, the frequency of maximum amplitude
differs from the pole frequency, and in fact, if we use the Aw,, correc-
tion (which appear as second term in Fl1 and F2 expressions), our inter-
polation generates a pole frequency equal to the frequency of maximum
amplitude. This correction is of the second order, and the discrepancy
could be explained by the fact that, in order to derive this correction,
we used only a first order expansion of T(s). A second order expansion
would lead to very complex equations and has not been used.

In order to test this rather simple method, we have checked the
results obtained with the Russian vowels (see definition in Section
3.1). Table 1 shows the comparison between the computed poles and band-
widths, and the values obtained by determining manually the frequencies
corresponding to peak values of the absolute value of the transfer
function, computed with a frequency increment of 1 Hz, and the -3 4B
bandwidths. Moreover, we give the correction computed from Eq. 11. We
can see that, in most of the cases, the results are better when this
frequency correction is used. This a way to validate the method. An
argument for the method is that an equal spacing of poles minimizes the




tEo=mOE

rEeo=-mEE

(E8]

535
T66
460
a7
604
33
340

[a)

1522
1127
1993
2293

01

633
1543

(8} (<)

534.9 0.0
T65.0 =0.1
460.0 0.0
286.5 ~0.2
603.1 -0.1
3133 0.0
340.5 0.1

8 (<)

1522.0
1129.8
19528
22193.3

a01.7
" B32.9
1542.8

copooos

cbbbame

(o} (B} (F) (G} (&) PI (A (B} (€} (D) (E)  (F} (G} (H)
.1 0.0 32 320 00 M 2536 2536.5 0.0 =-T7.2 0.3 131 12E.0 -2.3
10.7 =1.5 110 948 -13.8 0 2473 2473.3 0.0 -2.1 0.0 85 839 -1.3
0.4 0.0 36 35.5 -1l.4 e 7834 2829.4 -0.2 17.7 -0.B 263 Z24.6 ~l4.6
0.6 -0.4 49 48.3 -1.4 I 3133 31286 -0.1 25.8 =0.9 261 204.3 =21.7
6.1 =1.1 76 €8.3 -10.1 0 2394 2394.0 0.0 1.0 0.0 43 42.8 -0.5
3.3 -l 52 520 0.0 U 2385 23855 0.0 1.0 0.0 26 26.3 +1.2
0.4 0.0 42 409 =26 4+ 2422 2422.1 0.0 1.6 0.0 61 60.2 -1.3

(o) (B} (F) (G) (H) P4 (A) (B} () (o} (B} (F) (G} (H)
-1.4 0.0 63 63.7 +1.1 N 3565 3567.2 0.0 -20.6 0.6 212 201.5 -5.0
=-14.5 1.5 131 106.5 -18.7 a 3629 3625.3 -0.1 15.6 -0.5 227 1B85.4 -18.3

8.9 =04 98 94.3 -3.8 e 3650 3650.0 0.0 6.3 -0.2 - 4081 -
8.8 0.3 BS 81.8 =-4.1 I 3723 3728.8 0.2 158 0.6 298 237.3 -20.4
-6.5 0.7 67 594 =11.3 0 3494 3488.8 -0.1 26.7 -0.9 (250)246.2 (-1.5)
-2.5 0.4 37 36.9 -0.3 U 3797 3750.8 -1.2 42.7 -2.3 (244)172.3(-29.4)
ol O 79 A3 0.9 4 3476 3475.5 0.0 1.6 0.0 103 99.4 -3.5

S  (R) (B} (C) (@) (B (F) (5} (H)

4606 4611.9 0.0 -41.7
4090 4124.7 0.8 -66.9
4194 4295.5 0.0-104.8
4786 4764.9 -0.4 9T =
4001 4005.4 0.1 =-28.9
4035 4041.4 0.2 -20.8
4199 4199.4 0.0 -6.3

K- 303 275.0 -9.2
4 (308)259.0(-15.9)
5 (493)3596.2(=19.4)
6 (BOR)419.0(-31.1)
B 186 159.2 -14.4
.7 139 108.8 -21.7
] 166 156.5 -5.7

Y Co—max
[=R=N=l =} RN
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(B}
ch
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Fole frequencies, measured by manual pic detection (resolution i 1 Hz),
Pole frequencies, automatically determined,

Relative ervor of (B) in relation with (R} (in %),

(D) Correction applied to the Hp 2ero croesing frequency in order to get (B),

LE}
(E}

(G
(H)

Felative error in relation with (A}, if no oorrection was used,

~3B bandwidth determined mamually (a stroke - mears that there are no
points at -348 from the pic, and the figures between parenthesis
correapond Lo an approdimation when thers is only one of these pointa),
Bandwidthe, sutomatically determined,

Relative error of (G) in relation with (F) (in %).
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distance between pole frequency and maximum amplitude frequency. A
shortcoming is when two poles merge to a single spectral peak. The
bandwidth values do not check very well in some cases, but we cannot
state that the -3 dB algorithm is the better one, since it might be
affected by neighboring formants (leading to a non symmetrical peak or
to a missing -3 dB point).

1.3.3 loss-less case: 'interpolation method

In order to ensure a sufficient precision, the previous method must
be used with a relatively small frequency increment, around 20 Hz, which
means 250 points if we need the poles up to 5 kHz. This is not a great
problem, especially if we need to plot the corresponding curve (see Fig.
l6c, for instance) at the same time. But, if a rapid evaluation of the
pole frequencies for a given vocal tract configuration is needed, an-
other method can be used. We first calculate the values y(f) = N(f)
for increasing frequencies f,, with a relatively large frequency incre-
ment (a few hundreds Herz) until a sign reversal is found (y,_;.y, < 0).
We then compute the derivative

y' Yy 7 ¥ (21)
=SEF - F ¢ 21
n fn fn—1

and the first estimate is

= - (22a)
FT fn *A fn fn+1
v
Afn = -yn/yn . (22b)
The following estimates are also computed:
f. . =f. +Af, - (23a)
541 = 55 Bty
E. = ~yL /Y
ALy yj/yJ ’ (23b)

from j = n to j = n+k, so that Af,;x < 1 Hz. The final pole frequency
value Fy = f ..., is now determined with an accuracy of about 0.1 Hz.
In all, less than 40 points on the vocal tract transfer function is
needed for the calculation of five formants (FANT, 1985).

1.3.4 Independent determination of poles and zeros
A useful procedure is to determine the pole part N(s) and the zero
part A(s) of the transfer function

Als
(s)

—

T(s) = (24)

b
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ELE Zan Zan
Zbn ZLn—1
2 4

Fig. 5. Input impedance of a loaded quadripole.

Fig. 6. Example of a consonantal vocal tract configuration.
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separately from the analysis of the equivalent network. As illustrated
in Fig. 6, we may introduce a glottal volume velocity source Ig provid-
ing an open circuit pressure E, substituting the true consonant source
E. at the left of the switch in series with E,. The transconductance
Iy/Eg may now be broken up into two parts:

I I
T:Eo-:—I—o-oE&. (25)
C g9 c

If there are no resonances causing short circuits in the shunting
branches of the ladder network, both I,/ Iy and Ec/Ig will be all pole
functions without zeros and may be calculated from the procedure in
Section 1.3.1. The poles of E./I, are the zeros of Ig/Ec and, thus,
constitute the zero function A(s) of T(s). If shortcircuiting branches
occur to the left of E, only, there enter identical zero functions in
IO/Ig and Ec/Ig which evidently cancel in T(s). There remains in T(s)
the pole function part of I/ I and the pole function of E./ Iy which is
the zero function of T(s).

The procedure for evaluating the zero function A(s) is, thus, to
start from E./ Ig which is divided, i.e.,inverse filtered, by the product
of shunting zero functions. The same procedure is applied to IO/ Ig for
sorting out the pole function N(s). Shortcircuiting branches to the
right of the consonantal source are included in this process of puri-
fying I,/ Iy but do not affect the calculation of the zero function A(s).

This general approach is also useful for dealing with nasal con-
sonants and nasalized vowels.

2. Vocal tract camputation : losses and boundary conditions

In this part we analyze, one by one, the different losses in the
vocal tract, and the boundary conditions. We describe different solu-
tions (radiation and wall impedances), and try to assess their influence
on the poles, zeros, and bandwidths of the vocal tract transfer func-
tions.

2.1 RADIATION IMPEDANCE

In this section we first describe different models of radiation
impedance, then present some comparison results.

2.1.1 Different models

The radiation impedance loads the end of the vocal tract line: this
impedance contains a resistive part in which the radiated energy is
consumed in series with a reactance representing the effective mass of
vibrating air at the lips (FANT, 1960, p. 34).
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2.1.1.1 Piston in sphere model (PIS)

The basic model commonly adopted is the model of a vibrating piston
set in a spherical baffle; the equations have been derived by MORSE
(1976, p. 323 ssq.); we use a computer subroutine written by U.K. LAINE
(personnal communication). Fig. 7 shows the real and imaginary parts
of the normalized radiation impedance ZR/ (pc/Ao), where A is the mouth
area, for two different areas.

This model involves the calculation of series and is, thus, not
very efficient computationally. For this reason we have looked into
other models also.

2.1.1.2 STEVENS, KASOWSKI, & FANT model (SKF)

In 1953, STEVENS, KASOWSKI, & FANT reported the use of an analog
electrical network to fit the theoretical model at low frequencies.
This model is depicted in Fig. 8. It was incorporated in the LEA
analog, FANT (1960). The normalized impedance is presented at Fig. 9
for two different mouth areas, in comparison with other models.

2.1.1.3 WAKITA & FANT model (WF)
Another model is the one used by WAKITA & FANT (1978). Their
radiation impedance is defined by:

Zr = Ry + X ‘ (26)
with
pw?
Ro = Fg - K W) (26b)

A
= Pc .u 8 0
o= & e m/T (26c)

where K (w) is defined by

0.6 .
Ks(w)=1+m°u),lf0\< £ 21 - 1600 (27a)

KS(UJ) 1.6 , if w>»2m - 1600 . (27b)

For X,, we use the approximation —3%—[ = 0.8, in order to conform to
FANT’s expression (1960, p. 36) of the "end correction" :

/R0
10—0.8 T - (28)

Fig. 9 shows the behavior of this model also.
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2.1.2 Comparisons between the models
Fig. 9 shows that:

- for a relatively small area (2 cm?), the SKF model fits the PIS
model up to 10 kHz very well, whereas WF fits only up to 4-5 kHz ;

- for a large area (8 an?, which is not so common), the SKF model
still fits PIS up to 4-5 kHz, when WF fits only up to 2-3 kHe.

another way to compare the radiation models is to study their
respective influences on the Russian vowels. Thus, we have computed the
poles and the bandwidths for different conditions. We did not take
neither the losses nor the wall impedances and the subglottal system
into account. In the first comparison, we used only the imaginary part
of the radiation impedance, and in the second one, the real part only.
The results are given in the Tables IIa, IIb and IIc. Table Ila shows
that the WF model provides pole frequencies with an error which can
reach 2.3%, whereas the SKF model is much better, with a maximum error
of 0.5%. For vowel bandwidths, the WF model is often better than the
SKF model, but we can notice that the greatest relative error occurs for
very small bandwidths, which means that their contribution to the total
bandwidth is not important. Therefore, we can conclude that the SKF
model is a very good approximation to the PIS model, with a much greater
computational efficiency (around 7 times faster), and can be used in all
practical cases.

is a remark, we should mention that the curve given by FANT (1960,
p. 32) for the factor

2
% W 29
Kglw) = Ry/ %m:: (29)

could be improved we give the correct version in Fig. 10.

2.1.3 Influence of the radiation load on the poles and bandwidths

It is well known that the inductive part of the radiation impedance
acts as to lengthen the vocal tract. Here, we study the separate in-
fluence of the resistive and inductive part of the radiation impedance
on the poles and bandwidths of the Russian vowels.

From Table IIc, it is clear that the influence of the resistive
part of the radiation impedance on the pole frequencies of the Russian
vowels is very small and can be neglegted. On the other hand, the
influence of the inductive part on the bandwidths is rather important,
which may be explained with reference to L2 of Fig. 8.

2.1.4 Radiation transfer
The transfer from volume velocity at the lips to radiated pressure
at a distance of 3z cm from the radiating surface at the lips is
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(3) (B) () (B%) (c)

F1 502.2 500.1 -0.4 501.4 -0.16

NT F2 1508.4 1502.6 -0.4 1507.7 -0.05
F3 2525.3 2511.2 -0.6 2523.5 -0.07

(6.0am2) F4 3557.4 3527.8 -0.8 3552.5 -0.14
F5 4605.0 4552.6 -1.1 4596.5 -0.18

F1  642.3 640.2 -0.3 641.8 -0.08
(a] F2 1085.8 108l1.6 -0.4 1085.4 -0.04
F3 2470.4 2464.1 -0.3 2470.2 -0.00
(5.0cm2) F4  3622.2 3597.2 -0.7 3618.8 -0.09
F5 4138.6 4132.3 -0.2 4137.6 -0.02

F1 420.1 418.8 -0.3 419.5 -0.17
F2 1973.1 1967.3 -0.3 1971.9 -0.06
(e] F3 2815.0 2790.5 -0.9 2810.4 -0.16
(8.0am2) F4 3645.8 3563.5 -2.3 3630.8 -0.41
F5 4334.2 4246.0 -2.0 4318.7 -0.36

F1 227.0 226.8 -0.0 226.9 -0.04

. F2  2275.8 2275.1 -0.0 2275.9 0.00
(1] F3 309.1 3070.6 -0.8 3095.8 0.00
(4.0cm2) F4 3731.6 3721.8 -0.3 3730.8 -0.02
F5 4732.8 4649.4 -1.8 4721.9 -0.23

FIL  505.2 503.8 -0.3 505.1 -0.02
F2  868.2 865.7 -0.3 868.6 +0.05
(o] F3  2390.4 2388.6 -0.0 2391.0 +0.02
(3.2an2) F4 3457.7 3456.7 -0.0 3457.8 0.00
F5 4021.0 4017.7 -0.0 4020.9 0.00

F1  237.4 237.4 0.0 237.8 +0.17
F2  600.2 600.2 0.0 600.4 +0.03

[ul F3 2383.0 2383.1 0.0 2383.1 0.00
(0.65am2) F4 3710.2 3710.2 0.0 3710.3 0.00
F5 4055.9 4055.9 0.0 4056.1 0.00

F1I  289.6 289.1 -0.2 289.4 -0.07

_ F2 1530.9 1518.2 -0.8 1529.0 -0.12
[£] F3 2414.1 2412.2 -0.0 2413.8 -0.01
(6.5am2) F4 3472.1 3465.0 -0.2 3470.9 +0.03
F5 4200.3 4192.4 -0.2 4199.1 -0.03

Table IIa. Effects of different models of radiation impedance on the
pole frequencies of the Russian vowels.

(A) pole frequencies with the PIS model (J.maglnary part only),
(B) * " with the WF model ( " ),
(C) difference (B)-(A)/(A), in &,

(B”) pole frequencies with the SKF model (imaginary part only),
(C”) difference (B’)-(A)/(n), in %.

Remarks :

- neither the losses nor the wall impedances and the subglottal
system are taken into account ;

- the figures between parenthesis represent the radiation areas.
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Table IIb. Effects of different models of radiation impedance on the

bandwidths of the Russian vowels.

),
),

"
n

with the WF model (

(A) bandwidths with the PIS model (real part only),

(B)

(B”) bandwidths with the WF model (
(C") difference (B")-(A)/(A), in %.

(C) difference (B)-(A)/(A), in &,

Same remarks as for Table IIa.
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(a) (B) (c) (D) (E) (F)

F1 533.4 502.2 502.2 0.0 3.2 2.6

NT F2 1600.2 1508.4 1507.2 0.0 42.1 26.9
F3 2667.1 2525.3 2521.9 -0.2 116.7 80.5

(6.0cm2) F4 3733.9 3557.4 3545.9 -0.5 228.2 141.1

F5 4800.7 4605.0 4580.3 -0.8 377.5 204.0

F1 676.1 642.3 642.3 0.0 3.8 3.9

(] F2 1187.1 1085.8 1085.3 0.0 30.6 16.7
F3 2554.0 2470.4 2469.1 0.0 6l1.1 40.4

(5.0am2) F4 3791.5 3622.2 3620.0 0.0 178.8 135.0
F5 4185.9 4138.6 4134.5 -0.1 72.0 29.2

F1 435.0 420.1 420.1 0.0 1.4 1.2

F2 2016.9 1973.1 1973.6 0.0 22.6 28.6

[e] F3 2912.7 2815.0 2819.4 +0.2 67.8 107.6
(8.0cm2) F4 3856.8 3645.8 3650.7 -0.1 163.0 327.8
F5 4632.0 4334.2 4253.0 -1.8 466.7 278.2

Fl 230.1 227.0 227.0 0.0 0.1 0.1

_ F2  2284.5 2275.8 2276.0 0.0 3.3 5.2
[1] F3 3290.1 3096.1 3104.6 +0.3 100.4 162.0
(4.0cm2) F4 3800.7 3731.6 3729.5 0.0 57.1 56.5
F5 4970.6 4732.8 4748.6 +0.3 126.5 384.9

F1 535.1 505.2 505.2 0.0 2.0 1.9

_ F2 953.4 868.2 868.0 0.0 18.5 8.5
[o] F3 2437.1 2390.0 3290.0 0.0 28.3 15.6
(3.2am2) F4  3470.9 3457.7 3457.5 0.0 11.0 7.3
F5 4050.0 4021.0 4020.2 0.0 28.2 19.9

F1 248.8 237.4 237.3 0.0 0.2 0.1

[ 1 F2 607.9 600.2 600.2 0.0 0.3 0.2
u F3 2384.3 2383.0 2383.0 0.0 0.3 0.2
(0.65cm2) F4 3711.3 3710.2 3710.2 0.0 0.4 0.4
F5 4059.2 4055.9 4055.9 0.0 1.2 1.1

F1 295.0 289.6 289.6 0.0 0.3 0.3

- F2 1729.1 1530.9 1529.6 0.0 110.3 64.3
[IJ  F3  2436.6 2414.1 2413.5 0.0 22.4 10.1
(6.5am¢) F4 3509.8 3472.1 3470.8 0.0 49.1 32.5
F5 4227.1 4200.3 4199.1 0.0 43.5 30.7

Table IIc. Influence of the resistive and inductive part of the radiation
impedance (PIS model) on the poles and bandwidths, for the Russian
vowels .

(A) pole frequencies with a short circuit at the mouth,
2B) " " for Re(Zg) = 0 and Im(Zg) # O,

c " " for Re(Zgp) # 0 and Im(2Zg) # O,

(D) difference (B)-(A)/(A), in %,

(E) bandwidths for Im(Zg) = 0 and Re(Zg) # O,
(F) " for Im(Zg) # O and Re(Zg) # O

Same reaemarks as for Table IIa.
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essentially a differentiation. A more exact formula is given by FANT
(1960) :

_ Pw
1:’a/ Vo T 4dna

KT(w) . (30)

The factor KT((.o) is a smooth high frequency emphasis of about +1.5
dB per octave from 312 Hz to 5000 Hz. It represents the combined
effects of directivity (baffle effect) and increase of radiation resist-
ance in excess of the frequency proportionality. Because of lacking
experimental verification Kp(w) is generally omitted from calculations.
However, for more detailed studies of the fricative generation, it
should be taken into account together with the assumed initial frequency
weighting of a random noise source.

2.2 VISCOSITY AND HEAT CONDUCTION LOSSES - COMPLEX CHARACTERISTICS
2.2.1 The formulas

The viscosity and heat conduction losses within a section of a
cylindrical tube may, according to FANT (1960) and FLANAGAN (1972), be
represented by a resistance R (viscosity) and a conductance G (heat
conduction), see Fig. 2,

S /w
G= s .17 [/ Aw (31b)
pc2 2Cpp

where 7 is the adiabatic gas constant, and L, A and Cp are the visco-
sity, the coefficient of heat conduction, and the specific heat of air.
From this and from Fig. 2, we can derive:

a=1—@/%\[f—", | (32a)

Q
|

1 VT ., ) (32b)
¢ mmps o U ”,/c"'pp e,

°‘=2A15@[/g+“"” /GQT}\/'F. (320)

and
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Fig. 9. Comparison of the radiation impedances for 3 models.
(1) Piston in Sphere model,
(2) Stevens-Kasowski~Fant model,
(3) Wakita-Fant model.
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2.2.2 Camplex characteristic impedance
In order to reduce the amount of computation, we have tested the

effect on bandwidths of approximating the complex characteristic imped-
ance

ey QA
z=zo[1-j-%—§} (33)

c w/fc

by its loss-less real value Z5, see Fig. 2. In Table III the results
are shown. The differences are not very large and affect the low
frequency poles only. Since at low frequencies the contribution from the
viscous and thermal losses to the total bandwidth is rather small, one
can conclude that a complex characteristic impedance is not a very

important feature.

2.2.3 Influence of the viscous and thermal losses on the pole frequencies

We have also computed the pole frequencies retaining the viscous
and thermal losses only and with Z, real. These data differ from the
loss-less case by less than 0.3 Hz over the entire range of the Russian
vowels .

2.3 WALL IMPEDANCES

The finite vocal tract wall impedance as a factor affecting formant
frequencies was first mentioned by van den BERG (1953) and by FANT
(1960). Studies of diver’s speech (FANT & SONESSON, 1964; FANT & LIND-
QVIST, 1968) contributed to the understanding of wall induced formant
shifts. FLANAGAN (1972) derived equations for frequency and bandwidths
changes but unfortunately he adopted data on human tissue which gave an
order of magnitude too large bandwidth contributions compared to the
more representative later data of ISHIZAKA et al. (1975) and of FANT et
al. (1976). The correct order of magnitude had earlier been established
by FANT (1972) by inference from the FUJIMURA & LINDQVIST (1971) reson-
ance bandwidth data.

2.3.1 Distributed wall impedance models

The most common model (FLANAGAN, 1972; FANT, 1972; ISHIZAKA et al.,
1975: MRAYATI, 1976; WAKITA & FANT, 1978), is to distribute the wall
impedance uniformily over the tract. It was first shown by FANT (1972)
that if the thickness of the walls is proportional to A"0-3, the local
resonance between the distributed capacitance C(x) and the associated
wall inductance Ly(x) (see Fig. 11) is independent of A(x) and equal to
the closed tract resonance. If we consider the network in Fig. 11, we
may write the complex expression of the associated propagation constant:
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Fig. 11. T-cell with distributed wall impedance.
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v= [ (R + juL) (ju£+G+36L_:]—TR;) (34)

which, after same simplifications, leads to the approximation:

2 op 2
F B_°F .
. W \ 1, R T WO W
Y j—= 1-———[—(—+GZ)+——————] (35)
wo f2 2 ZO o CO B2+f2
where
R
1 w 1 L
F ; B = , C. =—— ,and Z2_ = /= . (36)
¥ oanfrc YO ML, ° Wic o Ve

Thus, the wall impedance loading may be omitted and substituted by
a frequency transformation such that the velocity of sound and the

attenuation constant may be rewritten:

c=c (1~ F2 fz)—!f (37a)
o W
TC BWO.FW2
a= o+ —5——5— . (37b)
°© Co B 2+f2
WO

Since the formant frequencies are proportional to ¢, there follows
that any formant frequency F, can be derived from the infinite wall

impedance case F; by:

2 2
R S L (38a)

Furthermore, the hbandwidth increase due to the walls is:

F 2

= W
an = Bo (Fn) -

(38b)

Even with the more common assumption of wall thickness, D being
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independant of A(x), Egq. 38a holds for the low frequency of the first
formants .

It should be remarked that the network in Fig. 1l is not a complete
representation of the wall impedance. The wall compliance and the wall
radiation impedance have been omitted. We could use a radiation imped-
ance if we want to mix in oral and nasal outputs as well as the sounds
externally radiated by the walls of the tract, see FANT (1972).

2.3.2 Lumped wall impedance models

Our insight in the actual distribution of the wall impedance and
its dependency of the cross-sectional area remains rudimentary. How-
ever, it is important to see to that the actual distribution adopted
will provide closed tract resonances and bandwidths of the order of Fy =
180-200 Hz and By = 70-90 Hz, and about 20% higher values for an average
female subject.

Since the wall effects are predominant in a low frequency region,
it should be possible to attain the required overall effects by a few
lumped impedance elements. This view was also supported by the observa-
tion of FANT et al. (1976), that the maximum vibrational amplitude
measured externally was localized to one area just above the larynx and
one at the cheeks. An implementation of this type is shown in Fig. 12.
The model was tested by WAKITA & FANT who found that the assumption of a
wall loading independence of the cross-sectional area A(x) gave rather
too large Fl shifts for a vowel [a]. We have, accordingly, modified the
impedance level of both lumped branches by a factor (6/Am)0’5 where A,
is the mean area over a 4 cm part of the area function centered around
the insertion points of the shunts. These two probe areas terminate at
the lips and at the outlet of the larynx tube. The narrowing of the
lower pharynx and larynx of [a] is now matched by an increase of the
wall impedance factor.

2.3.3 Calculations

We have made calculations of the formant frequency shifts in each
of the six Russian vowels and a neutral single tube resonator when wall
impedances are included by their imaginary terms only. Because of the
high Q conditions, Fyy/By; = of the order of 2-3, this is allowable as
found out from controls retaining the real part of the wall impedance
which did not significantly influence the results (less than 1%).

Three different conditions were tested:

(1) lumped element representation according to Fig. 14 with area in-
dependant impedance level;

(2) the same with impedance level adjusted by the factor (6/%)0'5;
(3) frequency transformationtechnique assuming distributed impedance

with wall thickness proportional to A"O'5, Fiy = 190 Hz and By = 76
Hz.
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(a) (B) (C) (D) (E)

Fl 507.2 548.1 548.1 539.7 541.6
F2 1523.3 1533.5 1533.5 1534.5 1534.8
NT F3 2550.6 2554.2 2554.2 2557.4 2557.7
F4 3593.7 3596.8 3596.8 3598.5 3598.7
F5 4652.5 4657.0 4657.0 4656.4 4656.4

Fl 642.3 754.0 705.8 668.5 ©69.8
F2 1085.B 1133.0 1109.6 1101.2 1102.3
Fi 2470.4 2473.1 2473.0 2477.5 2477.7
[ﬂ] F4 3622.2 3627.2 3626.3 3627.1 3627.2
F5 4138.6 4162.8 4150.9 4142.9 4143.0

FL 420.1 460.6 465.8 459.8 461.1
F2 1973.1 1984.7 1985.7 1981.9 1982.2
[e] F3 2815.0 2820.6 2820.2 2821.2 2B21.4
F4 3645.8 3652.2 3651.4 3650.6 3650.7
F5 4334.2 4342.4 4342.5 4338B.3 4338.4

Fl 227.0 289.6 304.6 295.3 296.0
[i] F2 2275.8 2284.0 2285.3 2283.7 2283.7
F3 30%.1 3117.3 3107.5 310l.6 3101.9
F4 3731.6 3736.8 3735.1 3736.4 3736.4
F5 4732.8 4743.8 4740.0 4736.4 4736.6

Fl 505.2 598.3 575.0 537.7 539.7
F2 868.1 904.4 B894.3 B87.2 B83.6
F3 2390.4 2393.0 2393.2 2397.8 2397.9

F4  3457.7 3459.0 3458.8 3463.0 3462.9
F5 4021.0 4026.0 4024.8 4025.4 4025.5
Fl 237.3 313.8 318.1 301.7 304.0
F2 600.2 634.2 636.9 628.8 6£29.6
{u] F3  23B3.0 2384.7 2384.8 2390.6 2390.6
F4 3710.2 3710.9 3710.9 3715.0 3715.0
F5 4055.9 4058.3 4058.2 4060.4 4060.3

Fl 289.6 342.2 359.0 345.5 346.4
F2 1530.9 1541.5 1541.6 1541.4 1542.6
L*] F3 2414.1 2418.8 2420.3 2421.5 2421.6
F4  3472.1 3473.3 3473.4 3477.2 3477.3
F5 4200.3 4201.6 4201.8 4204.6 4204.6

Table Tyy. Pole frequencies for the Russian vowels, with different
yielding wall models.

(A) no walls,

(B) area independant lumped wall impedances (imaginary part only),
(C) area dependant lumped wall impedances (imaginary part only),

(D) frequency transformation ¢ = cg.(1-F;2/£2)"1/2, with F; = 190 Hz,
(E) formula Fp2 = Fpi2 + Ry

Remark : the radiation impedance is the imaginary part of the PIS
model . E
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(d) (B) () (D)

Fl1 10.5 10.5 8.2 9.2

F2 1.0 1.0 1.1 1.2
NT F3 .2 .2 4 .4
F4 .1 .1 2 .2
F5 .1 .1 .1 1
F1 17.4 12.3 5.5 6.1
F2 7.2 3.4 2.0 2.3
F3 .2 .2 .4 .4
[a] 4 2 .2 .2 .2
F5 .9 .5 .2 .2
F1 12.3 13.5 11.2 12.6
~ F2 9 1.0 .7 .7
Le] F3 .3 .3 .3 .3
F4 .3 .2 .2 .2
F5 .3 .3 .1 .1
F1 27.9 31.8 22.4 29.5
F2 .5 .6 .5 .5
[, F3 1.0 .5 .3 .3
11 F4 .2 .1 .2 .2
F5 4 .2 1 .1
Fl 18.4 15.6 8.0 9.3
F2 6.5 4.8 3.1 3.5
v F3 2 2 .5 .5
LO] F4 .1 .0 2 .2
F5 .2 .1 .2 .2
F1 29.8 30.4 21.4 28.3
F2 8.5 9.4 6.4 6.9
ru] F3 .1 .1 .5 .5
t F4 .0 .0 .2 .2
F5 .1 .1 .2 .2
F1 21.1 25.9 17.9 21.9
F2 1.0 1.0 1.0 1.2
[._-t] F3 .3 -4 .5 5
F4 .1 51 .2 .2
F5 .0 .1 2 .2

Table IVb. Bandwidths for the Russain vowels with different yielding
wall models.

(A) area independant lumped wall impedances (camplex values),
(B) area dependant lumped wall impedances (complex values),

(C) frequency transformations ¢ = co,(l_Fw2/f2)-1/ 2,

.F 2
mu=%+_"_.5«2_1_7
co B2 + f

with Fy = 190 Hz and"By = 76 Hz. -

- - -—‘Wﬂ
(D) formulas Fp2 = Fpi2 + Fy2 and By = Bg (Fn) .

Remark : the radiation impedance is the imaginary part of the PIS model.
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As seen from Table IVa, model (3) provides the owerall smallest
shifts and model (1) the largest shifts. Alternative (2) is recommended

as a representative and simple mcdel to implement.

The bandwidth increase associated with the resistive part of the
wall impedance is documented in Table IVbh. The effect is greatest for Bl
of vowel [i] and [u] (30 Hz). The area independence leads to an appar-
ent increase in the [o]) and [o] bandwidths.

The simple formula Eq. 38a and 38b of transformed frequency and
bandwidth, case (3), apparently have a good predictive potential.

We may conclude that there is an apparent need for new and more
detailed experimental data on vocal tract wall impedance and its distri-
bution.

2.4 GLOTTIS IMPEDANCE
2.4.1 The equatiocns
Since the model we deal with is a frequency domain model, it is not
possible to attain a complete simulation of the time-varying glottal
impedance; thus, we define a frozen state for the glottis and we study
the frequency properties of the vocal tract for this given state. The
glottis is modeled as a rectangular slit of the area Ag and the length
; the depth or thickness is d. In order to complete the model, we must
d the pressure drop P; at the glottis. According to van den BERG et
al. (1957) and FANT (1960, p. 267), the glottis flow resistance Ry can
be decomposed into two terms Rp = By + Rp, with

12.d
Re= 3 2 (39)
g'7g

corresponding to a laminar streaming resistance, and Ry being the term
due to turbulent losses, associated with the BERNOUILLI eguation:

oV,
R —- (40a)
Pg PV
Rp = Ty kg —ﬁ% ‘ (40D)

where vg = ugfh.g is the particle velocity of the glottal flow.

From the differentiation of Eq. 40a we see that the differential
resistance, appropriate for the small signal analysis, is R = 2Rp.

The glottal inductance is:

d
by =R - (41)

Thus, the glottis impedance is:
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2k PP
Z=I12pd' +\/Agps)+j_g. (42)

g a3/, 2 A
A3/1
g/g g g

yvan den BERG et al. (1957) measured kg = 0.785, and ANANTHAPAD-
MANABHA & FANT (1982) proposed kg = l.1.

Eq. 42 is implemented in our model, and the factor kg can be given
any value.

2.4.2 Influence of the glottis impedance on the vocal tract

Table V gives the pole frequencies for a uniform tube for different
types of glottis impedance. The subglottal system is removed and re-
placed by a short-circuit; there are no vocal tract losses, and the
radiation impedance is short-circuited.

We can check that the pole frequencies are independent of the
glottis resistance, if there is no glottis inductance. On the other
hand, the shift caused by the inductance is insignificant if the glottis
resistance is used. Finally, the bandwidths are very much affected by
the inductance.

FANT & LILJENCRANTS (1979) have shown that the main correlate of
perceived formant intensity is the mean value of the corresponding
formant oscillation during a fundamental period. If the glottal closed
state occupies more than one half of the period, the mean value of the
formant amplitude will not change much in comparison with a moderate and
a very large damping in the open phase. With a very large damping in
the open phase, it is the relative duration of the closed phase rather
than the degree of damping which determines the formant amplitude and,
thus, indirectly a measure of the effective bandwidth. Therefore, the
frozen state calculations of the glottal contribution to formant band-
widths are not a reliable substitute for an exact interactive calcula-
tion procedure, see further ANANTHAPADMANABHA & FANT (1982) and FANT &
ANANTHAPADMANABHA (1982).

For the present study we have selected Py = 16 cmH,0, Ag = 0.027
mmz, 1g =1.2 cm, d = 0.3 cm, and k, = 1, which represent a rather small
glottal opening. The calculated Ry = 492 and Ry = 221Q in all acousti-
cal ohms lead to a total resistance of 6.7 pc. The results of the
bandwidth calculations are reported in Table VI. The effect of the
glottal load is largest on formants that are associated with the back
cavity.

2.5 THE SUBGLOTTAL SYSTEM
2.5.1 Description

When the glottis is open, its impedance is no longer very high, and
thus, the coupling between the lungs and the vocal tract is no longer
negligible, for instance, it happens that some extra resonances appear
in the spectra of certain sounds (FANT, 1969; FANT et al., 1972). It




STL~QPSR 2-3/1984 85

Re(Z;) m(z;) F1 F2 F3 P4 F5 Bl B2 B3 B4 B5
infinite  533.4 1600.2 2667.1 3733.9 4800.7 0.0 0.0 0.0 0.0 0.0

0 1 582.2 1617.9 2677.8 3741.5 4806.7 0.0 0.0 0.0 0.0 0.0
1 0 533.4 1600.2 2667.1 3733.9 4800.7 16.9 16.9 16.9 16.9 16.9
1 1 534.7 1603.5 2671.2 3738.1 4804.7 16.5 13.8 10.4 7.6 5.6

Table V., Effect of different types of glottis impedance on the neutral

tube.

No losses and no inductances, except for Zg_

1=17.54 cm Ry = 270.0 Q
A=6 anl Ly = 12.68 mi.
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(A) (B) (c) (D) (E) (F)

533.4 535.0 534.7 0.2 14.7 1l1.1

1600.2 1603.1 1603.5 0.2 14.2 10.7

NT 2667.1 2671.1 2671.2 0.1 11.0 8.2
3733.9 3738.1 3738.1 0.1 7.8 5.9

4800.7 4804.7 4804.7 0.0 5.7 4.3

676.1 682.8 686.7 1.0 79.3 73.2

1187.1 1191.0 1190.6 0.3 28.8 27.1

@l 2554.0 2558.5 2558.6 0.2 11.9 12.6
3791.5 3809.6 3809.5 0.0 26.7 27.5

4185.9 4224.1 4224.1 0.9 68.9 70.7

435.0 436.2 435.8 0.3 13.1 12.4

| 2016.9 2027.0 2027.8 0.5 31.8 29.0
Lej 2912.7 2936.7 2936.9 0.8 52.2 54.5
3856.8 3885.6 3885.5 0.7 50.4 51.8

4632.0 4645.5 4645.5 0.3 21.1 21.6

230.1 230.5 230.4 0.2 11.5 11.4

2284.5 2295.6 2296.7 0.5 31.9 35.0

Ii] 3290.1 3300.1 3300.1 0.3 18.0 18.7
3800.7 3830.3 3830.3 0.8 55.4 57.1

4970.6 4979.6 4979.6 0.2 12.8 13.1

535.1 540.4 539.5 1.0 46.2 40.7

958.4 959.8 959.9 0.1 12.1 11.8

[o]  2437.1 2439.3 2439.4 0.0 5.9 6.3
3470.9 3517.2 3517.0 1.3 77.2 79.8

4050.0 4073.7 4073.7 0.6 44.7 45.9

248.8 249.5 2493.3 0.3 14.3 14.2

o] 607.9 608.6 608.7 0.1 10.6 9.3
2384.3 2385.4 2385.5 0.0 3.1 3.4

3711.3 3750.2 3749.8 1.0 57.1 58.7

4059.2 4078.7 4078.7 0.5 36.8 37.8

205.0 295.7 295.4 0.2 11.9 11.8

1729.1 1729.5 1729.5 0.0 1.3 1.3

[i] 2436.6 2442.9 2443.3 0.3 17.3 18.5
3509.8 3519.5 3519.5 0.3 17.3 17.9

4227.0 4246.7 4246.6 0.5 30.9 31.7

Table yI. Influence of the subglottal system on the Russian vowels.

(A) pole frequencies in the lossless case,

(B) pole frequencies with glottis + subglottal system,
(C) pole frequencies with the glottis only,

(D) difference (B)-(A)/(A), in %,

(E) bandwidths with glottis + subglottal system,

(F) bandwidths with the glottis only

All losses and inductances are null, except for the subglottal system ;
P
s

= 16 cmHy0, Ag = 0.027 cm? and 14 = 1.2 cm, that is
= 270 ) and Lg = 12.67 mH.

Ry
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is, thus, important to have a model of this subglottal system, and to
connect it to the vocal tract electrical line.

FANT et al. (1972) have derived a model of the subglottal system
and resonance properties of its input impedance. We represent this
input impedance by three RLC modules as specified by ANATHAPADMANABHA &
FANT (1982) (see Fig. 13). The frequency characteristics of this imped-
ance is shown in Fig. 14. It is clear from this figure that there are
three poles, and three zeros, of which the first one is at the zero
frequency (the lung volume capacitor approximated by a shortcircuit).

2.5.2 Influence on the vocal tract

The influence of the subglottal system on the poles and zeros of
the vocal tract is rather complex. It is obvious that this influence
depends very much on the glottis impedance and also on the position of
the pressure source.

In fact, since the glottal impedance in normal voicing is relative-
ly high, the role of the subglottal system is small. It is possible to
verify this assumption from Table VI, where we can see that the major
modification to the poles and the bandwidths is due to the glottis
impedance itself and not to the subglottal system.

2.6 CONSTRICTION

To compute the resistance at a constriction in the vocal tract, we
first compute the DC glottal air flow from the lung pressure and the
overall aerodynamic resistance, the main part of which resides either in
the glottis or in the supraglottal constriction, compare Section 2.4.1.
We assume that the volume velocity flow is the same in the whole vocal
tract. The average particle velocity in a constriction of the cross-
sectional area A, is thus v, = u//A..

According to FANT (1960, p. 173-174), there are three different
sources of resistance. The first one corresponds to the BERNOUILLI
equation, written with the coefficient kc (see Eq. 40a), for a small
signal approximation:

v

p C
Ry = 2k, - ‘2‘5(;) (43)

The second term comes from the laminar streaming:

R, = ) LA
L Y« aa?
c cC

(44)

’

where 1, is the length and d, the diameter of a constricted (cylindri-
cal) tube.
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R Ry Ry
Subglottal formants Bandwidtis Inductances
Fl 615 Hz 246 Hz 3.80 mH
F2 1355 Hz 155 Hz 0.72 mH
F3 2110 Hz 140 Hz 0.27 mH
Ll = 3.80 mH Cl=17.6pF Rl = 36.7M
12 = 0.72 mH C2 =19.2uF B2 = 53.64n
L3 = 0.27 mH Ci=21.1 FFE B3 =53.90

Fig. 13- &Subglottal impedance network.
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The third term, corresponding to the turbulent flow, is:

1 1
E-p .2 c
R = @B .c_8P 2. , (45)
3 Al u 2 c VA
T c dc cc
with
g = 0.316a R /4, (46)
and v d
_Vce

being the REYNOLDs number for the constriction;v is the kinematic coef-
ficient of viscosity, defined as the ratio of the viscosity coefficient
to the density of the gas.

In fact, for constriction sizes usually encountered in speech
production, the laminar streaming term is negligible compared to the one
corresponding to the flow turbulence in a tube, and this latter is
usually smaller than the BERNOUILLI term. More specifically, the nature
of the resistance depends on the type of flow in the tube and, thus, a
choice should be made between the laminar and the turbulent terms,
depending on the REYNOLDs number at the constriction.

The Rl resistance is related to the compression of the flowing air
veine from a large area to a small one: it can, thus, be located at the
upstream inlet of the constriction. The turbulent term corresponds to a
resistance which is spread along the constricted tube, but, since it is
somewhat smaller than the BERNOUILLI resistance, it can be lumped into
that. Thus, we will use only one resistance at the inlet of the con-
striction. We determine the tube wich has the smallest area, and insert
this resistance in series between the T-cell corresponding to this
constriction tube and the previous one.

2.7 HORN SECTIONS

We have already given the network representation for a rather
general type of horn sections. Some preliminary experiments showed that
it is important to define the vocal tract shape in the vicinity of a
consonantal source with a great precision, if we want to be able to
study the effects of a shift of the source location. If we want to
avoid an exceedingly large amount of small tube sections to represent
the tract, the horn sections seem to be a good solution to this problem.
As a practical modular unit, we decided to use conical horns, and to
define the constriction in the way shown by Fig. 15. Another alterna-
tive, which is simpler for overall cavity shape modeling, is the cate-
noidal horn. It is less suited for multiple cabcadlng to study the
influences of the source locatious.
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The equations for the conical horn are obtained by using

X .
e=—hQ—j

(STP=

(48)

with h going to infinity, in the equations of Fig.3. We use only the
increasing area model in both forward and backward directions depending
on the end areas of the cone.

In order to introduce the viscosity and heat conduction losses, we
have defined an average value of Q.

We know that the area function is:

° . (49)
(e}

A(x) = AO(

For a very small section, dx long, we have:

KVE

a{x) = . (50)
Afk)

3

Thus, we can define

1 ;
KV X0 % +1
- ] dx = KVE - ==+ Log (—) -
oI / AR PP *o o
O

This average value is used in the T-cell part of the network in
Fig. 13. We have checked for several configurations that approximations
with 0.1 cm long tube sections provide pole frequencies within 1 Hz of
the conical horn models and bandwidths within 10-20%, depending on the
cone angle (the fit is better for small angles). This accuracy is
judged to be satisfactory.

3. Applied studies
In this part we report on vocal tract simulations applied to the
reference Russian vowels. Then, we give the results of a preliminary
study on one constrictive consonant, and, finally, provide some data on
helium speech.

3.1 REFERENCE DATA FOR THE RUSSIAN VOWELS

By "Russian vowels" we mean the set of vocal tract configurations
corresponding to the articulation of the Russian vowels [a],[e],[i],[0],
[u], and [%] studied in FANT (1960). The first line (x = 0) of the
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table on P-115 must be read as the mouth radiating area for the vowels.
The secord line corresponds to the first 0.5 cm long section, and so on,
going from the mouth towards the glottis. We should notice that the
vocal tract for the vowel [+] is only 18.5 cm long and is terminated at
the glottis by 4 sections of the 3.2 cm? area.

To this set of vowels we have added a "neutral” tube or "uniform"
tube, noted NT, defined as a 16.5444 em long tube of constant area 6
cm2. With a radiation inductance of D.Wan& infinite wall imped-
ance, the resonance freguencies become odd multiples of 500 Hz. In
Table I, the configuration noted N corresponds to 1 = 16.37 cm and A = 8

am?,

3.1.1 Reference formant frequencies

Table VII lists the formant frequencies for the Russian vowels,
assuming closed glottis state and both infinite wall impedance and area-
dependent lumped wall impedances. These data check relatively well with
the FANT (1960) and WAKITA & FANT (1978) data, considering that the
radiation models are different, and that we apply a correction to the

lumped wall impedances.

3.1.2 Incremental bandwidths

Table VIII gives the contribution to the total bandwidths of the
different losses in the tract. These data are of the same order of
magnitude as the FANT (1960) data. Line (4), correspording to the sums
of lines (1), (2), and (3), and line (5), corresponding to the band-
widths when using viscous and thermal, radiation and wall losses to-
gether, are in good agreement: the "additivity" property of the contri-
butions to the overall bandwidths is verified.

The effect of glottis inductance on glottal dissipation is to
reduce the glottal bandwidth component at higher frequencies, where the
imaginary part of the glottal impedance is no longer negligible compared
with the real part.

3.2 PRELIMINARY STUDY OF A CONSTRICTIVE

The purpose of this section is to illustrate simulations from a
given vocal tract configuration and aerodynamics. We use the configura-
tion [8], i.e., [J] from FANT (1960, p. 172), see Fig. l6a.

'3.2.1 The general conditions

We define here all the conditions which have been kept constant
throughout the study. We have used viscous and thermal losses with a
shape factor of 1. The radiation model was the Piston in Sphere with
the +6 dB/oct radiation transfer. The wall impedances were simulated by
the frequency transformations (Egs. 37a and 37b). The glottis state was
defined by lg = 1.2 cm, d = 0.3 cm, P, =8 cmH,0, and = l. No
subglottal system was used. The cons triction was modeled as a tube of
0.4 cm length and 0.4 cm? area, with a pressure source located at the

outlet of the tube; the corresponding resistance was lumped at the
inlet, with kc = 1.
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Fl 2 F3 F4 F5

NT 502.2 1507.8 2521.7 3545.6 4580.4
0] 642.3 1085.0 2469.0 3621.5 4134.5
[e] 420.1 1973.7 2819.3 3650.6 4253.1
(A) [1]  226.9 2276.1 3105.6 3728.7 4750.6
[o] 505.2 867.7 2390.0 3457.7 4019.9
(u] 237.2 600.0 2383.0 3710.5 4055.6
[£] 289.5 1529.4 2413.5 3471.1 4198.9

NT 542.5 1518.0 2525.3 3549.4 4584.2
[a] 705.5 1108.6 2471.5 3625.1 4146.2
fel 464.8 1986.5 2824.1 3654.8 4264.3
(B) T4}  301.6 2285.6 3118.3 3732.0 4756.1
(o] 574.6 893.6 2392.7 3458.8 4023.6
[u] 316.3 636.0 2384.8 3711.2 4057.9
[#] 357.0 1540.2 2419.7 3472.3 4200.4

Table VII.Reference formant frequencies for the Russian vowels.

The vocal tract is considered in closed conditions. Are taken into
account the radiation impedance (Piston in Sphere model), and the viscous
and thermal losses (shape factor = 1).

For the table (A) the wall impedance are supposed infinite.

For the table (B) area dependent lumped wall impedances are used.
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NT Bl B2 B3 B4 BS il B B2 B3 B4 BS
(1) 4.8 8.7 11.4 13.8 15.9 {1) 4.8 12.6 27.0 19.6 25.8
{2) 2.8 29.5 80.1 142.1 205.3 (2) e B 5.2 161.9 57.9 391.8
(3) 10.8 1.0 2 % | ik (3) 31.8 .6 .5 .1 .2
(4) 18.2 39,2 91.7 156.0 221.3 {(4) 3.5 18.4 189.4 77.6 417.8
() 18.3 39.2 91.6 155.3 219.7 (5) 36.9 18.4 187.6 76.4 402.9
(6) 15.6 16.6 16.3 16.3 16.4 {(6) 11.1 49.3 22.8 134.2 29.6
{7) 15.2 13.8 10.5 o 5.8 {7) 11.1 31.3 11.4 &0.8 10.6
[a] To
(1) 8.4 11.3 18.1 18.8 28.2 (1) 6.5 9.6 1l4.6 23.2 22.5
(2) 5.2 15.6 40.2 134.5 28.3 (2} 2.7 7.9 15.5 7.3 20.1
(3) 12.3 3.4 .2 b .5 (3) 15.6 4.8 i .0 -3
(4) 25.9 30.3 58.5 153.5 57.0 (4) 24.8 22.3 30.3 30.5 42.7
(5) 25.9 30.2 58.3 152.1 56.2 {5) 24.8 22.2 30.3 30.5 42.5
(6) 62.9 49.3 18.4 38.0 185.4 (6) 35.5 26.3 9.3 160.3 94.2
(7) 58.3 48.7 11.9 15.3 82.5 {7} 33.9 25.9 5.8 72.7 486.7
(el Lu]

(1) 5.0 11.5 15.3 17.6 19.0 (1) 6.1 9.1 19.2 20.2 21.1
(2) 1.2 29.0 106.8 327.9 283.B (2) 2 2 .2 .4 1.2
{3) 13.5 1.0 .3 .2 3 (3) 30.4 9.4 P .0 s |
(4) 19.7 41.5 122.4 345.7 303.1 (4) 36.7 18.7 19.5 20.6 22.4
{(5) 19.7 41.4 119.4 339.9 296.8 {(5) 36.8 18.7 19.6 20.5 22.3
(6) 12.5 41.4 87.4 89.8 77.4 {(6) 11.1 15.1 5.1 128.3 75.7
{7) 12.3 28.5 49.2 41.4 32.2 {7} 11.0 14.8 3.2 57.1 39.9

[4]

{1) 4.6 10.9 12.7 19.5 20.1

(2) .3 64.8 10.2 32.5 31.0

(3) 25.9 1.0 4 .1 g

(4) 30.8 76.7 23.3 52.1 51.2

(5) 30.9 76.6 23.3 52.0 51.0

(6) 11.8 27.8  36.2 B80.3

1!2
(7) 1.7 0.9 17.7 16.9 31.2

Table VIII Incremental bandwidths for the Russian vowels.

(1) Bandwidths for R & G losses,

(2) . for radiation losses,

(3) " for wall losses,

(4) Sum of lines (1), (2) and (3),

(5) Bandwidths for R & G, radiation and wall lcsses,
(6) " for glottal losses {Rg = 2705 and Iy

= 0),
(7) = ibaE ™ " (Rg = 2700 and L

16.67 mH) .

ihu

Remark : j.n all cases, the PIS model (imaginary part) and the wall area
dependant impedances (imaginary part) were used. Mo subglottal system was used.
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all the curves we yive represent the transfer function between the
pressure radiated from the mouth and the pressure source at the con-
striction. Whenever these specifications have been changed, it is ex-
plicitly menticned.

Moreover, we have used, for the teeth pass, the internal end
correction proposed by FANT (1960, p. 36):

11 = 0.48 [Pu.o]l! . {‘I - 1.25[%&] {l . - (52)

where 1; is the length correction for a tube of small area A; abruptly
terminated in a wider tube of area A. Thus, the narrow tube correspond-
ing to the teeth pass attains an effective length of 0.614 cm instead of
0.2 cm. The major consequence of this correction was the lowering of the
third formant frequency by a few hundred Herz.

An example of a simulation is shown in Fig. 16, which illustrates
the area function and associated input data and a calculated transfer
function.

Bs a check of the reliability of the simulation, we made a computa-
tion with the same conditions as FANT (19260, p. 175) by forcing the
glottis resistance to 5 pc and the constriction resistance to 0.25 pc.
(see Fig. 17). The result checks fairly well with FANT's curve.

3.2.2 Influence of the glottis and constriction resistances

In order to study the influence of the glottis and the constriction
resistances, we have made four simulations, see Fig. 18. The glottal
area was Ag = 0.10 em? and its inductance Ly = 0. Curve (1) correspond-
ing to the zero constriction resistance and the infinite glottal resist-
ance serves as a reference. From these curves it appears that the major
effect of a finite, rather low, glottal resistance is to damp very
strongly the first two formants, and the first zero, and also to damp
and shift up in frequency the higher pole/zerc pairs. The constriction
resistance mainly damps Fl and F2 but also F3.

3.2.3 Influence of the glottal opening

The effect of the variation of glottal opening with a constant
transglottal pressure Py = 8 cmH,0 and with a glottal resistance and
constriction resistance as dependent parameters is shown in Fig. 19.
Part (a) corresponds to Ly = 0. It is verified that an opening of the
glottis damps the first three formants and contributes to an overall
spectral shape with only one broad peak, which is a characteristic of
the [$) fricative. Part (b) shows that the glottal inductance does not
play an important role.




(al

(bl

(=1 N e ]

0 5 10 15

= VOTREG ww

Minlses (requemey (M=) L
Hoxlems freguemoy §Ha) L1
Frequemey miteop (Hz) |29
R 8 C lawsss 7 (Bhapos Fasterd ¢ 1
Charasterlstle Inpedance (@ 5 Aami, 1 & Complax) v &
Fnd intlon Sywtem T
i@ = Pleton In Spharae,
I = @.00 Longibhonal
2 = YWoklten=Fast (0,0
3 & Fros Bpsce,
4 ® Blevens-Kasowaki-Fant [Anslog Elenlatloal ]
Aad intlen Impodance 7
8 Complex, | » lmaglonry, 2 * Manl) 1 @
Wall lwpedance (8 ° [nfimite, | = Complax, 2 = Tmmglaary,
3 7 o methad (Complex), 4 = Co weihod { Imsginaryl} 1 &

twlith tgh,
lengihaning) .

Clottis Aren [emd) t g, 82n
Trawagletinl pressurs fomBA2Z0Y 1 B
Clottle lomgth (eml t 1.3

Clottls thiehness (emb

Clotila lepsdance T
id s Complen, | ® Tesgimsry., 2 ® fHeal, 3 = Infinltal ¢ 1

Sukglotis]l aystem (8-10 = @

Bhaps facier at the Inlet of the glottle 1 0,

Compiriction reslstance 7 (8=1) ¢ 1|

Shape [acter at the Inlet of ths comsirictiom ! 1.

Lol

(c)

ez3gsesH

=x® Vozal Tract Slemistlon 2=
BH. BN

Hinlsas [regusmsy = 204,
HMoxleus froquonny @ S66d,
Frequency mtep = 20.88

Charanteriatlos of the Vecal Trast 7

A G lesses (Bhaps Facter = 1,80
Characterlotle lmpsdance ! Roal

Rad intlon Syntem | Flaton Im Bphare
And lan Twpadose i Complax

Aad intlon transfer (+GdReil:

¥Wall Iepedonos {Ca method (Complax))

Charaeter

fles of the glottim &
Clottls nrem = @326 owmd

1.200 em

LM om

mglottnl pressure = B8 ¢aA20

Shape foctor st the Imlot of the glottls = 1,80

Glatetle roslatance = &1, 8468 & 16929326 = 256, 2493 Ohes
Clottle Indwotence = 900 B

Chrraeterletles of the constrictlon !

Conmtrictlon geomeiry ¢ L® 4 cm . B e .71 em
Bhape (acior ai the lmlei of fhe comstricilon = 1.8
*

-
the copsirictlon » 1826,

Fale Mo 1 ©
ZTars MOe I
Pole Mo 2 ¢
Fals Ma 3 ¢
Tors MWa 2
Fola e 4 @
Zare Mo 0 ¢
Fole Fo & 1
Tore Bo & 3

Bs &

Pala

function,
(b} keyboard input,

(25518847

{d}

(c) phic representation of the transfer functicon
Emmmrﬂm:ﬂatﬂﬂm:mmw

consonantal pressure SOouUrce.

id) poles and zeros corresponding to the previcus curve.

b36L/C~-T USAD-ILE

Lb




STL~QPSR 2-3/1984 98

dB I ¥ H ‘ T T T I T ‘
60 — i i

50 |
40— !
30 |- °

20 |-

10 = T

0 1000 2000 3000 4000 5000 Hz

Fig. 17. Transfer function between radiated pressure at the mouth and
consonantal source pressure, for the / s/ confiquration in
the FANT (1960) conditions, that is:

- infinite wall impedances,

- glottis resistance of 5 pc (no glottis inductance),
- tongue pass resistance of 0.25 pc,

- pressure source in the middle of the constriction.

BT 7T BT T T 11
60 — .~ 60 - . _
50 +— P 50 |— -
40 — e 40 - |
(@) = 4 ) =p i
20 - 20 — | —
10 — 10 |~ —
0 — 0 — —
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© 1000 2000 3000 4000 Sopo Hz 0 1000 2000 3000 4000 5000 Hz
dB l T | T [ ¥ ’ T ' T I
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40 |- i -
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20 b —
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| RIS W N DR S NN TN N |
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Fig. 18. Influence of the glottis and constriction resistances.
(1) neither glottis nor constriction resistances (Lg=0) '
(2) glottis resistance only (Ry=8.5, L,=0),
(3) constriction resistance only (Rc=1§.3, Lg=0),
(4) glottis and constriction resistances (Lg=0) .
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Fig. 19. Influence of the glottal opening.
(a) no glottal inductance:

(1) Ay =2.0 am’; Ry =2.10; Ry = 53.10;
(2) Ag = 0.5 an?; Ry = 8.50; Ro = 13.3 0
(3) Ag = 0.1 cm; =43.2; Rc = 2.67%y
(4) 2g=0.025 cm?; Ry=230.0.n: Rc = 0.670;

(the four curves are shifted 10 dB from each other for better
readability)

(b) with glottal inductance: '
(3) and (4) are the same as in (a), without glottal inductance,
(5)Ag 0.1 cm?; Rg 43.20; Lg = 3.4 mH; Rs = 2.67%;
(6) Ay =0. 025em2; Ry =230.00.; Lg =13.7 mH; Re = 0.679;

(the curves (3) and (5) are shifted 20 dB above (4) and (6)).
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3.2.4 Influence of the source location

Fig. 20 shows the influence of the source location on the transfer
function. It appears that, as long as the source is located in the
vicinity of the constriction where the corresponding area is small, a
small shift of the source has an effect limited to a small shift in the
frequency and the level of high frequency zeros. But if the source is
located inside the large cavity downstream of the constriction, a small
shift of the source leads to a substantial shift in frequency of the
upper zeros and some reduction in the F3 level. These zero shifts were
expected since the volume of the part of the front cavity behind the
constriction varies significantly when the source is shifted due to the
fairly large cross-sectional area. When the source is shifted to the
inlet of the teeth path (curve (6)), the main effect is a high frequency
emphasis related to an additional zero below the main formant.

We may conclude from this preliminary study, that our model is a
useful tool allowing a detailed study of different aspects of speech
production theory, including consonants.

3.3 HELIUM SPEECH

In this section we compare the poles and bandwidths obtained for
normal speaking conditions, that is, the air at a pressure of 1 Atmos-
phere, with those obtained for a presumed diving condition assuming a
depth of 300 m and a helium/oxygen breathing mixture of 99% He and 1%
02.

For both conditions studies have been undertaken of incremental
bandwidths, i.e., differential contributions from various dissipative
elements within a neutral tube model. For the set of Russian vowels,
the comparison involves formant frequencies and total bandwidths.

The glottis state is the one used in Section 2.4.2 (Ag = 0.027 mmz,
Pg =16 cm Hy0, 15 = 1.2 cm, d = 0.3cm, ky = 1) for all the calcula-
tions. The following physical constants have been adopted:

Ch = Co x 2.79

ph = po x 4.24

C =C x 5.09
( ph  po (53)
M=1), = (-1, x 1.57

by = Ko X 1.11
A = A, % 5.0

the subscript h standing for heliox at 300m depth, and the subscript 0O
for air at normal pressure*.

*
These have been chosen to allow comparisons with results from calcula-
tions of M.R. RTCHARDS & R.W. SHAFER (personal communication).
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Fig. 20. Influence of source location.
The figure has been split into three parts for better
readability. xg = 0 corresponds to a source located
at the outlet of the constriction, which is the tube
of 0.4 cm length and 0.4 cm? area (see Fig. 16a).

(1) => x5 =-0.4 cm, (4) => xg = +0.4 am,
(2) => xg = 0.0 cm, (5) => xg = +0.5 cm,
(3) => xg = +0.3 am, (6) —-> dental source.
The conditions are = 0.1 cm2, Rg = 43.20,

Ly = 3.4 mH, R, = 2.67<.
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3.3.1 Incremental bandwidths for the uniform tube

In the loss-less case, without the wall loading and radiation
impedances, the poles frequencies are evidently proportional to the
velocity of the sound, c, and, thus, would be expected to increase by
the factor K = Ch/CO‘ Taking into account the wall impedance loading
(FANT, 1972; FANT & LINDQVIST, 1968), by means of Eq. 38a, we arrive at
a frequency shift factor

2

~ F %
k=h|y,w fh_ (54)
Co F2 Po
wh

The expected shifts of incremental bandwidths will next be treated.
The viscous and thermal losses are subjected to the following

proportionalities:

~ . ~ E . 1 -
BR C CLR / 0 \/—f_', correcting factor: 0.51 fh/fO (55a)
Bg~ Cra g~ (-1) /Ez\p—p\/F ; correcting factor: 0.82 [f /£  (55b)

Since By corresponds to 69% of the total bandwidth and By to 31%,
the expected correcting factor is:

(0.51* 0.69 + 0.82* 0.31) fh/fo = 0.6 /fh/fo (56)

If Ry is the radiation resistance, and if we neglect the wall
impedances and the radiation inductance, we can show that the corre-
spornding bandwidth is given by:

£
C

~

’ (57)

2la
o~lo™

if we suppose Ks(w) =1,
For the wall losses, we can derive:

Bwo ’ FV? BWO ) FVZ\T
w f2 + B 2 f2
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From FANT (1972, p. 29), we know that:

Fwwc\/?, ’ (59)
and so
2,.2 2 2 :
Bwfv Fw /£~ ¢ p/f . (60)

For the glottis resistance, if we neglect all the inductances
(walls and radiation), we can show that the corresponding bandwidth is:

7
_c¢c o, = o2 61
B = 3 Rg c c\/-g. (61)

The results are given in the Tables IXa and IXb for two different
conditions : without glottis inductance and with glottis inductance.
One can verify that they check, at least in order of magnitude. Some
discrepancies may be due to the fact that these formulas are approxima-
tions only.

In the heliox pressure case, the glottal inductance I..g being pro-
portional to p, dominates the glottal impedance and, thus, screens off
the glottal resistance from the vocal tract. Accordingly, glottal
losses are minimized. Without glottal inductance, on the other hand,
the glottal bandwidths increase by a factor of the order of 16. The
extreme glottal bandwidths have relevance for "leaky" voices only.

3.3.2 Russian vowels-Heliox conditions

In Table X the pole frequencies and bandwidths for the Russian
vowels are compared for normal speaking conditions and for the heliox
mixture.

As expected the frequency shift is very close to ¢ /cy for F3, F4,
and F5. As a consequence of the wall impedances, the ratio is much
higher for F1 and F2 and is approximately predictable from Eq. 38a. The
bandwidth shifts display more complex patterns. However, a general
observation is that the order of magnitude of bandwidths shift factors
is ch/co. The wall impedances have a small part only in this shift and
glottal losses are limited by the assumption of a finite glottis
inductance.

Appendix
Here we give the values used throughout the paper for the different
physical constants. The values for air are given at normal atmospheric

pressure.
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Normal conditions

Form. No 1 2 3 4 5

Bandwidths
R&G 4.8 8.7 11.4 13.8 15.9
Rad. 2.8 29.5 80.1 142.1 205.3
Walls 10.6 1.0 .2 .1 .1
Glot. 15.6 | 16.6 16.3 16.3 16.4
All 33.9 55.6 107.5 170.6 234.3
Freq. 542.6 1517.8 2525.0 3549.3 4584.2

Heliox mixture

Form. No 1 2 3 4 5
Bandwidths
R&G 4.7 0.98 8.7 1.00 11.6 1.02 13.9 1.00 16.1 1.01
Rad. 9.5 3.39 77.9 2.64 219.7 2.74 402.8 2.83 587.2 2.86
Walls 28.4 2.68 4.3 4.30 .9 4.50 .5 5.00 .6 6.00
Glot. 249.8 16.01 321.4 19.36 294.2 18.05 273.7 16.79 274.5 16.74

All 292.0 8.61 408.8 7.35 515.9 4.80 669.7 3.92 843.5 3.60
Freq. 1826.1 3.37 4326.2 2.85 7072.5 2.80 9928.9 2.80 12834.6 2.80

Table IXa. omparison between the incremental bandwidths for normal
speaking corditions and for heliox mixture, without glottis inductance,
for a uniform tube (16.54 cm, 6 cm2),

In all cases, the imaginary part of the radiation load (PIS model)
and of the wall impedances (area independant lumped impedances) were
used.

In the second part of the table, for each formant, the second
nummer is the ratio between the value for the heliox mixture and the one
corresponding to the normal conditions.

The glottis resistance is 270 for the normal conditions and 510
for the heliox mixture.
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Normal conditions

Form. No 1
Bandwidths
R&G 4.7
Rad. 3.1
Walls 8.9
Glot. 15.2
All 33.5
Freq. 543.8

Heliox mixture

Form. No 1

Bandwidths

R&G 4.7 1.00

Rad. 10.6 3.42

Walls 24.8 2.79

Glot. 93.8 6.17

All 135.6 4.05

8.6
29.8
1.1
13.8

52.9

1521.0

8.7

78.9

4.4

33.7

125.7

1.01

2.65

4.00

2.44

2.38

105

11.4
80.5

.2
10.5

102.1

2529.0

11.5
220.3
.9
12.7

245.1

1.01

2.74

4.50

1.21

2.40

13.8
142.0
.1
7.7

162.7

3553.2

13.9
403.2
<5
6.1

422.8

1.01

2.84

5.00

0.79

2.60

15.9
205.0
.1
5.8

224.8

4587.8

16.0

587.6

.6

3.7

606.1

Freq. 1881.6 3.46 4378.8 2.88 7108.4 2.81 9950.0 2.80 12842.2

Table 1X0. €omparison between the incremental bandwidths for normal
speaking conditions and for heliox mixture, with glottis inductance, for
a uniform tube (16.54 cm, 6 cm2),

In all cases, the imaginary part of the radiation load (PIS model)
and of the wall impedances (area independant lumped impedances) were

used.

1.01

2.87

6.00

0.64

2.70

2.80

In the second part of the table, for each formant, the second
nummer is the ratio between the value for the heliox mixture and the one
corresponding to the normal conditions.

The glottis resistance and inductance are 2700 and 12.67 mH for
the normal conditions and 510fi and 53.7 mH for the heliox mixture.




STL~QPSR 2-3/1984 106

(A) (B) (cy (D) (E) (F)
543.8 1881.6 3.46 3.30 33.5 135.6
1521.0 4378.8 2.83 2.86 52.9 125.7
NT  2529.0 7108.4 2.81 2.82  102.1 245.1
3553.2 9950.0 2.80 2.80  162.7 422.8
4587.8 12842.2 2.80 2.80  224.8 606.1
716.3 2463.8 3.44 3.09 82.8 146.8
1113.0 3633.9 3.26 2.92 72.8 277.4
[a] 2475.8 6€954.2 2.81 2.82 70.2 144.8
3633.1 10181.4 2.80 2.80  165.0 418.8
4193.3 11900.2 2.84 2.80 128.1 150.6
465.8 1671.3 3.59 3.46 32.1 119.3
1996.2 5738.8 2.87 2.83 69.6 139.4
[e]  2845.4 B068.6 2.84 2.8l 168.4 356.5
3675.2 10362.1 2.82 2.80  373.4 995.5
4297.3 12060.5 2.81 2.80  320.2 830.0
302.0 1355.0 4.49 4.22 48.1 155.6
: 2297.9 6555.0 2.86 2.82 49.1 68.9
Li1 302202 ss2a.0 2.83 2.81  197.3 471.8
3766.1 10609.8 2.82 2.80  132.9 228.0
4767.5 13391.0 2.81 2.80  412.0 1156.0
580.0 2050.7 3.54 3.24 58.1 105.3
894.6 2969.0 3.32 2.99 48.1 216.2
[e] 2395.0 6718.4 2.81 2.82 36.1 66.3
3505.2 9861.9 2.8l 2.80  108.3 106.0
4047.5 11385.5 2.81 2.80 88.3 112.5
317.5 1294.7 4.08 4.10 48.0 84.4
636.3 2220.0 3.49 3.17 33.5 150.3
[u]l 2386.0 e678.6 2.80 2.82 22.7  24.3
3751.5 10519.4 2.80 2.80 76.8  59.9
4077.1 11444.1 2.81 2.80 57.1  53.6
357.6 1498.6 4.19 3.84 42.8 148.6
1540.4 4395.4 2.85 2.86 77.5 194.9
[£]  2426.4 e858.9 2.83 2.82 41.0 65.0
3481.7 9745.7 2.80 2.80 70.3 128.4
4220.2 11818.1 2.80 2.80 81.8 130.3

between normal speaking conditions and heliox mixture.

(n) pole frequencies for normal conditions,
(B) " " " heliox mixture,
(C) ratio (B)/(A),

(D) predicted ratioc assuming Fy = 190 Hz,
(E) bandwidths for normal conditions,

(F} " " heliox mixture,

(G) ratio (E)/(D).

All losses were used (including PIS radiation impedance and area
dependant lumped wall impedances). The glottis conditions are the same

as for the tables 7. There was no subglottal system.

2.12

[N N
Py
o
Y= |

= O e BB W
L] L] - L] - - L] L] L] L]
[T = 0 00~ [
-.‘Imgk.ﬂl-—' Hmmgw

"

. a
=] =]

C>C1r'h|ﬂ

ek
oY
=]

2
1.59
1.83
1.59

L
[y

Table x Frequency and bandwidth changes, for the Russian vowels,
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35300 cm.sec™l,

Sound velocity : C

Density of air : P 1.14 1073 qm‘a.

Specific heat at constant pressure Cp = 2.4 107} cal.g'l-dag'l,
Mdiabatic gas constant t = 14,
Visocosity of air :t L = 1.84 1074 dpm.secm‘z;

Coefficient of heat conduction of air: A = 5.5 107 cal-mn'l.secdeg'l.
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