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On the Propaflation of Sound Waves in a Cylindrical Conduit 

A. H. BEN.4. DF, 

Case Weslern Reserve University, Cleveland, Ohio 44106 

The series impedance and shunt admittance of an acoustic line is calculated from the linearized acoustic 
equations. Exact and limiting formulas for small and large tubes are provided for R, L, G, C, the real and 
imaginary parts of the characteristic impedance Z0, as well as the phase velocity v and attenuation constant 
a. All results are presented in convenient form for quick computation on the basis of tables and graphs. A 
self-conslstent set of molecular data is presented. Accuracies of formulas and of the data are discussed in 
detail. 

INTRODUCTION 

T has been 18 yr since Daniels published a brief 
paper with the same title as the present one. 1 He 

presented in convenient form the results of calculation 
on the effects of boundary-layer phenomena as they 
affect the propagation of sound in pipes. In our own 
laboratory, the need for accurate methods for the mea- 
surement of radiation and wall losses in musical instru- 

ment air columns has required an extension of the work 
of Daniels, and its revision upon the basis of more 
modern molecular data. 

This report constitutes a summary of our results, and 
provides explicit formulas for the calculation of all the 
major parameters controlling wave behavior in a pipe 
of arbitrary size. These formulas include low-frequency 
(small-tube) and high-frequency (large-tube) approxi- 
mations as well as the "exact" results. Graphs are 
presented, which display the relations between the 
exact and approximate fornmlas, in a form that permits 
ready computation of any desired parameter almost 
by inspection. Estimates of the accuracy of the various 
results are described in detail, so that computational 
methods may be chosen to suil. the user's need for 
precision. A Table is provided that gives the values of 
various combinations of the Bessel functions of com- 

plex argument, which are needed for the convenient 
calculation of the "exact" parameters. Explanations 
are also given of the way in which published mathe- 
matical tables may conveniently be used to extend our 
tables. 

In addition to the mathematical results summarized 

in the preceding paragraph, we present a discnssion of 

• F. B. Daniels, J. Acoust. Soc. Am. 22, 563-564 (1950). 
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the relation of the present results to those given by 
Daniels, and to the classic formulas of Lord Rayleigh. 
There is no discussion of the possible fundamental 
limitations on the validity of the formulation. This 
question may well be considered open in view of a 
number of misconceptions and inconsistencies, which 
have crept into the standard literature over the years. 
These errors are pointed out and explained. A thorough 
reexamination of the whole relation between theory and 
experiment is needed, but fortunately many of the 
existing experiments were done with great meticu- 
lousness, -ø-• and so would justif;,' reanalysis. This restudy 
has been started, but results are not included here. tn 
addition, modern developments in electronics and in 
transducers make possible new experiments, including 
some that provide separable data on the viscous and 
the thermal boundary phenomena. 

Finall}', we provide an up-to-date tabulation and 
careful discussion of the molecular coeffÉcients for air 

at room temperature, as well as of certain useful 
algebraic combinations of these coefficients. Tempera- 
ture correction factors are provided in all cases, for the 
range about room temperature, and certain pressnre 
dependencies are described as well. 

I. FORMULATION OF THE PROBLEM 

We make use of the standard transmission-line for- 

realism, which describes the acoustical properties of a 
tube in terms of the series impedance and shunt ad- 

2 w. P. 3,'lason, Phys. P, ev. 31, 283 -295 (1928). 
a R. D. Fay, J. Acoust. Soc. Am. 12, 62-67 (1940). 
• L. E. Lawley, Proc. Phys. Soc. (London) B65, 181 188 (1952). 
,i R. F. Lambert, J. Acoust. Soc. Am. 25, 1068-1083 (1953). 
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I"•c,. I. Tube-size parameters (rv •a) and (re/a) as a function of 
frequency (see Eqs. 4 and 5, and TaMe II). For a given tube 
radius a, the values of r at any frequency are calculated by multi- 
lflFing the ordinates by a. 

,nil tahoe of an infinitesilnal element of tube length. 
These two parameters are then used to calculate the 
characteristic impedance and propagation constant of 
the robe (the latter gives the phase velocity and 
attenuation coefficient). From these results it is possible 
then to compute the impedances of finite lengths of 
tube, and of combinations of robes. 

Because these quantities are discussed many places 
in the literature, TM we shall begin by simply quoting 
the basic ("exact") expressions for the series impedance 
Z and shunt admittance Y per unit length of a tube 
whose radius is a. The series impedance properties of 
lhe line element are associated with the storage of 
kinetic energy, and with its dissipation via viscous 
losses at the wall. For this reason, these quantities are 
labeled wilh the subscript e, to identify them with 
velocity, and viscosity. On the other hand, the shunt 
admittance is associaled with the potential energy of 
compressinn, and the thermal energy losses due to the 
failure of adiabaticitv at the walls. The subscript t is 
used to indicate pttrameters controlled chiefly by the 
Ihermodvnanfics of the system: 

Z = j(co• •rd') (1 - l;,e+i*•) -', (1) 

I'= j(co•ra •. '•'-')F1 q- (•r- l)F,e+•']. (2) 

: [". V. Hunt, Propagation of Souud in Fluids, Am. Inst. I'hys. 
Hamlbook (McGraw Hill Book Co., New York, 1957), Chap. 3c. 
See Eqs. 3c 26a, b, c, for basic differential equation. 

• J. B. Crandall, Theory of I'ibrating Systems und Sound (I). Van 
Nostrand Co., Inc., New York, 19261, pp. 229 if. 

• hi. J. E. Golay, Rev. Sci. Instr. 18, 347 356 (1947). 
• I". B. Daniels, J'. Acoust. Soc. Am. 19, 569 571 (1947). 
n O.K. *Iawardi, J. Acoust. Soc. Am. 21, 482 486 (1949). 
•' H. G. Ferris, J. Acoust. Soc. Am. 25, 47 50 (1953). 
•a A. F. Kuckes and U. Ingard, J. Acoust. Soc. Am. 15, 708 -799 

(1953). 
"U. Ingard, J. Acoust. Soc. Am. 15, 1037 1061 (1953). 
•a O.K. Mawardi, J. Acoust. Soc. Am. 26, 72(•731 (1954). 
•s S. N. Rschevkin, Theory of Sound (The *[acmillan C•., New 

York, 1963), pp. 223 if. 
• J. L. Fluhagan, Speech Analysis, Synthesis, and Perception 

(.Academic Press Inc, .,-New York, 1965), pp. 22 if. 

I:m. 2. Series rtsisl- 

ance RO',) pintted as 
the ratin RO',O wL• 
(see Eqs. 7a, 8a, 9a, 
and Sec. IIl). 

Here c is the free-space sound velocity, p is the density 
of free air, 3' is the ratio of specific heats CvC,, and co 
is the angular frequency. The parameters F• and q• 
appearing in Eq. I are defined in Eq. 3: 

2 j)] 
F•.e+i*,'= (3) 

J) JoEox/(- 

The variable r, here is proportional to the ratio of the 
tube radius a to the viscous boundary laver thickness. 

If n is the viscosity, and o the density of air, then at the 
angular frequency w, r, is given by 

r•= (•o/.)la. (4) 

The analogous quantities appearing in Eq. 2 are defined 
in exactly the same way, except that rt measures the 
ratio of tube radins to thermal boundary layer thickness: 

(5) 

Here • is the thermal conductivity and Cv the specific 
heat of air at constant pressure. 

Fignrc 1 presents working graphs of (r•/a) and (rt/a) 
as a function of frequency. The molecnlar coe•cients 
used in the computation of these graphs are discussed 
in Sec. VII of this report. Numerical values of the 
functions F and • for r• 10 are conveniently obtained 
from Jahnke, Erode, and L6sch, ts where the reciprocal 
of F is tabulated under the notation (r/2)(bo/bt), and 
onr phase angle • is related to the tabulated angle 
w•riable (•o--B•) hv the equation 

(6) 

Large argument calculations may be based on tables 
provided by Abramowilz and Stegun? 

1, E. Jahnke, F. Erode, and I". L•sch, Tables qf Higher F-unclions 
(McGraw -llill Book Co., New York, 1960), 6th •., pp. 242 246. 

• M. Abramowitz and E. Ste•n, tlandbook of MMhemMic• 
Funclions (U.S. Government Printing O•ce, Washington, D.C., 
19•), p. 432. 
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t"•o. 3. Series reactance o•œ plotted as a ratio to wL• (see Eqs. 7b, 
8b, 9b, and Sec. III). 

Using the notation defined in the preceding para- 
graph, the real and imagina]'y parts of the impedance 
may be obtained by straightforward algebra: 

R = -- (cop/•ra-) (F, smCD/D-, (7a) 

coL= + (cop/ra s) (1 - F,. ½osqS•.),/D s, (7b) 
where 

D •= (1-F,: cosqS•,)'øq - (F• sinqS•) '2. 

The analogous expressions for the real and imaginary 
parts of the admittance are found to be 

and 

wC= (•a•/pc•)[l+ (•- 1)Ft coseli. (7d) 

It is convenient for some purposes to define the symbols 
L•(=wp/•a-) and C•(=•a-/9c•), which turn out to be 
the values for L and C when r is finite. 

II. SMALL AND LARGE ARGUMENT 
APPROXIMATIONS 

In the limit of low frequencies and/or small tubes 
(r<<l), the factors F approach unity from below as 
1--r '2, and the angles q5 approach zero quadratically 
from negative values. In this limit we obtain 

• • (•/•a •) (8/r•), 

•t • (•/•a•)•, (8}0 

o • (•a50c •) (?- •) (r h/8), (8c) 

•c • (w=a•/'pc •) (•). (8d) 

In the limit of high frequencies and/or hu'ge tubes 
(r))l), the F's remain somewhat snmller then twice 
the reciprocals of their arguments, and the phases 
slowly approach zero. These asymptotic properties of 
the F's give the following limiting forms for R, M, G, 
and C: 

(9 a) 
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I"m. 4. Shunt conductance G plotted as a ratio to wC• (see 
Eqs. 7c, 8c, 9c, and Sec. III). 

+ (9d) 

III. NUMERICAL RESULTS AND REGIONS OF 
USABILITY FOR THE APPROXIMATIONS 

TO R, L, G AND C 

We now investigate the regions of practical usefulness 
of the limiting forms given in Eqs. 7 and 8. As is fre- 
quently the case, the regions of acceptable accuracy 
for the limiting mathematical forms extends far into 
the intermediate range of the variables, even though 
the simplified formulas are derived upon the assumption 
of very small or very large argument. Approximate 
values for R, L, and G and C may be found directly 
from the curves of Figs. 1 $. More accurate computa- 
tions are conveniently carried out by interpolations 
based on the entries in Table I. This Table includes, 

I I I • I I1% I I I I I I I I I [ I • I I I I 

I•• i x'"' (¾) 
0 + (;•- 0/q) • 

I i i i I i i • , I [ i i i i i i t i i i I 

I,C 

3 

0'%,3 4 6 El 1,0 2 4 6 8 [0 2 3 4 6 I00 

Fro. 5. Shunt susceptance wC plotted as a ratio to oJC• (see Eqs. 
7d, 8d, 9d, and Sec. III). 
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'l'.xn•: I. Tahulalirm of various [unctions of r, which are useful in the compulalion 
and • are lalmlaled for air, assuming • = 1.402. D'-'= (/" sine0F + 

r (-Fsina•! (Fco-•k) ( Fsin•/D:) (I--F cos•b D-') (R •oLI I(; •oC) •, •t 

0.1 11.(R1122 1.11(11! 819.7 1.333 614.0 0_0(11135 1.5692 0.(•103 
0.2 0.11050(} 1).990•) 2(10.11 i .333 150. i 0.1111143 i .$641 0.0014 
0.4 0.020119 11.t1•195 49.74 1.333 37.31 0.(XI576 1.5440 0.01158 
I}.6 0.04475 11.9973 22.26 1.333 16.711 0.01284 1.5110 0.0128 
1.0 o. 1215 0.9799 8.11119 1.333 6.0118 0.035114 1.41159 0.0350 
1.5 0.2457 0.9083 3.572 1.333 2.680 0.07235 1.2137 0.0722 
2.0 11.3447 0.7738 2.1128 1.331 1.524 o. 1057 0.9901 o. 1053 
2.5 0.3762 0.6225 1.325 1.329 0.9970 o. 1210 0.783q o. 1204 
3.0 0.3399 0.4991 11.9461 1.317 o. 7184 0.12(}3 0.6230 o. 12110 
3.5 0.3256 0.4143 11.7253 1.305 11.5539 0.1122 0.5073 0_1117 
4.0 0.2920 11.3570 0.5855 i .289 0.4542 0. i(127 0.4264 o. 1023 
5.0 (}.2415 0.2840 11.4229 1.254 0.3372 t1.118713 0.3252 0.0869 
7.5 0.1703 0.1891 0.2480 1.181 0.210•) 0.06713 0.21170 0.0671 

10.0 O. 1312 O. 1416 0.1741 1.138 11.1538 0.04990 O. 1526 0.0499 
20 0.06810 0.07073 0.07854 1.070 0.07338 11.02665 0.0732 0.0266 
511 11.02788 11.02829 11.02050 1.11282 0.(}2869 0.01108 0.0287 0.0110 

amo,lg other things, values of Ihc ftmclions of F and q• 
which are called for in Eqs. 7. 

To lix ideas, wc note from Fig. 1 lhal both r's are 
al)out •) al 100 Hz for a tube of 1-cm radius, whereas 
the r's are aboul 1.5 at this frequency for a capilhu'y 
who•e radius is 0.25 min. 

[t is clear from Fig. 2 that the small-r approximation 
for R is quile good at le•tst as far as r=2, where il 
undoreal(mates the correct value by about t.4%. The 
error rises to about 6% at r= 3. The large-r approxima- 
tion does not become accuralc however until r>80. 

Figure 3 indicates Ihat Ihe small-r apl)roximalion for 
L is good out Io r=3 where it gives an overestimate of 
about 1.2•. The error increases Io 3.4% at r= 4. The 
hchavior of the large r approximation is similar: At 
r=4, L is overestimated by 5%, while al r=5 the error 
has fallen to 2.3%. Beyond r-7.3, lhe overestimate is 
0.7% or less. The behavior of Ihc approximations to G 
is shown in Fig. 4. Here the funclional form of Ihe 
quanlityG (w•tt e pd) is not monotonic, lint Ihe approxi- 
nlalions still display a smoolh behavior. The small r 
apl)roximalion is usable up to about r= 1, where it over 
estimales G; it is only accurate beyond r= 20, where the 
error is 3.7•, falling Io 1.4% at r=5(L 

Finally, Fig. 5 illuslrales the nature of lhe at)proxi- 
mations to C. As has been the case earlier, the sm.dl-r 
approximation is good far 1)ex ond its nonfinal range of 
apt)licability. At r-2 Ihe al)l)roximalion overestimates 
(' I)v only l•.•. The largc-r approximation is similarly 
•ood. It overestimates C I)v 1% at r= 1.5. However, 
the error changes sign for larzer r so Ihal, at r= 2, there 
is a 2• undercstilnale, rapidly decreasing to less lhan 
1• froin r-3 and hevond. 

IV. PARAMETERS OF A LONG TRANSMISSION LINE 

We set down now Ihe formuhts for the basic pltram 
tiers of an inlinilelv long lube acting as a Iransmission 
line. These tr,msmission line parameters are the char- 

acterislic impcda,we Z0 and the propagalion conshint 

.[!+(G'•')=]:.eq,(j'2)(•,+•), 1111 
where 

It is worthwhile Io remark here also that the phase 
velocil v z' of wave dislurbanccs in the lube is given by 
v=w fl. We find it convenient also to dotinc the quantity 
Z,(-0G'•W2), which is the value of the characteristic 
impedance when r • <. 

Computations using these formulas may conveniently 
be based on the cat ties in Table [, the last four columns 
of which presenl values of the ratios (R •L) and 
(G 'wC) and Ihe associated angles •, and •t. These four 
columns are calculated upon Ihe assumption that 
T= 1.402, as i• correct for air at room temperature. 
However, for many purposes it is satisfactory to start 
the corotrotations from the small-r and large-r approxi- 
mations given in gqs. 8 and g (as outlined below). It is 
clear from Eqs. 10 and 11 that Ihe thermal and viscous 
aspeels of the situation arc thoroughly intertwined, 
which makes compuhtlion awkward. Here, and more 
particuhtrly in the limiting formulas given below, it is 
frequently convenient Io make use of the fact that 
rt=vr, where •= ((',g •')i is lhe square root of the 
Prandtl numl)er. This number is presented in Table I[ 
along with olher molecular prot)erties for air. 

The Journal 0f the Acoustical Society 0f Americu 619 
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T^nLE II. Molecular constants and their combinatioos evalu- 
uated at T=300øK (26.85øC). Note: At= (t--26.85), where t is 
the air temperature in centigrade degrees. '['he temperature coeffi- 
cients are based on values of the constants at 290 ø and 310øK. 

1.1769X 10-a[-1-0.00335•t] gcm -a 
1.846X 10-4l-1+0.0025At] g sec 1. cm-t 
1.4017[ 1 -- 0.00002•xt] 
(•Cv/K) « = 0.8410['1 -- 0.0002at] 
3.4723 X 104[ 1 +0.00166zXt] cm. sec -t 

pc = 40.8651-1 - 0.0017at'] gcm -2' sec -t 
oc-•= 1.418X 1061-1 +0.000•t '] gcm -I 'sec -2 

(r,/a) f-« = (2•rp/*/) « = 6.328l'1 - 0.0029At] cm -•. sec"- 
(n/a)f-«= (2•'o/v)b = 5.322F1--0.0031•t'] cm-t.seO 
(2•/oc •) = 1.392 X 10-s1-1 +0.000Xt] g-t. cm. sec • 

In the low frequency, small tube approximation 
(small r), the following formulas are obtained for 
Z0 and r: 

For the high frequency, large tube (large-r) case, the 
characteristic impedance and propagation constant 
become 

V. NUMERICAL RESULTS FOR Zo AND 1' 

Figures 6 and 7 show the real and imaginary parts of 
Zo. Note: the imaginary part is ncgalive. The small-r 
approximation is extremely good below r•= 0.6, where 
the error is only 0.1% in both cases. At r•= 1 the ap- 
proximation is poor, the real part being 9.3% too low, 
and the imaginary part too high by 10%. Curiously 
enough, in the region of r•--i the small-r asymptotic 
expression 

mZ0= - 04) 

fits the exact formula with about half the error of the 
small-r approximation itself. The large-r approxima- 

• r APPROX 

(•p/•)l/2o r v 

lqo. 6. Real part of the characteristic impedance ReZ0(r•.) 
plotted as a ratio to Z,• (see Eqs. 10, 12a, 13a, 17a, and Sec III). 
The calculation assumes that •,= 1.402, and that rt=vr,., where 
•=0.8410, as is the case for air under room conditions (see 
Tahle II). 

tion for the real part of Z0 is good beyond r•= 4, where 
it is low by only 1.8•. However, the imaginary part is 
low here by 60• and only becomes useful beyond 
r• = 50. 

The phase velocity is plotted as the ratio v/c in Fig. 8. 
The small-r approximation is good for r•<l, being 
only 0.1• high at r•=0.6, and 8• high at r•=l. In 
the limit of smalt r• the asymptotic behavior is given by 

= = 

The large-r approximation overestimates ,/c by 22% 
at r, 1, by 1.6% at r•= 2, crossing over to a value 
2.8• low at r= 3, after which the error falls steadih' to 
zero (0.4• at r.= 10). 

The attenuation constant is plotted in Fig. 9 as 
(a/f) vs r•. Here the small-r approximation is within 

- I X 'i'-•ASYMPTOTE 
4F ! __ _ • '(2/4T)/rv 

..... 
. h 

(•/•)1/2 0 : r v 

Fro. 7. Imaginary part of the characteristic i•p•dance ImZ0(r0 
plotted as a ratio to Z• (see Eqs. 10, 12a, 13a, 14, 17a, and Sec. V). 
Note that this reactance is always negative (capacitative). 
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LARGE-r APPROX- k 
• 4 6 . 2 4 6 8 I0 2 3 4 6 8 I00 

(•P/•)1/20 

l"m. 8. Phase velocity • (r,.) plotted as a ratio to the free space 
sound velocity (see Eqs. 12b, 13c, 15, 17c, Sees. V aml VI). 

0.5% for r,<.0.5, but it overestimates a bv 11.4% at 
r= 1. The small-r asy'mptotic expression for a is 

16) 

Once again we find a situation in which the •mymplotic 
form has less error in the neighborhood of r•l than 
does lhe otherwise more accurate small-r approxima- 
tion. The large~r approximation is satisfactory for 
r,> 50, with a being underesthnated by 10% at r,= 10. 
The limiting form given by Rayleigh has somewhat 
smaller error near r= 5, and beyond r= 50 gives resuhs 
which are really equivalent to our large-r expressions. 
This matter is discnssed in detail in Sec. VI below. 

VI. RELATION TO RAYLEIGH'S LARGE-TUBE 
APPROXIMATION 

In the limit of extremely large r, which is one limit con 
sidered by Rayleigh '-"• Eqs. 13 and take on the [Ol'111s 
set forth in Ess. 17. 

Z=,, • 1-Fr,x2 r•x2 I 
1 

L kr,.x2 r,x2 / J 

1 

I Lr•2 rb2 JI 

Separation of the real and imaginary parts of Eq. 17b 
leads to the familiar [ormular for phase velocity and 

ß -,o j. w. Strutt, Lord Rayleigh, Theory of Sound (Dover Pul,li- 
calions, Inc., New York, 1945), 2,d ed., Vol. H, pp. 31.t 

RAYLEIGH LIMIT 
[ 

LARGE-r APPRO. X• 

2 • 4 6 8 I0 2 3 4 6 8 IOO 

I:m. 9. Attenuation coel:ficient a(r,.) [)lotted in the ratio 0¾_I; as 
a function of r,. (see l';qs. 12b, 131), 16, 17d, Sees. V and VI). 

al tenuation coet:ficienl: 

v-c 1 •, (17c) 
r,.x2 r,x2 1 

For r>_50 these expressions essentially coincide with 
the large-r fmmulas of Eq. 13, and are therefore good 
approximations Io the exact formulas. For the smaller 
values of r, the Rayleigh expression for, is distinctly 
less accurate than is the large r formula Eq. 13c. How- 
ever, as already remarked the Rayleigh expression for 
a is equiwdant tn the real part of Eq. 13b at large r, 
and is more accurate than this for smaller values of r. 

In his r]teory of Sotlittt, Rayleigh wrote expressions 
that are mathematically identical with Eqs. 17, except 
that our factor (•--1) w•m replaced in his work by 
(T--l)/•% Rayleigh does not give an unambiguous 
definition of the "thermometfic conductivity," which 
is the basis on which he defines the anMog to our 
quantity ft. However he makes reference to Maxwell's 
kinetic theory, (for monaromic gases), which shows that 
the viscosity and thermal conductivity are connected 
by the following simple relation: 

(18) 

It is clear from the context of lhis statement that 

Rayleigh writes TC, wherever we have used Cv. This 
accounts for the extra factor •T in his formulas. 

There has been considerable confusion in the e•peri- 
mental literature, which arises from a ntisunderstanding 
of the difference between Rayleigh's notation (b•ed 
on the use of C,), and the customary modern conven- 
tion that prefers to use C, as a primary datum. As • 
result, one frequently finds Rayleigh's formula qnoted, 
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but with the symbol and numerical value for Cz, being 
substituted in place of C,. There has also been mis- 
understandlug over Rayleigh's mention of the mon 
atomic gas ratio • (see Eq. 18) in a context where the 
correct ratio would be that belonging to polyatomic 
gases such as those found in air. A simple approxima- 
tion to this correct ratio is (9?-5)/4? 

There is one further source of discrepancy between 
theory and experiment: Many standard textbooks 
discuss Ray'leigh's formulas for v and a in the manner 
just explained. As a matter of compntational conven- 
ience, however, they follow t[ precedent set by Rayleigh 
in carrying out a calculation for the effect of viscosity 
alone, and then bring in the thermal contribution vi• 
an "effective viscosity" •: 

= (19) 

It is 1o be emphasized, however, that it is nol correct, in 
general, to replace n by •/, • a shortcut method of in- 
dnding thermal effects. The structure of Ells. 1 and 2, 
as well as their real and imaginary descendents, shows 
clearly that the viscous and thermal aspects of the 
wall effect remain symmetrical but well separated 
everywhere except in calculating characteristic im- 
pedance and the propagation on constant. Even here 
it is possible to make use of an effective viscosity only 
in the Rayleigh li•nit of extremely large r. 

VII. MOLECULAR CONSTANTS OF AIR 

Table 11 provides a listing of the numerical valncs 
and dimensions for the density p, viscosity •/, ratio of 
specific heats % along with the normal velocity of 
sound c, and the square root v of the Prandtl number. 
These quantities are given for air at 1 arm pressure 
(760 mm Hg), and •[ nonfinal laboratory temperature 
of 300øK (= 26.85øC). In addition to these basic data, 
certain derived quantities are also tabulated for con- 
venience in COlnputation. These subsidiary quantities 
are pt, pc ø-, and the factors (2•rp, q)• and (2•rp, •)'-', which 
are to be multiplied by av/f to give r• and r•. 

All of these data are taken from the NIlS Tables of 
Thermal Properlies oJ Gases,*' and are provided with 
temperature correction factors calculated directly from 
the tabulated values over the range 290 ø to 310øK. The 
pressure dependence of the various quautities is con- 
trolled almost completely by the pressure variation of 
the density •, which is itself directly proportional to 
the absolute pressure. 

The NBS tables provide a thorough discnssion of the 
accuracy and nmtual consistency of the coefficients. 
The thermodynamic properties (specific heat pressure- 

-'• R. B. Bird, J. O. Hirsch[elder, and C. F. Cirtiss, Handbook 
of Physics, E. U. Condon and H. Oclishaw, Eds. (McGraw- Hill 
Book Co., New York, 1958), Chap. 4, Eq. 4.3-k 

.o_, j. Hilsenrath el al., "Tables of Thermal Properties of 
U.S. Natl. Bur. Stds. Cite. No. 364, Chaps. 1 and 2 (1955). 

volume relations, density, speed of sound, etc.) are all 
calculated from an empirically determined virial e(lua• 
lion of st;lie. The roesrants in this equal;on of slale are 
chosen for good fit to the experimentally observed 
values of the specific heats, the Joule-Thomson coeffi- 
cient, sound velocity, as well as the ordinary PVT 
data. In this way, the tabulated values are certain to be 
exactly consistent among themselves. Inspection of 
scatter diagrams showing the relation of calculated 
and measnred parameters shows that the pressure, 
temperature, and density are correct within a small 
fraction of 1%, and hence may be taken to be exact 
for our purposes. The situation is similarly good in the 
case of C•,. In the neighborhood of room temperatrite, 
the calcnlated and measured values agree xvithin •tbont 
}%. In our work, C•, appears only as the square root, 
and so it is effectively exact. The accurately known 

value for the speed of sound not only permits it to be 
nsed at face value, but also confirms the accuracy of 
Cv, since the molecular weight is accurately known, 
and q, may be calculated bv purely thermodynamic 
methods from ('vand the gas constant R. 

The situation with regard to the transport coefficients 
n and • is less simple. The fact that air is a mixture of 
gases prevents the use of ordiuarv kinetic theory as a 
means for deriving the pressure and temperature rela- 
tions. However it is possible to construct empirical 
formulas lhat correctly approximate the experimental 
data over a reD' wide range, and these may be used 
as a basis for analysis. In the neighbothood of room 
temperature and pressure, the tabulated viscosity 
appears to be accurate within an rms error of about }.%. 
The empirical formula used in the viscosity tabulation 
is of the type 

. =. l + n/r]-,. 

The departure of the temperature dependence of q from 
the square-tom relation belonging to an ideal gas, is an 
expression of the fact lhat the averaged molecular 
collision cross section is dependent on the mean kinetic 
energy (temperature). However, thN does not spoil the 
simple kinetic theory result that r/ is independent of 
pressure, as long as the mean free path is very large 
compltred with molecular dimensions and small com- 
pared with the boundary layer thickness of the experi- 
mental apparatus. These conditions are, of course, met 
in the context of audio-frequency acoustics at atmo- 
spheric pressnre. The small residual pressure dependence 
may be ignored, not only because the viscosity coeffi- 
cient appears • a sqnare root, but also becanse the 
ordinary range of barometric pressures is very small. 

•aj. j. M. Hanley and G. E. Childs, Science 1SO, 1114-1117 
(1968). 
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SO[;XD W.\VE.• IN A CY[,[XI)RIC.\L COXI) I:IT 

\Vhile it is not likely to lead to large changes in our 
labulation, recent criticisms of the manner of dealing 
with viscosity dala for simple gases '2:• suggest that 
acoustical measurements might be developed to provide 
an additional means for checking the relation between 
viscosity and other molecular coefiScients. The fore- 
going discussion also applies almost exactIx- to the case 
of the thermal conductivity •, so that it is not dealt 
with further. 

One final matter should be mentioned in connection 

with our discussion of the properties of gases. Romer 

shows • that it is possible to prove that if the coefficients 
of viscosity and lhermal condnctivitx are independent 
of pressure, the differential equations whose solutions 
lead to our F and 4• functions retain their validit x' in the 
case of a fluid obeying Ihe generalized equation of state 
J•= P(p,T) instead of the ideal gas htw, which is the 
usual starting point. This is an important generaliza- 
lion since we have obtained our primary data from 
tables that were necessarily constructed on the basis 
of a nonideal gas equation of state. 

•-• I.c. Rmner, Am. J. Phys. 34, 102 193 (1966). 
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