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On the Propagation of Sound Waves in a Cylindrical Conduit

A. H. BENADE

Case Western Reserve Universily, Cleveland, Ohio 44106

The series impedance and shunt admittance of an acoustic line is calculated from the linearized acoustic
equations. Exact and limiting formulas for small and large tubes are provided for R, L, G, C, the real and
imaginary parts of the characteristic impedance Zy, as well as the phase velocity ¢ and attenuation constant
«. All results are presented in convenient form for quick computation on the basis of tables and graphs. A
self-consistent set of molecular data is presented. Accuracies of formulas and of the data are discussed in

detail.

INTRODUCTION

T has been 18 yr since Daniels published a brief

paper with the same title as the present one.! He
presented in convenient form the results of calculation
on the effects of boundary-layer phenomena as they
affect the propagation of souund in pipes. In our own
laboratory, the need for accurate methods for the mea-
surement of radiation and wall losses in musical instru-
ment air columns has required an extension of the work
of Daniels, and its revision upon the basis of more
modern molecular data.

This report constitutes a summary of our results, and
provides explicit formulas for the calculation of all the
major parameters controlling wave behavior in a pipe
of arbitrary size. These formulas include low-frequency
(small-tube) and high-frequency (large-tube) approxi-
mations as well as the “exact” results. Graphs are
presented, which display the relations between the
exact and approximate formulas, in a form that permits
ready computation of any desired parameter almost
by inspection. Estimates of the accuracy of the various
results are described in detail, so that computational
methods may be chosen to suit the user’s need for
precision. A Table is provided that gives the values of
various combinations of the Bessel functions of com-
plex argument, which are needed for the convenient
calculation of the “exact” parameters. Explanations
are also given of the way in which published mathe-
matical tables may conveniently be used to extend our
tables.

In addition to the mathematical results summarized
in the preceding paragraph, we present a discussion of

¥, B. Daniels, J. Acoust. Soc. Am. 22, 563-564 (1950).

616 Volume 44 Number 2 1968

the relation of the present results to those given by
Daniels, and to the classic formulas of Lord Rayleigh.
There is no discussion of the possible fundamental
limitations on the validity of the formulation. This
question may well be considered open in view of a
number of misconceptions and inconsistencies, which
have crept into the standard literature over the years.
These errors are pointed out and explained. A thorough
reexamination of the whole relation between theory and
experiment is needed, but fortunately many of the
existing experiments were done with great meticu-
lousness,* % and so would justify reanalysis. This restudy
has been started, but results are not included here. In
addition, modern developments in electronics and in
transducers make possible new experiments, including
some that provide separable data on the viscous and
the thermal boundary phenomena.

Finally, we provide an up-to-date tabulation and
careful discussion of the molecular coefficients for air
at room temperature, as well as of certain useful
algebraic combinations of these coefficients. Tempera-
ture correction factors are provided in all cases, for the
range about room temperature, and certain pressure
dependencies are described as well.

I. FORMULATION OF THE PROBLEM

We make use of the standard transmission-line for-
malism, which describes the acoustical properties of a
tube in terms of the series impedance and shunt ad-

W, I'. Mason, Phys. Rev. 31, 283 -295 (1928).

3R, D. TI'ay, J. Acoust. Soc. Am. 12, 62-67 (1940).

4 1.. E. Lawley, Proc. Phys. Soc. (London) B65, 181-188 (1952).
6 R, I'. Lambert, J. Acoust. Soc. Am. 25, 1068-1083 (1953).
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FiG. 1. Tube-size parameters (r, ‘a) and (r./a) as a function of
frequency (see Eqs. 4 and 5, and Table II). For a given tube
radius a, the values of r at any frequency are calculated by multi-
plyving the ordinates by a.

mittance of an infnitesimal element of tube length.
These two parameters are then used to calculate the
characteristic impedance and propagation constant of
the tube (the latter gives the phase velocity and
attenuation coefficient). FFrom these results it is possible
then to compute the impedances of finite lengths of
tube, and of combinations of tubes.

Because these quantities are discussed many places
in the literature,”™7 we shall begin by simply quoting
the basic (“exact”) expressions for the sertes impedance
7 and shunt admittance ¥ per unit length of a tube
whose radius is ¢. The series impedance properties of
the line element are associated with the storage of
kinetic energy, and with its dissipation via viscous
losses at the wall. For this reason, these quantities are
labeled with the subscript z, to identify them with
velocity, and viscosity. On the other hand, the shunt
admittance is associated with the potential energy of
compression, and the thermal energy losses due to the
failure of adiabaticity at the walls. The subscript £ is
used Lo indicate parameters controlled chiefly by the
thermadynamics of the system:

Z= j(wp ma@)(1—F et i),

I'= jlwra® pe)[14 (y—1)F gt o],

(1)
(2)

7 [, V. Hunt, Propagation of Sound in Flnids, Am. Inst. I’hys.
Handbook (McGraw Hill Book Co., New York, 1957), Chap. 3c.
Sve gs. 3¢ 26a, b, ¢, for basic differential equation.

& J. B. Crandall, Theory of Vibrating Systems und Sound (I). Van
Nostrand Co., Inc., New York, 1926), pp. 229 1I.

93 J. E. Golay, Rev. Sci. Instr. 18, 347 356 (1947).

v I B. Daniels, J. Acoust. Soc. Am. 19, 569 571 (1947).

n (), K. Mawardi, J. Acoust. Soc. Am. 21, 482486 (1949).

2 H. G. Ferris, J. Acoust. Soc. Am. 25, 47 50 (1953).

) 1 A, F. Kuckes and U. Ingard, J. Acoust. Soc. Am. 15, 798-799
(1953).

1 U. Ingard, J. Acoust. Soc. Am. 15, 1037 1061 (1933).

15 (3, K. Mawardi, J. Acoust. Soc. Am. 26, 726-731 (1934).

16 5. N. Rschevkin, Theory of Sound (The Macmillan Co., New
York, 1963), pp. 223 fi.

7 J. L. Flanagan, Speech Analysis, Syuthesis, and Perception
(Academic Press Inc., New York, 1965), pp. 22 .
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Here ¢ is the free-space sound velocity, p is the density
of free alir, v is the ratio of specific heats C,/C,, and w
is the angular frequency. The parameters F, and ¢,
appearing in Eq. 1 are defined in Eq. 3:

2 T/ (—3)]
/(= D Talra/ (= 3)]

The variable 7, here is proportional to the ratio of the
tube radius ¢ to the viscous boundary layer thickness.
If  is the viscosity, and p the density of air, then at the
angular frequency w, 7, is given by

Fetitr=

(3)

r,= (wp/1)3a. €))

The analogous quantities appearing in Eq. 2 are defined
in exactly the same way, except that r, measures the
ratio of tube radius to thermal boundary layer thickness:

ri=(w0pCp/x)ta. &)

Here « is the thermal conductivity and C, the specific
heat of air at constant pressure.

Figure 1 presents working graphs of (r,/a) and (r,/a)
as a function of frequency. The molecular coefficients
used in the computation of these graphs are discussed
in Sec. VII of this report. Numerical values of the
functions ¥ and ¢ for <10 are conveniently obtained
from Jahnke, Emde, and Losch,® where the reciprocal
of F is tabulated under the notation (r/2)(by/by), and
our phase angle ¢ is related to the tabulated angle
variable (80—pB1) by the equation

¢=(Bo—Frta/4). (6)

Large argument calculations may be based on tables
provided by Abramowilz and Stegun.’®

18 k£, Jahnke, . Emde, and I, Losch, Tables of Iligher Functions
(McGraw -Hill Book Co., New York, 1960), 6th ed., pp. 242 246.

1 M. Abramowitz and E. Stegun, Handbook of Mathemalical
Functions (U. S. Government Printing Oftice. Washington, D. C.,
1964), p. 432.
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F16. 3. Series reactance w L plotted as a ratio towl., (see Eqs. 7b,
8b, 9b, and Sec. 1II).

Using the notation defined in the preceding para-
graph, the real and imaginary parts of the impedance
may be obtained by straightforward algebra:

R=—(wp/ma®) (F,sing,)/ D
wl=4 (wp/ma®)(1—F, cos¢,);/ D?

(7a)
(7h)
where

D*=(1—F, cos¢.)*+ (F. sing,)*.

The analogous expressions for the real and imaginary
parts of the admittance are found to be

G=— (wra?/pc")[(y—1)F sing.] (7¢c)

wC= (wra®/pA)[ 14+ (y—1)F, cosp.]. (7d)
It is convenient for some purposes to define the symbols
L, (=wp/mwa®) and C (= wa*/pc?), which turn out to be
the values for L and C when r is finite.

and

II. SMALL AND LARGE ARGUMENT
APPROXIMATIONS

In the limit of low frequencies and/or small tubes
(r<<1), the factors F approach unity from below as
1—7%, and the angles ¢ approach zero quadratically
from negative values. In this limit we obtain

R — (wp/ma*)(8/7:), (8a)
wl — (wp/wa?)%, (8b)
G— (wra®/pc’) (y—1)(r#/8), (8¢)
wC — (oma?/pc®) (v). (8d)

In the limit of high frequencies and/or large tubes
(1), the F’s remain somewhat smaller then twice
the reciprocals of their arguments, and the phases
slowly approach zero. These asymptotic properties of
the F’s give the following limiting forms for R, M, G,
and C:

R— (wp/ma®)[(V2) /7, ] (92)
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I'1¢. 4. Shunt conductance ¢ plotted as a ratio to wC,, (see
Eqs. 7¢, 8¢, 9¢, and Sec. I1I).

wl. = (wp/Ta)[ 14+ (¥2) /7, ] (Yh)
G— (wra’/pc)[(y—1) (V2)/7.] (9¢)
wC — (wra?/pc)[1+ (y—1)(V2) /7). 9d)

I1I. NUMERICAL RESULTS AND REGIONS OF
USABILITY FOR THE APPROXIMATIONS
TO R, L, G AND C

We now investigate the regions of practical usefulness
of the limiting forms given in Egs. 7 and 8. As is fre-
quently the case, the regions of acceptable accuracy
for the limiting mathematical forms extends far into
the intermediate range of the variables, even though
the simplified formulas are derived upon the assumption
of very small or very large argument. Approximate
values for R, L, and & and C may be found directly
from the curves of TIligs. 1-3. More accurate computa-
tions are conveniently carried out by interpolations
based on the entries in Table I. This Table includes,
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Fi1c. 5. Shunt susceptance «wC plotted as a ratio to wC, (see Eqs.
7d, 8d, 9d, and Sec. I11).
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Taee I Tabulation of various functions of r, which are uscful in the computation of transmission line parameters, Note: G/we
and ¢, are tabulated for air, assuming 4 = 1402, D?= (F sing)*+ (1 —F cosg)*.

(F cosg)

( Fsing/DY) (1—F cosp IR)

r {—F sing) (R wl) G wC) ' Ve
0.1 0.00122 1.000 819.7 1.333 6149 0.00035 1.3692 0.0003
0.2 0.00300 (3.9999 2000 1.333 150.1 1.00143 1.5641 0.0014
4 0.02000 0.9995 49.74 1.333 37.31 000576 1.3440 0.0058
0.6 0.04753 0.9973 22.26 1.333 16.70 0.01284 1.5110 0.0128
1.0 0.1215 0.9799 8.009 1.333 6.008 0.03504 1.40359 0.0330
1.3 0.2457 0.9083 3.572 1.333 2.68() 0.07233 1.2137 0.0722
20 0.3447 0.7738 2.028 1.331 1.524 0.1057 0.9901 0.1053
2.5 0.3762 0.0225 1.325 1.329 0.9970 01210 0.7839 0.1204
3.0 0.3399 0.4991 0.9461 1.317 0.7184 0.1203 0.6230 0.1200
3.5 0.3236 04145 0.7233 1.305 ().3339 0.1122 0.5073 0.1117
4.0 ).2920 0.3570 0.3853 1.289 045342 0.1027 04264 0.1023
A0 0.2415 0).2840 0.4229 1.254 0.3372 008713 0.3252 0.0869
7.5 0.1703 0.1891 0.2480 1.181 0.2100 0.06713 0.2070 0.0671
10.0 0.1312 0.1416 0.1741 1.138 0.1538 0.04990 0.1526 0.0499
20 0.06819 0.07073 0.07854 1.070 0.07338 0.02665 0.0732 0.0266
0 0.02788 0.02329 (1.02950 1.0282 0.01108 0.0287 0.0110

0.02869

among other things, values of the functions of F and ¢
which are called for in Eqs. 7.

To fix ideas, we note from Fig. 1 that both #’s are
about 60 at 100 Hz for a tube of 1-cm radius, whereas
the #'s are about 1.5 at this frequency for a capillary
whose radius is (.25 mm.

It is clear from Fig. 2 that the small-r approximation
for R is quite good at least as far as r=2, where it
underestimates the correct value by about 1.49. The
crror rises to about 6%, at r=3. The large-r approxima-
tion does not become accurate however until r>30.

Iigure 3 indicates that the small- approximation for
L is good out 1o r=3 where it gives an overestimate of
about 1.29.. The crror increases o 3.4% al r=4. The
behavior of the large # approximation is similar: AL
r=4, L is overestimated by 39, while at r=3 the error
has fallen to 2.39. Bevond #— 7.3, the overestimate is
0.79% or less. The behavior of the approximations to ¢
is shown in Fig. 4. Here the functional form of the
quantity & (erda® pc*) is not monotonic, but the approxi-
mations still display a smooth behavior. The small r
approximation is usable up to about r=1, where it over
estimates G; it is only accurate bevond =20, where the
error is 3.79, falling 1o 149, at r=30.

Finally, Fig. 5 tllustrates the nature of the approxi-
mations to C. As has been the case earlier, the small-r
approximation is good far beyond its nominal range of
applicability. At r—2 the approximation overestimates
C by only 1%. The large- approximation is similarly
sood. 1t overestimates C by 19, at r=1.5. However,
the error changes sign for larger r so that, at r=2, there
is a 2% underestimate, rapidly decreasing to less than
19, from r—3 and hevond.

IV. PARAMETERS OF A LONG TRANSMISSION LINE

We set down now the formulas for the basic param
cters of an inlinitely long tube acting as a transmission
line. These transmission line paraneters arc the char-

acteristic impedance Zg and the propagation constant
I'=a+t 3

L\ 1= (R )\
) ()
¢/ \1—j(G wl)

LN} /14 (R wl)n\! j
:(C) ‘(_1+(G. ;()) 'W(z)(%—s{/r), (10)

I'=jo(LCYB14+ (R «L)]:
L1 (G wOPTexp D Wrtd), (1)

where

tang,= (G we) and  tang,= (R ‘wl).

It is worthwhile to remark here also that the phase
velocity @ of wave disturbances in the tube is given by
r=w 6. Wefind it convenient also 1o define the quantity
7. (—pc/ma®), which is the value of the characteristic
impedance when r — <.

Computations using these formulas may conveniently
be based on the entries in Table I, the last four columns
of which present values of the ratios (R wl) and
(G 'wC) and the associated angles ¢, and ¢,. These four
columns are calculated upon the assumption that
y=1402, as is correct for air at room temperature.
However, for many purposes it is satisfactory 1o start
the computations from the small+ and large-r approxi-
mations given in Egs. 8 and 9 (as oullined below). It is
clear from Eqgs. 10 and 11 that the thermal and viscous
aspects of the sitvation are thoroughly intertwined,
which makes computation awkward. Here, and more
particularly in the limiting formulas given below, it 1s
frequently convenient to make use of the fact that
ri=vr, where v=(C',n &) is the square toot of the
Prandt] number. This number is presented in Table 11
along with other molecular properties for air.

The Journal of the Acoustical Society of America
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Tasre II. Molecular constants and their combinations evalu-
uated at T'=300°K (26.85°C). Note: Af= (1—26.85), where { is
the ajr temperature in centigrade degrees. The temperature coefti-
cients are based on values of the constants at 290° and 310°K.

p=1.1769% 1073[1—0.00335A¢] g cm™3
7n=1.846X 10~*[1+0.0025A1] g sec”'-cm™!
v =1.4017{1—0.00002A¢]

v = (nCp/x)t=0.8410[1—0.0002A¢]
c=3.4723 X 101[140.00166A¢] cm - sec™!

pc=40.865[1—0.001741] g cm™2-sec™!

pc? = 1,418 105 1+0.00041] g cm " -sec™
(ro/0) [~ = 2mp/n)t=6.328[1—0.0029A!] cm™ - sect
(re/a)f~4= (2mp/n)tv =5.322[1—0.0031A] cm ™! -sech
(27?/pc2) = 1.392X 1073 1+40.0004¢] g™+ cm - sec?

In the low frequency, small tube approximation
(small 7), the following formulas are obtained for
&)
Zo—) e B
ra’

Zoand T':
(YT o
QT oo o

For the high frequency, large tube (large-r) case, the
characteristic impedance and propagation constant
become

(e ]
" ra/ L1+ (y—1)(V2) /7,

LI G et IS
and
AT
‘{1_<\i}2>[n+:_11)@+“ Ji \Q}} (13b)
whence
o= o[+ (2/r) T+ (= DO2/r) DE- (130)

V. NUMERICAL RESULTS FOR Z, AND I

Figures 6 and 7 show the real and imaginary parts of
Zo. Note: the imaginary part is negative. The small-»
approximation is extremely good below 7,=0.6, where
the error is only 0.19 in both cases. At 7,=1 the ap-
proximation is poor, the real part being 9.3% too low,
and the imaginary part too high by 109%. Curiously
enough, in the region of r,—1 the small-r asymplotic
expression

TmZo=— (2/a) (n/wpy)}(pc/ma?) (14)

fits the exact formula with about half the error of the
small-r approximation itself. The large-r approxima-
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I'ic. 6. Real part of the characteristic impedance ReZy(r.)
plotted as a ratio to Z, (see Eqs. 10, 12a, 13a, 17a, and Sec III).
The calculation assumes that v=1.402, and that »,=wr,, where
»=0.8410, as is the case for air under room conditions (see
Table II).

tion for the real part of Zg is good beyond r,= 4, where
it is low by only 1.89. However, the imaginary part is
low here by 609 and only becomes useful beyond
7.= 50.

The phase velocity is plotted as the ratio /¢ in Fig. 8.
The small-r approximation is good for r,<1, being
only 0.1% high at r,=0.6, and 8%, high at r,=1. In
the limit of small 7, the asymptotic behavior is given by

v/c=r./(20/7)=a(wp/2vn)*. (15)

The large-r approximation overestimates /¢ by 229
at r,=1, by 1.69, at #,=2, crossing over to a value
2.89, low at r=3, after which the error falls steadily to
zero (0.49, at r,=10).

The attenuation constant is plotted in Fig. 9 as
(e/f) vs r,. Here the small-r approximation is within

30 — T —
\l j
s \_ SMALL-T APPROX 4
1.0 \:\ l T ‘ -
sf i SN ‘ ]
6r I AN | —
N : | €-ASYMPTOTE 1
N | |4y
3 —t - -
g ;
£ i
< 2_
a | 4
5
Mo ——— -- - - - —
&8 ‘ ]
= st | i B
1 ~
T ar LARGE -1 APPROX .
3 b — ]
l N
2t i
- ‘ | 4
| — M L IA L | Ll
0I5 3 6 510

Fi6. 7. Imaginary part of the characteristic impedance ImZ,(r,)
plotted as a ratio to Z, (see Eqgs. 10, 12a, 13a, 14, 17a, and Sec. V).
Note that this reactance is always negative (capacitative).
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0.3%, for r,<0.3, but it overestimates « by 11.49 at
r=1. The small-r asymptotic expression for « is

a=(2/ca)(yn,p)- (16)

Once again we find a situation in which the asymptotic
form has less error in the neighborhood of r.=1 than
does the otherwise more accurate small-r approxima-
tion. The large-r approximation is satisfactory for
r.> 30, with a heing underestimated by 109, at r,=10.
The limiting form given by Rayleigh has somewhat
smaller error near r=3, and bevond r= 30 gives results
which are really equivalent to our large-r expressions.
This matter is discussed in detail in Sec. VI below.

VI. RELATION TO RAYLEIGH’S LARGE-TUBE
APPROXIMATION

In the limit of extremely large 7, which is one limit con
sidered by Rayleigh® Eqs. 13 and take on the forms
set forth in Egs. 17.

pc 1 (1)
Zz"( )[1+___ _'*]
ru’ rN2 2

Ll

.ll_j

1 y— 1\
= o v ()
ran2 rpn2/

Jl_j(l_+ff1]} (17h)

l L7 Nv2 rp2

Separation of the real and imaginary parts of Eq. 17h
leads to the familiar formular for phase velocity and

= [ W, Stratt, Lord Rayleigh, Zheory of Sound (Dover Publi-
cations, Inc., New York, 1945), 2nd ed., Vol. II, pp. 313 1.
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Fi6. 9. Attenuation coefficient a(r,) plotted in the ratio «//, as
a function of r. (see Eqs. 12h, 13D, 16, 17d, Secs. V and VI).

attenuation coetficient :

[ 1 (7-1)]
v 1——— ,
raN2  rn2

w 1 y—1
c/LrN2  rN2

For r2> 30 these cxpressions essentially coincide with
the large-r formulas of Eq. 13, and are therefore good
approximations lo the exact formulas. For the smaller
values of 7, the Rayvleigh expression for ¢ is distinctly
less accurate than is the large r formula Eq. 13c. How-
ever, as already remarked the Rayleigh expression for
a is equivalant to the real part of Eq. 13b at large 7,
and 1s more accurate than this for smaller values of r.
In his Theory of Seund, Rayleigh wrote expressions
that are mathematically identical with Eqgs. 17, except
that our factor (y—1) was replaced in his work by
(vy—1)/v/v- Rayleigh does not give an unambiguous
definition of the **thermometiic conductivity,” which
is the basis on which he defines the analog to our
quantity r,. However he makes reference to Maxwell’s
kinetic theory, (for monatomic gases), which shows that
the viscosity and thermal conductivity are connected
by the following simple relation:

(17¢)

(17d)

=3Cu. (18)
It is clear from the context of this statement that
Rayleigh writes yC, wherever we have used C,. This
accounts for the extra factor /v in his formulas.
There has been considerable confusion in the experi-
mental literature, which arises from a misunderstanding
of the difference hetween Rayleigh’s notation (based
on the usc of C,), and the customary modern conven-
tion that prefers to use Cp as a primary datum. As a
result, one frequently finds Rayleigh’s formula quoted,
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hut with the symbol and numerical value for C, being
substituted in place of C,. There has also been mis-
understanding over Ravleigh’s mention of the mon-
atomic gas ratio 5 (see Eq. 18) in a conlext where the
correct ratio would be that belonging to polvatomic
gases such as those found in air. A simple approxima-
tion to this correct ratio is (9y-3), 4.2

There is one further source of discrepancy between
theory and experiment: Many standard textbooks
discuss Ravleigh’s formulas for ¢ and « in the manner
just explained. As a matter of computational conven-
ience, however, they follow a precedent set by Ravleigh
in carrving out a calculation for the etfect of viscosity
alone, and then bring in the thermal contribution via
an “‘effective viscosity” g, :

ne=q[1+ (v—1)(x/2Cp) 1.

Tt is to be emphasized, however, that it is nof correct, in
general, to replace 5 by 5, as a shortcut method of in-
cluding thermal etfects. The structure of E¢s. 1 and 2,
as well as their real and imaginary descendents, shows
clearly that the viscous and thermal aspects of the
wall eflect remain syvmmetrical bul well separated
evervwhere except in calculating charactenistic im-
pedance and the propagation on constant. Even here
it is possible to make use of an effective viscosity only
in the Ravleigh limit of extremely large r.

(19)

VII. MOLECULAR CONSTANTS OF AIR

Table 11 provides a listing of the numerical values
and dimensions for the density p, viscosity 7, ratio of
specific heats v, along with the normal velocity of
sound ¢, and the square root v of the Prandtl number.
These quantities are given for air at 1 atm pressure
(760 mm Hg), and a nominal laboratory temperature
of 300°K (=26.85°C). In addition to these basic data,
certain derived quantities are also tabulaled for con-
venience in computation. These subsidiary quantites
are pr, pc?, and the factors (2mp, 7)* and (2mp, x)*, which
are to be multiplied by ¢v/f to give r, and 7,.

All of these data are taken from the NBS Tables of
Thermal Properties of Gases,™ and are provided with
temperature correction factors calculated directly from
the tabulated values over the range 290° to 310°K.. The
pressure dependence of the various quantities is con-
trolled almost completely by the pressure variation of
the density p, which is itself directly proportional to
the absolute pressure.

The NBS tables provide a thorough discussion of the
accuracy and mutual consistency of the coefhicients.
The Lthermodynamic properties (specific heat pressure—

21 R B. Bird, ]J. O. Hirschielder, and C. I'. Certiss, Jandbook
of Physics, E. U. Condon and H. Odishaw, Eds. (McGraw- Hill
Baook Co., New York, 1938}, Chap. 4, Eq. +.34.

2 |, Hilsenrath el al., ““Tables of Thermal Properties of Gases,”
U. S. Natl. Bur. Stds. Circ. No. 564, Chaps. 1 and 2 (1955).
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volume relations, density, speed of sound, etc.) are all
calculated from an empirically determined virial equa-
tion of state. The constants in this equation of state are
chosen for good fit to the experimentally observed
values of the specific heats, the Joule-Thomson coethi-
cient, sound velocity, as well as the ordinary P\'T
data. In this way, the tabulated values are certain to be
exactly consistent among themselves. Inspection of
scatter diagrams showing the relalion of calculated
and measured parameters shows that the pressure,
temperature, and densityv are correct within a small
fraction of 19, and hence may be taken to be exact
for our purposes. The situation is similarly good in the
case of Cp. In the neighborhood of room temperature,
the calculated and measured values agree within about
1%- In our work, C, appears only as the square root,
and so it is effectively exact. The accuratelv known
value for the speed of sound not only permits it to be
used at face value, but also confirms the accuracy of
Cp, since the molecular weight is accurately known,
and vy may be calculated by purely thermodynamic
methods from (', and the gas constant R.

The situation with regard to the transport coefficients
7 and « is less simple. The fact that air is a mixture of
gases prevents the use of ordinary kinetic theory as a
means for deriving the pressure and temperature rela-
tions. However it is possible to construct empirical
formulas that correctly approximate the experimental
data over a very wide range, and these may be used
as a basts for analysis. In the neighborthood of room
temperature and pressure, the tabulated viscosity
appears to be accurate within an rms error of about 1%,.
The empirical formula used in the viscosity tabulation
is of the tvpe

n=ATi1+B/TT. (20)

The departure of the temperature dependence of 5 from
the square-root relation belonging 1o an ideal gas, is an
expression of the fact that the averaged molecular
collision cross section is dependent on the mean kinetic
energy (temperaturce). However, this does not spoil the
simple kinetic theory result that 7 is independent of
pressure, as long as the mean free path is verv large
compared with molecular dimensions and small com-
pared with the boundary layer thickness of the experi-
mental apparatus. These conditions are, of course, met
in the context of audio-frequency acoustics at atmo-
spheric pressure. The small residual pressure dependence
may be ignored, not only because the viscosity coeffi-
cient appears as a square root, but also because the
ordinary range of barometric pressures is very small,

27, J. M. Hanley and G. E. Childs, Science 159, 1114-1117
(1968).




SOUND WAVES IN
While it is not likely to lead to large changes in our
tabulation, recent criticisms of the manner of dealing
with viscosity data for simple gases™ suggest that
acoustical measurements might be developed Lo provide
an additional means for checking the relation between
viscosity and other molecular coelhcients. The fore-
going discussion also applies almost exactly to the case
of the thermal conductivity &, so that it is not dealt
with further.

One final matter should be mentioned in connection
with our discussion of the properties of gases. Romer

A CYLINDRICAL

coxNxDpUIT

shows? that it 1s possible to prove that if the coefficients
of viscosity and thermal conductivity are independent
of pressure, the differential equations whose solutions
lead to our F and ¢ functions retain their validity in the
case of a fluid obeving the gencralized equation of state
P="P(p,T) instead of the ideal gas law, which is the
usual starting point. This is an important generaliza-
tion since we have obtained our primary data from
tables that were necessarily constructed on the basis
of a nonideal gas equation of state.

H L C. Romer, Am. J. Phys. 34, 192-193 (1966).
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