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Finite Difference Schemes and Digital Waveguide
Networks for the Wave Equation: Stability,

Passivity, and Numerical Dispersion
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Abstract—In this paper, some simple families of explicit
two-step finite difference methods for solving the wave equation
in two and three spatial dimensions are examined. These schemes
depend on several free parameters, and can be associated with
so-called interpolated digital waveguide meshes. Special attention
is paid to the stability properties of these schemes (in particular
the bounds on the space-step/time-step ratio) and their relation-
ship with the passivity condition on the related digital waveguide
networks. Boundary conditions are also discussed. An analysis of
the directional numerical dispersion properties of these schemes
is provided, and minimally directionally-dispersive interpolated
digital waveguide meshes are constructed.

Index Terms—Digital waveguide networks, finite difference
schemes, Von Neumann analysis, waveguide meshes.

I. INTRODUCTION

T HE subject of this paper is the analysis of some simple
families of finite difference schemes for solving thewave

equationin spatial dimensions

(1)

Here, is time, and is the set of spatial co-
ordinates; is thewave speed, assumed constant. The solution

is assumed to be defined over and for .
It will be unique provided that two “well behaved” initial con-
ditions and are given [1]. The treatment
of boundary conditions is deferred to Section V-C.

The focus here is on the cases , for which the numer-
ical solution of (1) has applications in room acoustics [2] and
the modeling of sound production in musical instruments [3].
Special attention is paid to the relationship between a particular
class of finite difference scheme and so-called interpolateddig-
ital waveguide networks[4] or meshes[2], [5], [6], especially
with regard to numerical stability properties, and the directional
dependence of numerical dispersion. The material in this paper
has appeared, in an expanded form, in [7].
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In Sections II and III, simple families of 2D and 3D explicit
difference schemes are introduced, which are suitable for the
numerical integration of a physical system described by (1)
(among others). Standard Fourier transform techniques for
analyzing numerical stability, better known asVon Neumann
analysis, are also reviewed; this analysis is carried out in
Section IV for families of schemes which are dependent on
several free parameters. In Section V these same families
of schemes are reexamined as implementations of so-called
interpolated digital waveguide networks, and certain distinc-
tions between the notion of passivity and standard numerical
stability are discussed. It is shown that passivity may be used as
a simple sufficient condition for stability; this can be extremely
useful in the analysis of boundary conditions, as we will show
in Section V-C. In Section VI, returning to the traditional finite
difference viewpoint, the spectral analysis of these schemes is
further refined in order to show that the problem of directional
dependence of numerical dispersion can be dealt with in a
straightforward way, and it is shown how the schemes’ free
parameters may be adjusted in order to minimize such an effect.
Finally, in Section VII, several plots of the numerical phase
velocities for these schemes are presented, for various choices
of the free parameters.

II. TWO-STEP DIFFERENCESCHEMES

The wave equation is second order in the time variable, and
the simplestdifference approximations[1] are explicit two-step
methods. The solution is assumed to be approximated over an

-dimensional set of grid points by agrid function. Updating
the scheme at any grid point at any time step requires access
to the grid function at the two previous time steps. The spatial
separation between the grid points is assumed to bein all
dimensions, and all operations recur periodically at intervals of

seconds ( is thesampling rate). The difference schemes
are of the form

(2)

Here, is the grid function, and
is the integer-valued set of coordinates of the spatial grid point
at . Similarly, the integer time index indicates an ap-
proximation to some model problem at . is some poly-
nomial function of the spatial unit shift operators ,
and their inverses which are defined by

(3a)
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(3b)

for any .
Clearly, difference scheme (2), if stable, isnondissipative,

or lossless, since it is symmetric with respect to the time
index (the forward and inverse iterations are identical). As
yet, nothing has been said about which model system, if any,
difference scheme (2) approximates. Depending on the choice
of , it could serve to numerically integrate not only the wave
equation (1), but perhaps the equation of motion of a lossless
beam (in 1D) or plate (in 2D), or other hybrids such as lossless
stiff strings or membranes as well.

A. Von Neumann Analysis

The discrete spatial Fourier transformof the grid function
is

(4)

and is defined over spatial frequencies ,
such that . By the shift theorem
for Fourier transforms

for any transform pair , for any . In other
words, the shift operators correspond to multiplication by linear
phase terms in the spatial frequency domain. The recursion (2)
becomes, in the transform domain

(5)

Due to the spatial symmetry of the wave equation, for the
schemes addressed in this paper,is always a function of the
operators

(6)

for which

(7)

where

(8)

The numerical stability of this scheme can be examined by
taking the transform of (5) to yield theamplification equation

(9)

We note that we use the same notation foras before, though
is now a function of spatial frequency variables instead of

shift operators. Its functional form is the same as before. This
should cause no confusion. (The same will also be true of the
operator , which will be defined in Section IV.) Scheme (2)
is calledstable(in the restricted sense [1]), if the roots of the
amplification equation are bounded by 1 in magnitude, for all
spatial frequencies. These roots are simply

(10)

If is real, then the stability condition is

(11)

in which case for all . The reader is referred to [1] for
the details, but the condition can be thought of as generalizing
the stability condition for a two-pole digital filter with transfer
function ; here, however, is not
merely a multiplier value, but a function of spatial frequency,
and condition (11) must hold over all such frequencies.

It is also useful to introduce thesymbol[1] of the difference
scheme; writing , for some complex frequency

, then the symbol is simply the left side of
the amplification equation (9) above, normalized by the factor

, i.e.,

(12)

The symbol of a difference equation indicates its behavior for
a single plane-wave solution of the form
and is to be compared with the analogous symbol for
the model problem the scheme approximates. For the system of
interest here, namely, the wave equation (1), the symbolis
obtained by examining a plane-wave solution of the form

, in which case we find

with (13)

where is simply the squared magnitude of the vector
of spatial frequencies.

III. EXPLICIT DIFFERENCESCHEMES FOR THEWAVE EQUATION

IN 2D AND 3D

Now consider (1) for . In order to approximate its so-
lution on a grid, the following basic difference approximations
to the Laplacian may be used

(14a)

(14b)

(Even though the operators and , defined in (6), are ap-
plied to the continuous function, we use the same notation as
before; this should cause no confusion.) is an approx-
imation based on neighboring points to the north, south, east,
and west at a distance of, and employs points at a dis-
tance of from the current update point, in the diagonal
directions. It should be clear that since both difference opera-
tors are second-order accurate [1] approximations to, then
any linear combination will be as well,
for any (assumed real). The second-order, centered, time-dif-
ference operator is defined by

(15)

and a simple family of finite difference schemes can be obtained
by writing (1) as

(16)
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and replacing by a grid function . Updating the grid function
at a given grid point requires access to previous values of the
grid function at locations at most one grid point away in either
the or directions (or both, along the diagonal).

For , let us consider three types of approximations to

(17a)

(17b)

(17c)

These approximations make use of grid points which are,
, and , respectively, away from the current update

point; all are accurate to , and thus any linear combina-
tion of them will be as well, i.e.,

for any real and . Using the second-order time-differencing
operator (15), the 3D wave equation may then be rewritten as

(18)

When is replaced by the grid function, both the 2D and
3D difference schemes (16) and (18) can be written in the form
of (2), after multiplying through by a factor of .

It will be useful to write the difference schemes (16) and (18)
as they will be implemented by expanding the spatial differ-
encing operators. In 2D

(19)

where

(20)

where the dimensionless quantitydefined by

(21)

plays an important role in the numerical stability analysis to
follow.

Similarly, in 3D, (18) can be rewritten as

(22)
with

(23)

where is defined as in (21).
A simple class of difference schemes of the form (2) which

approximates the wave equation (1) to second-order accuracy is
thus established. Any member of this class will solve the wave
equation numerically provided it is numerically stable—the
necessary stability analysis is performed in Section IV.

A. Transformed Laplacian Operators

The Laplacian operators of (14) and (17), interpreted as op-
erating on a grid function, transform to the spatial frequency
domain as

(24a)

(24b)

in 2D, and

(25a)

(25b)

(25c)

in 3D, where is given by (8).
Notice that because these approximations to the Laplacian

are symmetric and make use of points that are at most one grid
point away in any or all of the spatial coordinate directions, their
transforms aremultilinear [8] functions of the cosines of the
components of the spatial frequency variable (see the Appendix
for a definition of multilinearity).

IV. STABILITY

Difference schemes (16) and (18), when written in terms of
the grid function , and normalized by the factor , have the
form (2), with

(26)

and the operator is defined, for schemes (16) and (18), by

(27)

Notice that the stability condition (11) can then be rewritten
as

and if is independent of , it is straightforward to arrive at the
equivalent pair of conditions

(28)
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Fig. 1. Upper bounds on� for the 2D scheme (16), plotted against the
free parameterp: the maximum value of� for Von Neumann stability (solid
line), and the maximum value for a passive waveguide mesh implementation
(dotted line); there is a passive mesh structure only for0 � p � 1. Choices
of parameters for the optimally direction-independent scheme are plotted as a
dashed line.

It thus suffices to find the maximum and minimum values of the
function . Using the definitions of the transformed Laplacians
from (24) and (25), for schemes (16) and (18) is given by

The functions above, for are easily seen to be
multilinear in the variables , , which take on
values between 1 and 1. These functions are thus defined over
the D hypercube

(29)

It is simple to show that a multilinear function defined over
a hypercube whose sides are aligned with the coordinate axes
will take on its extreme values at the hypercube corners (see the
Appendix). Since the domain is such a hypercube in ,
all extrema of must then occur at its corners, i.e., over the
points in defined by

(30)

The stability conditions (28) can be rephrased as

(31)

Thus, in 2D, the candidates for the global extrema of are

where the symmetry of with respect to and permits
dropping the evaluation at . The stability conditions
(31) then reduce to simply

(32)

The maximum value of is plotted as a function of in Fig. 1.

Fig. 2. Stability region for (18) in the(p; q) plane. The maximum value of�
for stability over this region is given in (33). The sub-region over which a passive
waveguide mesh implementation exists is shown in dark grey, with the bound on
� given in (44). Choices of parameters for an optimally direction-independent
scheme are plotted as a dashed line.

In 3D, the possible global extrema of (again employing
the symmetry of ) are

and the stability conditions are thus

(33)

The stability region is plotted in the plane in Fig. 2.

V. DIGITAL WAVEGUIDE NETWORKS

In this section, a class of finite difference schemes based on
the use ofdigital waveguide networks(DWNs) [4] is consid-
ered. DWNs are known to yield efficient and numerically robust
computational models for wind, string, and brass musical instru-
ments [9], [10]. More recently they have been applied also to the
modeling of acoustic membranes and spaces [3], [2], [11]–[14].

A. Background

A DWN is defined as a completely general collection of
bidirectional delay linesterminated onscattering junctions[4].
See Fig. 3 for a graphical representation of such a network and
these two important component types. The signals stored in
this discrete-time network are referred to aswaves.

Each bidirectional delay line ordigital waveguidecan be
conceived of as a discrete-time transmission line segment or
acoustic tube, transporting digital wave signals in opposite
directions at a fixed sample rate. Referring to the enlarged view
of a digital waveguide of delay shown in Fig. 3(a), where the
two input wave variablesare the discrete time signals
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Fig. 3. Portion of a digital waveguide network, and enlarged views of its
principal components: (a) a bidirectional delay line, of delay durationT

and admittanceY (accepting two wavesv and v output from scattering
junctions, delaying them, and producing two wavesv andv each of which
is then incident on a scattering junction); (b) a scattering junction connected
to five waveguides of admittancesY ; . . . ; Y , (accepting, in this case, five
input wavesv ; . . . ; v , and yielding five output wavesv ; . . . ; v ); and
(c) a self-loop.

and and the twooutput wave variablesare and
, it is easy to see that

(34)

Here the wave signals are indexed by integer, indicating that
they take on values at times . (We note here that in a
DWN, the individual waveguides are not all necessarily of the
same delay length; they need only be multiples of a common
unit delay. In the DWN’s for the 2D and 3D wave equation
which we will shortly examine, however, all delays will be of
duration .) One can conclude, trivially, from (34), that

(35)

or, in other words, that the sum of the squares of the input waves
is the same as that of the output waves; the weighting by the
waveguideadmittance is not necessary here, but be-
comes significant when scattering is introduced.1

1The grid wave variablesv are here assumed to be proportional to a “force-
like” variable such as voltage, pressure, etc., as opposed to a “flow-like” variable
such as current, velocity, etc.

A set of wave variables incident on a scat-
tering junction [see Fig. 3(b)] is then scattered instantaneously2

according to the equation

(36)

where , thejunction variableis not a wave, and is defined by

for (37)

The constants , are the admittances as-
sociated with the adjoining waveguides, and the ,

, also positive, are known as thepartial transmission
coefficients. The scattering equation above is a statement of
Kirchoff’s Laws for aparallel connection of transmission lines
propagatingvoltagewaves. As such, it is possible to show that

(38)

and thus the sum of squares of the wave signals, weighted by the
admittances, is preserved by the scattering operation. It is also,
of course, possible to define aseriesscattering junction with re-
spect to waveguideimpedances. Similarly, dual wave variables
can also be treated [15].

A key property of a DWN made up of scattering junctions and
bidirectional delay lines is that, provided the immittances3 of all
waveguides are nonnegative, then the network must belossless
[16] as a whole. Indeed, it is possible to conclude, from (35) and
(38) that for a closed network made up ofunit-delay digital
waveguides, theth of which contains two signal samples
and and has admittance , that

constant (39)

Thus, the preservation of this positive definite energy measure
serves as a stability condition on the network as a whole. By
appealing to classical network theory [16], it is possible to in-
troduce other lossless elements such as discrete time inductors,
capacitors, transformers and gyrators, and also lossy elements
such as resistors, which leave the network more generallypas-
sive, i.e., an energy measure such asas defined in (39) must
be nonincreasing with .

Though terms such as “lossless” and “passive” are used here,
it is worth being a bit more specific; a network made up of ele-
ments, each of which can be shown to be lossless or passive in-
dividually, will be called, following Belevitch [16],concretely
losslessor concretely passive. This is the property which inter-
ests us, as it leads to a simple stability test, namely, checking the
positivity of the network immittances. A network may, however,
be passive as a whole, even if some of its components are not.

2When the time indexn is omitted in an expression, it holds for alln.
3An immittanceis defined as either an admittance or an impedance [16]. In

acoustic modeling applications, one normally works with the wave impedance
of an acoustic tube or a vibrating string.
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For example, a series connection of a two resistors of resistances
and is exactly lossless, even though it contains an active

element. In this case, the network is calledabstractly losslessor
abstractly passive. As will be shown later in this section, it is in-
deed possible for a DWN for the wave equation to be abstractly
lossless while not concretely lossless. For simplicity, “lossless”
and “passive” will henceforth mean “concretely lossless” and
“concretely passive.”

It should be noted that the DWN, when applied to numerical
integration problems, bears a very strong resemblance to filter
designs such aswave digital filters(WDFs) [17], [18], and other
simulation methods based on scattering such as thetransmission
line matrixmethod (TLM) [19], [20], [21] andmultidimensional
wave digital filter (MDWDF) methods [22], [23]. In lumped
wave digital networks, for example, scattering is defined with
respect toport resistances[18] instead of admittances, but the
scattering equation for a parallel connection (aparallel adaptor
[18], in WDF terminology) is identical to (36); the unit-delay
waveguide, though conceived of here as a transmission line seg-
ment, also exists in the lumped WDF framework, and has been
called aunit element[17]. In fact, the DWN’s presented in this
section can be viewed as wave digital networks, where the wave-
guide admittances are taken as port resistances at the scattering
junctions. For all the methods mentioned above, scattering ac-
cording to an equation such as (36) is the key operation, and
passivity is the crucial attribute, regardless of whether the ap-
plication is filtering or simulation.

B. DWNs for the 2D and 3D Wave Equation

The DWN shown in Fig. 3 is unstructured; the scattering
junctions are not associated with particular spatial locations. If
they occur in a regular, grid-like arrangement, the network is
often referred to as awaveguide mesh[2], [5], [6], and it be-
gins to be possible to associate the behavior of such a network
with a numerical integration method. Passivity, in the context
of numerical integration, can be viewed as a sufficient condi-
tion for numerical stability, and it is much simpler to verify than
numerical stability of the type discussed in Section IV—as men-
tioned in the previous section, nonnegativity of the network ele-
ment values (the waveguide immittances) is necessary and suf-
ficient for passivity. The same condition also extends readily
to more complex systems having spatially varying coefficients,
passive nonlinearities, and certain types of time-variation [9],
[14]; the frequency-domain Von Neumann analysis does not
apply to such systems. Boundary conditions are also particularly
easy to deal with, as we will see shortly in Section V-C; the ter-
mination of a passive network by passive lumped discrete circuit
elements must behave passively as a whole. Checking the nu-
merical stability of a particular boundary condition coupled with
a given finite difference scheme can be extremely involved oth-
erwise, though analysis techniques such as the so-calledGKSO
theory[1], [24] and theenergy method[24] can be used.

Waveguide networks suitable for the numerical integration of
the 2D and 3D wave equation are shown in Fig. 4; for the 2D net-
work, each scattering junction is connected to its nearest neigh-
bors (a distance away) by waveguides of admittance, and
to neighbors in the diagonal directions (a distance away)
by waveguides of admittance . At each junction, there is, ad-

Fig. 4. Waveguide networks for the 2D and 3D wave equation, at left and
right respectively. Waveguide connections from a given junction (black) to its
neighbors are indicated by thick black lines; in the representation of the 3D
mesh, only connections to points in a single neighboring octant are shown.
Admittances of waveguides are indicated for one representative of each type
in both cases.

ditionally, aself-loopof admittance ; a self-loop is simply a
waveguide whose ends are both connected to the same junction,
where one of the two signal paths has been dropped, as it is re-
dundant [see Fig. 3(c)]. It is equivalent in the unit-delay case to
awave digital capacitor[17], as well as acapacitive stub[20] in
the TLM framework. In 3D, there are three types of connecting
waveguides, of admittances, and , running between any
junction and its neighbors at distances of, and , re-
spectively. Again, there are self-loops of admittanceat every
junction. For either the 2D or the 3D mesh, the partial trans-
mission coefficients can be written as per (37), in terms of the
waveguide admittances, , for by

for

where is the totaljunction admittanceat a given scat-
tering junction, and is equal to the sum of the admittances of all
waveguides connected to the junction. Thus

In order for the network to be passive, it is required that all
of these admittances (or, equivalently, the partial transmission
coefficients4 ) be positive, in either the 2D or 3D cases. This
simple criterion immediately implies numerical stability, for as
mentioned in Section V-A, there is a direct physical interpre-
tation of the sum of the squares of all the signal values in the
bidirectional delay lines as an energy; this quantity will be non-
increasing as time progresses if the network is passive and there
are no sources.

A DWN can, if its topology and immittance values are set in a
particular way (to be discussed shortly), be viewed as a wave im-
plementation of a finite difference scheme, usually of thefinite-
difference time domain(FDTD) variety [25], [26]. That is, the
scattering and shifting/delaying operations applied to wave vari-
ables can always be reduced to an equivalent finite difference
scheme in the physical junction variables (sampled voltages and
currents in the electrical setting, or pressures and volume veloci-
ties in acoustic tubes, etc.). The 2D and 3D waveguide networks

4In these DWN’s for the wave equation, it is the partial transmission coeffi-
cients which are of importance; the network admittances may all be scaled by
a common factor without affecting the calculation. In a simulation of the full
system of conservation laws (from which the wave equation is derived), the ad-
mittance values regain their importance. See [7] for further discussion.
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shown in Fig. 4 can be made to behave exactly according to the
difference schemes (16) and (18), respectively. This equivalence
for the case of the 2D mesh can be shown by tracing the flow of
signals backward through the network.

First, let us consider the operation of the 2D mesh shown at
left in Fig. 4 at the junction at a point with coordinates ,

for , integer. At any given time step ,
the junction accepts nine waves, which will be called .
The index refers to the wave approaching the
junction along the vector in the plane, for

( indicates the wave approaching from the self-
loop). The junction variable can be expressed, from (37),
as

(40)

It should be clear, from (34), that

(41)

where and and their inverses are the shift operators as
defined in (3) ( and are simply identity operators). That
is, a wave incident on a junction at the current time step was
emitted from an adjacent junction at the previous time step. Fur-
thermore, from (36)

and by inserting this expression back in (41) and (40), and using
(36) and (37) again

(42)

which is identical to (19) under the identification of with
, as defined in (20). (That is, the DWN generates a differ-

ence scheme identical to that obtained by applying finite differ-
ences.) Using similar manipulations, it is possible to identify the
3D waveguide mesh in Fig. 4 with the difference scheme (22),
if , with as defined in (23).

The important thing here is that for these networks to be
made up of passive transmission line segments, the partial trans-
mission coefficients must always benonnegative, due to the
nonnegativity of the waveguide admittances themselves. (Wave-
guides of zero admittance are formally allowed, although any
such waveguide can be dropped from the network entirely.) Ap-
plying these nonnegativity conditions to theparameters for
the 2D scheme, from (20), we get

(43)

and in 3D, from (23)

(44)

These conditions on, and are substantially more restrictive
than the stability conditions from (32) and (33). The passivity
regions described by (43) and (44) are plotted in Figs. 1 and 2,
respectively.

The passivity conditions above can thus be viewed as triv-
ially verifiable sufficient stability conditions for the difference
schemes (16) and (18); they are not, however, necessary. The
stability of schemes which do not satisfy the passivity condi-
tions must be verified by the approach outlined in the previous
section; for more involved difference schemes, this can become
quite difficult. A DWN can behave in a stable manner even
when certain components of the network are active (though in
these configurations, power-normalization [4] of wave quanti-
ties is not possible)—as per the discussion in the second-last
paragraph of Section V-A, such a network is abstractly, but not
concretely passive [16]. It is worth mentioning, however, that
it is by no means impossible that there exist concretely passive
network representations corresponding to the stable difference
schemes mentioned here; such a representation will necessarily
have a different topology from the structures shown in Fig. 4.
For an interesting example of alternate topologies for the same
difference scheme, the reader is referred to the discussion of tri-
angular and hexagonal waveguide meshes in Appendix A of [7].

C. Boundary Conditions in the DWN

In order to see more clearly the interest in a DWN represen-
tation for a finite difference scheme, it is useful to examine the
problem of boundary termination. Consider the 2D wave equa-
tion, and a boundary along the axis, at . There are two
commonly encountered lossless boundary conditions [1]

The first, or Dirichlet, condition describes the boundary condi-
tion for a membrane terminated rigidly along , where
is the transverse displacement of the membrane. The second, or
Neumann, condition serves to describe the termination of a 2D
acoustic space in a hard boundary or wall, whenis a pressure
variable.

Because updating the difference schemes (16) requires access
to grid variables at neighboring points, they may not be used
directly at grid points on a boundary. For the Dirichlet condi-
tion, this is not problematic; if the grid variables are located at
points on the boundary itself, they may be set permanently to
zero, and need not be used in the updating of the grid function
over internal points. The DWN implementation at such a grid
point follows simply by cutting all waveguide connections to the
exterior, and by scattering according to (36), whereis set to
zero—see Fig. 5, at left. In fact, it is easy to show that this corre-
sponds to a “short-circuit” termination of a parallel connection
of voltage (or pressure) waveguides, and is thus lossless [17];
waves incident on the boundary junction are reflected with sign
inversion. Thus, the weighted sum of squares of the signals in
the network remains constant even when such a boundary con-
dition is applied.

The Neumann condition is slightly more complex, though we
may again associate a particular termination of the difference
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Fig. 5. Termination of the 2D waveguide mesh at a southern boundary, with
x = 0. At left, termination corresponding to the Dirichlet boundary condition
u = 0, where the boundary junction is short-circuited, and at right, to the
Neumann condition, where partial transmission coefficients of waveguides
along the boundary and self-loops are modified by identification with the
coefficients (47) of a boundary difference scheme (46).

scheme (16) with a lossless termination of the DWN. First con-
sider the difference scheme (16) in its expanded form (19) at a
southern boundary, i.e., where the grid variable is to be
determined from its neighbors at time stepsand . Thus,

(45)

Obviously, the variables , which will be re-
quired by this equation are beyond the mesh boundary, and
thus the above update cannot be used at such points. Using the
approximation

the Neumann boundary condition becomes, in terms of the grid
function

The boundary difference scheme (45) becomes

(46)

where

(47)

This modified update at the boundary grid points can be inter-
preted as a DWN termination of the type shown at right in Fig. 5,
where the partial transmission coefficientsare modified to ,
and identified with the given above. Note that the partial trans-
mission coefficients in waveguides leading to the mesh interior
are unchanged, and thus scattering at internal junctions is carried
out using the parameters, and not. , , the trans-
mission coefficients in waveguides connecting junctions on the
boundary, and , that of the self-loop are now given from
(47) and (20), in terms of and , by

Again, the network will be lossless if these parameters are non-
negative, giving the additional conditions

These conditions are clearly respected for any choices ofand
which satisfy the passivity conditions given in (43), which

must hold over the mesh interior. Thus, this particular boundary
termination of the finite difference scheme does not compromise
the passivity of the DWN as a whole, and the difference scheme
remains exactly lossless in the absence of round-off errors.

The above analysis obviously can be applied to any edge
of a rectangular domain, and extends easily to the 3D case
as well. What we have shown above is that, regardless of
whether one chooses a finite difference scheme or a DWN in
the actual computer implementation, the DWN representation
gives simple conditions for numerical stability; it should be
mentioned, however, that the addition of numerical boundary
conditions can be analyzed as such only when the DWN is
passive over the interior, i.e., under restricted conditions such as
(43) and not (32). The boundary termination for more general
DWNs has been explored in great detail in [7].

VI. DIRECTIONAL DISPERSION

It is of interest to examine now the symbols of the difference
schemes (16) and (18). For the 2D difference scheme, from (12),
using the definition of from (27), the symbol is

and, expanding in a Taylor series in and the cosines
and in in a series in

The first term in the expansion, , as defined previously
in (13), is simply the symbol for the 2D wave equation itself,
and indicates consistency of the difference scheme with the
problem; the higher order terms in and give rise to
directionally dependent numerical dispersion in the scheme.

For the special choice of , this expression simplifies
to

and directional dependence of the scheme is confined to higher
order terms. That is, the symbol for the difference scheme is de-
pendent only on (and not the individual components of) to
second order. This special choice ofis plotted as a dashed line
in Fig. 1. The scheme is still second-order accurate inand ;
if it were possible to choose , or, in other words, ,
then it would be further possible to extract a factor of
as defined in (13) from the second order terms, giving a fourth
order accurate scheme. Because , however, the stability
bound from (32), giving , prohibits such a choice of

.
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Similarly, in 3D, it is possible to write

and thus, for , we have

This special one-parameter family of schemes is plotted as a
dashed line in Fig. 2.

Reducing the directional dependence of numerical dispersion
may be useful, because in this case, frequency-warping tech-
niques [13], [27] may be used to correct dispersion error; this
can be done only if the numerical dispersion is nearly isotropic.
Plots of this dispersion error are presented in the next section.

It is also worth noting that other sampling geometries also
provide opportunities for the reduction of the directional disper-
sion; we call attention to, in particular, the triangular and hexag-
onal geometries in 2D (discussed at length in [3], [7], [12], and
[28]). Certain numerical integration structures can be viewed
as waveguide meshes or difference schemes, just as the families
mentioned in this paper, though it is difficult to directly compare
their efficiencies with those of the rectangular grid structures in
this paper without making certain assumptions about the spatial
bandwidth of the grid function (i.e., the shape of the spectral
region it occupies). There are other distinctions as well: trian-
gular and hexagonal sampling patterns do not lend themselves
to a simple treatment of boundary conditions over a rectangular
region, and the hexagonal scheme may exhibitparasitic modes
[1], [7]. In 3D, there are quite a few new sampling possibilities,
notably the tetrahedral grid [11], [7]. It is possible, nonetheless,
to perform the same type of Taylor analysis as above for all of
these schemes, though we do not pursue this direction here (and
furthermore, these schemes do not contain any free parameters
to be optimized, except for).

VII. N UMERICAL PHASE VELOCITIES

For an exponential plane wave solution of the form
, the wave equation (1) can be written as

with

For nontrivial solutions, , and so

The phase velocity for the wave equation is defined (disre-
garding the sign ambiguity above) by

Thus, wave propagation is dispersionless, and speeds are inde-
pendent of direction.

Fig. 6. Relative numerical phase velocitiesv for difference scheme (16), for
various values ofp and�; v takes on a value of 1 at��� = 0, and successive
deviations of 2% are plotted as contours. In (a) and (b) are shown contours for
a simple rectilinear scheme withp = 0 and� = 1, andp = 1 and� = 1=2
respectively, in (c) the maximally direction-independent scheme withp = 2=3
at the Von Neumann stability bound� = 3=4, and in (d) the same scheme
with p = 2=3 at the passivity bound� = 3=5. All plots are over the entire
spatial frequency spectrum, i.e., with��=X � � ; � � �=X .

For the numerical scheme (2), there are, in the spatial fre-
quency domain, two amplification factors , defined
by (10). For stable schemes (i.e., for ), these factors have
unit magnitude and can be written as

Thenumerical phase velocity, defined by

(48)

can thus be written, using (26), as

since from (9). For the schemes defined by
(16) and (18), the phase velocity of the scheme relative to that
of the model system is then

It is useful at this point to examine plots of this quantity for
various values of the scheme free parameters; such plots are
provided for the 2D scheme in Fig. 6, and for the 3D scheme
in Fig. 7.

By consistency of the schemes with the wave equation, it is
always true that , for ; depending on the choices
of and (in 2D) or , and (in 3D), there are gross differ-
ences between the behaviors of these schemes away from the
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Fig. 7. Plots ofv for the 3D family of schemes (18), for several values of
the parametersp, q and� (as indicated).v is plotted over the two surfaces
j���jX = �=4 and j���jX = �=2; white corresponds tov = 1, indicating
correct wave propagation velocity, and black corresponds to the maximal error
over the four cases shown, i.e.,v = 0:850. For each surface, the maximum
and minimum values ofv are indicated. The first three plots correspond
to simple special cases, for which difference scheme (18) makes use of eight,
six, or twelve neighboring points;� is chosen at the stability bound from (33).
Maximum and minimum values ofv over the two surfaces are given in the
adjacent tables.

long wavelength limit. In particular, for certain choices of
the parameter values, there are spatial directions for which
the schemes aredispersionless, i.e., the phase velocity of

Fig. 8. Plot of the maximum percentage difference between the maximum and
minimum of v as a function ofj���jX . In black, directionally independent
schemes as discussed in Section VI, for various values ofp, and in grey, the
three simple schemes shown in Fig. 7 (parameter values indicated).

the scheme is exactly equal to; this will be true only at the
maximum allowed value of . In these cases, however, the
dispersion of the scheme can be quite large in other directions.
For the optimally direction-independent parameter choices
discussed in Section VI, there is no dispersionless direction,
but the dispersion is more evenly distributed among all the
propagation directions—see the bottom two plots in Fig. 6 and
the bottom plot in Fig. 7. Also note (from the bottom two plots
in Fig. 6 for example) that the numerical dispersion is lessened
as approaches the Von Neumann stability limit, although it
does become more directional.

To emphasize the directional independence of the schemes
discussed in Section VI, plots of the maximum percentage dif-
ference between the maximum and minimum of as a func-
tion of are shown in Fig. 8, for various members of the 3D
family of schemes.

VIII. C ONCLUSIONS

An analysis of the stability of simple families of two-step
explicit finite difference schemes for the wave equation has
been presented here. These schemes were dependent on several
free parameters, and the stability of these schemes can be
analyzed in a fully general manner; explicit bounds on the
time-step/space-step ratio are determined. These schemes,
when viewed as digital waveguide networks, are subject to a
passivity condition, which is distinct from the stability condi-
tion—passivity was found to be a sufficient but not necessary
condition for numerical stability which is easy to verify. This
ease of verification also holds when numerical boundary
conditions are applied. A means of reducing the directional
dependence of numerical dispersion, based on a Taylor series
expansion of the scheme, was also presented, as were plots of
numerical phase velocities for various choices of the scheme
parameters.
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APPENDIX

In this brief appendix, we sketch a simple proof that a mul-
tilinear function defined over a hypercube must take on its ex-
treme values at one of the corners of the region. Let

be such a function, where is as defined in (29),
, and are some real constants, indexed with

respect to , the set of all binary -tuples.
is clearly linear with respect to any single variable,

.
Pick an arbitrary point , and suppose that

. Fix . Then
is a linear function of , over

, and takes on the value for . Clearly then,
this function must take on its maximum at ,
where or 1, and thus .

Now, define over
. is also multilinear, and repeating the above pro-

cedure times, we obtain a sequence of values

(49)

where , the value of at coordinates
, the set of the corners of , as defined

in (30). Since the point was arbitrary, a sequence such as (49)
and a set of values always exists, and it is clear
that the maximum of must occur in . The proof that the
minimum must also occur over is similar.
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