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Finite Difference Schemes and Digital Waveguide
Networks for the Wave Equation: Stability,
Passivity, and Numerical Dispersion

Stefan Bilbao and Julius O. Smith, |IMember, IEEE

Abstract—In this paper, some simple families of explicit In Sections Il and Ill, simple families of 2D and 3D explicit
two-step finite difference methods for solving the wave equation difference schemes are introduced, which are suitable for the
in two and three spatial dimensions are examined. These SCheme%umerical integration of a physical system described by (1)

depend on several free parameters, and can be associated with th Standard Eourier t f techni f
so-called interpolated digital waveguide meshes. Special attention(arnong others). Standar ourier transtorm techniques for

is paid to the stability properties of these schemes (in particular analyzing numerical stability, better known ¥en Neumann
the bounds on the space-step/time-step ratio) and their relation- analysis are also reviewed; this analysis is carried out in
ship with the passivity condition on the related digital waveguide Section IV for families of schemes which are dependent on
networks. Boundary conditions are also discussed. An analysis of geyerg| free parameters. In Section V these same families
the directional numerical dispersion properties of these schemes - . .
is provided, and minimally directionally-dispersive interpolated 9f schemes a-re. reexamed as implementations Qf sq-qalled
digital waveguide meshes are constructed. interpolated digital waveguide networks, and certain distinc-
Index Terms—Digital waveguide networks, finite difference tionsf _between the notion_ of passivity and _SIf”mdard numerical
schemes, Von Neumann analysis, waveguide meshes. stability are discussed. It is shown that passivity may be used as
a simple sufficient condition for stability; this can be extremely
useful in the analysis of boundary conditions, as we will show
|. INTRODUCTION in Section V-C. In Section VI, returning to the traditional finite
HE subject of this paper is the analysis of some simpféfference viewpoint, the spectral analysis of these schemes is
families of finite difference schemes for solving twvave further refined in order to show that the problem of directional

equationin N spatial dimensions dependence of numerical dispersion can be dealt with in a
~ straightforward way, and it is shown how the schemes’ free
*u — 2V v2 o A 0? parameters may be adjusted in order to minimize such an effect.
oz~ ¢ VNDY ND 12: a2’ (@) Finally, in Section VII, several plots of the numerical phase
! velocities for these schemes are presented, for various choices
Here,t is time, andx = [z1, ..., zn]" is the set of spatial co- of the free parameters.
ordinatesy is thewave speedassumed constant. The solution
’U,(X7 t) is assumed to be defined over 0 and forx € RN, Il. TWO-STEP DIEEERENCESCHEMES

It will be unique provided that two “well behaved” initial con-
ditionsu(x, 0) and(du/0t)|x, +=o are given [1]. The treatment
of boundary conditions is deferred to Section V-C.

The focus here is on the cas¥s= 2, 3, for which the numer-
ical solution of (1) has applications in room acoustics [2] an;]O

the ”?Ode"“g .Of ;ounq production 'in mu_sical instrumentg [3 the grid function at the two previous time steps. The spatial
D e it between te g pors i assume b o
P dimensions, and all operations recur periodically at intervals of

ital waveguide networkpl] or mesheg2], [5], [6], especially . . .
with regard to numerical stability properties, and the directionéjiﬁﬂg%{;‘g Is thesampling ratg. The difference schemes

dependence of numerical dispersion. The material in this paper

The wave equation is second order in the time variable, and
the simplestifference approximationd] are explicit two-step
methods. The solution is assumed to be approximated over an
-dimensional set of grid points bygxid function Updating
e scheme at any grid point at any time step requires access

has appeared, in an expanded form, in [7]. o) £ B(Ey, ..., Ex)ol + 00— =, 2)
. . . o T N
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El_lv<") =™ (3b) If B is real, then the stability condition is

[mi1,...,my,...,mn] U[m17---;ml—17---7mN]

foranyl =1,..., N. mﬁax|B| <2 (11

Clearly, difference scheme (2), if stable,riendissipative _ i
or lossless since it is symmetric with respect to the timd"Which caséz.| = 1 forall 5. The reader is referred to [1] for

indexn (the forward and inverse iterations are identical). AQ1® details, but the condition can be thought of as generalizing

yet, nothing has been said about which model system, if aﬁtg,e stability condition for a two-pole digital filter with transfer
difference scheme (2) approximates. Depending on the cholt8ctionH (z) = 1/(1+ Bz""+27"); here, howevers is not
merely a multiplier value, but a function of spatial frequeggcy

of B, it could serve to numerically integrate not only the wav o A
equation (1), but perhaps the equation of motion of a losslg¥d condition (11) must hold over all such frequencies.

beam (in 1D) or plate (in 2D), or other hybrids such as lossless!t IS also useful to intrToduce treymbol[1] of the difference
stiff strings or membranes as well. scheme; writingz = e®*, for some complex frequency =
o + jwT, then the symboP?(s, B) is simply the left side of

A. Von Neumann Analysis the amplification equation (9) above, normalized by the factor
9
The discrete spatial Fourier transfonof the grid function LT ie., .
vis Pi(s, B) 2 7 (e +e=*T 4+ B). (12)
1 o .

V(B) = =57 Z eI Xy, XN (4) The symbol of a difference equation indicates its behavior for

(27r)N/2 i i snT+jB8 T mX

mezN a single plane-wave solution of the form= ¢ J
. , . ) and is to be compared with the analogous synigl, 3) for
and is defined over spatial frequenci#s = [f1. ..., Ox].

the model problem the scheme approximates. For the system of
interest here, namely, the wave equation (1), the synthd
obtained by examining a plane-wave solution of the farm

such that-7/X < (4, ..., By < 7/X. By the shift theorem
for Fourier transforms

Ew — PXy By e mifXy e*+i8"x in which case we find
_ i A2 212
for any transform paiv —— V,foranyl = 1, ..., N.In other Pu=0 with P=s"+c|B| (13)
words, the shift operators correspond to multiplication by linegfhere||? is simply the squared magnitude of the vegor=
phase terms in the spatial frequency domain. The recursion [2), ..., 3y]r of spatial frequencies.

becomes, in the transform domain

IIl. EXPLICIT DIFFERENCESCHEMES FOR THEWAVE EQUATION
IN 2D AND 3D

Due to the spatial symmetry of the wave equation, for the Now consider (1) forV = 2. In order to approximate its so-
schemes addressed in this papigiis always a function of the |ution on a grid, the following basic difference approximations

v+l L BeifX PNy Ly (=l — 0 (5)

operators to the2D Laplacian may be used
_ 2
M, = (B +E7)/2 (6) 83,4 = 55 (M +Ma = 2) = V3, + O(X?)  (142)
for which ) 2 ) )
My — ¢V ) . .
(Even though the operatofd; andM,, defined in (6), are ap-
where plied to the continuous functiom, we use the same notation as
N before; this should cause no confusiof), , is an approx-
¢ = cos(fi X). (8) imation based on neighboring points to the north, south, east,

and west at a distance af, andégD, . employs points at a dis-

The numerical stability of this scheme can be examined by, e of,/2X from the current update point, in the diagonal
taking thez transform of (5) to yield thamplification equation jrections. It should be clear that since both difference opera-

2+ B(e?hX, . eiBfnXy 4 71 g, 9) tors are second-order accurate [1] approximationg3g, then
o any linear combinatiops3,, | + (1 —p)é3, , will be as well,

We note that we use the same notation/foas before, though for anyp (assumed real). The second-order, centered, time-dif-
B is now a function of spatial frequency variables instead d&érence operator is defined by
shift operators. Its functional form is the same as before. This 1
should cause no confusion. (The same will also be true of thed; u(x, t) = 7z (X, t+T) = 2u(x, 1) +u(x, t = T]
operatorF’, which will be defined in Section IV.) Scheme (2) 92u )
is calledstable(in the restricted sense [1]), if the roots of the =z T o(17) (15)

amp_I|f|cat|0n qua‘uon are bounded by 1 in magnitude, for aaltlnd a simple family of finite difference schemes can be obtained
spatial frequencies. These roots are simply

by writing (1) as
zi:%(—B:I: B2—4). (20) 6tgu202 [pﬁ%ll_i_+(1—p)6§D7X]u+O(X2,TQ) (16)
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and replacing: by a grid functiorw. Updating the grid function where) is defined as in (21).
at a given grid point requires access to previous values of theA simple class of difference schemes of the form (2) which
grid function at locations at most one grid point away in eithepproximates the wave equation (1) to second-order accuracy is

thex; or x5 directions (or both, along the diagonal). thus established. Any member of this class will solve the wave
For N = 3, let us consider three types of approximations tequation numerically provided it is numerically stable—the
vi, necessary stability analysis is performed in Section IV.
2 .
5§D’ += %2 (M + My + M3 — 3) (17a) A. Transformed Laplacian Operators
1 The Laplacian operators of (14) and (17), interpreted as op-
5§D, £ = X2 (My My 4+ My M3 + Mo M3z — 3) (17b) erating on a grid functiom, transform to the spatial frequency
5 domain as
83D, x = e (M1 MMz —1). (17c) 9
82p v —(c1+ca—2)V (24a)
. . . . . 2D, + X2
These approximations make use of grid points which_gre
V2X, and/3X, respectively, away from the current update 2 2
point; all are accurate t0(X?), and thus any linear combina- %2, x¥ X? (cre; =)V (240)
tion of them will be as well, i.e., )
in 2D, and
(p5§D,+ + q532,D,* + (1—27—(1)5§D, <) u=Vipu+O(X?) )
2
for any realp andq. Using the second-order time-differencing b3p, 4V = Xz (c1+cat+es=3)V (252)

operator (15), the 3D wave equation may then be rewritten as 1
83, +0 — 35 (crc2 + caca + eacs = 3)V (25b)

6tu = c* [p6§D7+ + q5§D7* +(1-p- Q)5§D, «Ju

+0(X2,7?). (18) cieacs — 1)V (25¢)

2

6?2,D, xUV X2 (
Whenuw is replaced by the grid function, both the 2D and

3D difference schemes (16) and (18) can be written in the fori 3D, wherec; is given by (8).

of (2), after multiplying through by a factor @?2. Notice that because these approximations to the Laplacian
It will be useful to write the difference schemes (16) and (18)re symmetric and make use of points that are at most one grid

as they will be implemented by expanding the spatial diffepointaway in any or all of the spatial coordinate directions, their
encing operators. In 2D transforms arenultilinear [8] functions of the cosineg of the
components of the spatial frequency variable (see the Appendix

1 1 .. - .
,Ul(:lerl) _ Z Z Gry vy BT ESQU(n) B v,(,’f’l) (19) for a definition of multilinearity).

ri=—1ro=—
IV. STABILITY
where ) _ )
9 9)2(1 —0 Difference schemes (16) and (18), when written in terms of
=201 +p), nf+ | = the grid functionv, and normalized by the factd??, have the
ry,ry = § PA?, Iri|+|r2| =1  (20) form (2), with
1 —p)A2/2, + |y =2
(1=p)A%/ Iral =+ | B=-2-2)F (26)
where the dimensionless quantitydefined by
T and the operatoF’ is defined, for schemes (16) and (18), by
A= — (21)
X
. . . . . Fyp = (p83p, + + (L= p)3p ) X?/2
plays an important role in the numerical stability analysis to ) )
follow. F =4 Fp=(php . +983p . (27)
Similarly, in 3D, (18) can be rewritten as +(1=p—q)¥3p «) X?/2.
1 1 1
vr(ngl) _ Z Z Uy v BTV E? Eg%ﬁr’f) _ vﬁr’,"l) Notice that the stability condition (11) can then be rewritten
ri=—lro=—1rz=-—1 as
(22)
with m3X|B|§2<:>mﬂaX|l—|—)\2F|§1

2= N (Ap+q+2), |rl+]r+rs|=0 N o _
and if F' is independent af, it is straightforward to arrive at the

2 —
“ _ A il + Ira| + [rs| = 1 equivalent pair of conditions
T1,T2,T3
g\*/4, 1]+ [r2] + [rs| = 2 )
L=p=@)X?/4,  |ri|+|re| +|rs] =3 max F <0 A< - (28)

23) 8 mgn F
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q= —2p+4/3

0 0.5 1 2 P 3

Fig. 1. Upper bounds ok for the 2D scheme (16), plotted against the
free parametep: the maximum value ofA for Von Neumann stability (solid
line), and the maximum value for a passive waveguide mesh implementation
(dotted line); there is a passive mesh structure onlyfet p < 1. Choices

of parameters for the optimally direction-independent scheme are plotted as a
dashed line.

function F'. Using the definitions of the transformed Laplacianf®r stability over this region is given in (33). The sub-region over which a passive

‘e A waveguide mesh implementation exists is shown in dark grey, with the bound on
from (24) and (25)F for schemes (16) and (18) IS given by A given in (44). Choices of parameters for an optimally direction-independent
scheme are plotted as a dashed line.

Fop =pleg +c2) + (1 —p)erea—1—p

q
F3p =p(e1 +ca+¢3) + = (cica + cres + cacs)

2 In 3D, the possible global extrema 6% p (again employing

+(1=p—q)eicacs —2p—q/2 - 1. the symmetry off3p) are
The functionsF'yp above, forN = 2, 3 are easily seen to be c=(1,1,1): F3p =0
multilinear in the variables;, | = 1, ..., N, which take on — (1,1, -1): For = 9
values betweenr-1 and 1. These functions are thus defined over T ' 8D
the ND hypercube c=(1, -1, -1): Fsp =—4p—2q
c=(-1,-1,-1): F3p=—4p+2q—2
QN: {C:(Cl7 ...,CN) ERN|—1 Scl, ..., CN < 1}
(29) and the stability conditions are thus
It is simple to show that a multilinear function defined over o« < 9,41 )2 < min (1, 1 ’ 1 ) .
a hypercube whose sides are aligned with the coordinate axes 2p+q 2p—q+1
will take on its extreme values at the hypercube corners (see the (33)

Appendix). Since the domaifly is such a hypercube iR",
all extrema ofF’ must then occur at it3" corners, i.e., over the The stability region is plotted in th@, ¢) plane in Fig. 2.
points inQ24; defined by
V. DIGITAL WAVEGUIDE NETWORKS
v={ceQylle| =+ =len[=1}. (30) . . o
In this section, a class of finite difference schemes based on
The stability conditions (28) can be rephrased as the use ofdigital waveguide network€OWNSs) [4] is consid-
ered. DWNs are known to yield efficient and numerically robust
max F(c) <0 A2 < _#' (31) computational models for wind, string, and brass musical instru-
ceQy o F(c) ments [9], [10]. More recently they have been applied also to the
Y modeling of acoustic membranes and spaces [3], [2], [11]-[14].
Thus, in 2D, the candidates for the global extremd'sf are
A. Background

c=(1, 1) Fop=0 o _

A DWN is defined as a completely general collection of
c= (1, ~1) Fop =2 bidirectional delay lineserminated orscattering junction$4].
c=(-1, 1) Fop=—4p See Fig. 3 for a graphical representation of such a network and
these two important component types. The signals stored in
this discrete-time network are referred tovesves

Each bidirectional delay line adigital waveguidecan be
conceived of as a discrete-time transmission line segment or
1 acoustic tube, transporting digital wave signals in opposite
p>0 A <min <1, 2—) : (32) directions at a fixed sample rate. Referring to the enlarged view
P of a digital waveguide of delay’ shown in Fig. 3(a), where the
The maximum value oA is plotted as a function gf in Fig. 1.  two input wave variablesre the discrete time signadé‘")_

where the symmetry of,p with respect taz; andcs permits
dropping the evaluation at= (—1, 1). The stability conditions
(31) then reduce to simply
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A set of M wave variables]", ..., v}, incident on a scat-
tering junction [see Fig. 3(b)] is then scattered instantanedusly
according to the equation

vy =V — v,:' (36)

wherew, thejunction variableis not a wave, and is defined by

M
=Y ajf  fora; 2 2Y; i M. (37)
V= o;jv; j = =7 ,9=1, ..., M.
i=t > Y,
g=1

The constanty; > 0, j = 1..., M are the admittances as-
sociated with theV/ adjoining waveguides, and the;, j =
1..., M, also positive, are known as tipartial transmission
coefficients The scattering equation above is a statement of
Kirchoff’'s Laws for aparallel connection of transmission lines
propagatingroltagewaves. As such, it is possible to show that

M M
N S Vi ()2 = 3 Vi (4 P (39)
(@) “ B i k=i
______ and thus the sum of squares of the wave signals, weighted by the
Fig. 3. Portion of a digital waveguide network, and enlarged views of itgdmittances, is preserved by the scattering operation. It is also,

principal components: (a) a bidirectional delay line, of delay duraffon . . . Lo . . )
and admittanc&” (accepting two waves, andwvyz output from scattering of course, possible to definesariesscattering junction with re

junctions, delaying them, and producing two wavdsandv3; each of which Spect to waveguidenpedancesSimilarly, dual wave variables
is then incident on a scattering junction); (b) a scattering junction connecteéln also be treated [15]_

to five waveguides of admittancés, ..., Ys, (accepting, in this case, five P .
input wavesgfr, ..., v¥, and yielding five out}gut wgvesg(, ..., vy ), and ) A key_ property Of_a DV\_IN made Up_Of scatte_rlng_Junctlons and
(c) a self-loop. bidirectional delay lines is that, provided the immittarfoefsall

waveguides are nonnegative, then the network mukisstess
do™= and th bl )+ and [16] as awhole. Indeed, itis possible to conclude, from (35) and
apn)fr’B_ . and the twooutput wave variablesre v, "~ an (38) that for a closed network made up.bfunit-delay digital
vg ', itis easy to see that waveguides, thgth of which contains two signal samples
andz; » and has admittanck;, that

v&nH = U(Bn_l)_ vg’)—" = vf:_l)_. (34)
J
i i i indicati E2 > Y- (23, + 27 ,) = constant (39)
Here the wave signals are indexed by integeindicating that i \Tj51 T TG0
they take on values at timés= nT. (We note here that in a j=1

DWN, the |nd|V|dua.1I waveguides are not all _necessanly of thTehus, the preservation of this positive definite energy measure
same delay length; the¥ need only be multiples of a COMMAByes as a stability condition on the network as a whole. By
um_t delay. I_n the DWN's f(_)r the 2D and 3D wave e_quatlo ppealing to classical network theory [16], it is possible to in-
wh|ch we will shortly examine, hp\{vever, all delays will be o roduce other lossless elements such as discrete time inductors,
durationT.) One can conclude, trivially, from (34), that capacitors, transformers and gyrators, and also lossy elements
9 9 such as resistors, which leave the network more gengually
Y - [(vi"”) + (vgl)J’) } sive i.e., an energy measure suchiagas defined in (39) must
) ) be nonincreasing with.
=Y. [(Ugn—n—) + (vg—l)—) } (35) .Thoughterms sugh as “Iossle_s;” and “passive” are used here,
it is worth being a bit more specific; a network made up of ele-

inoth ds. that th fth  the inout ments, each of which can be shown to be lossless or passive in-
or, in otherwords, that the sum ot the squares ot the Inpu Wav@§idually, will be called, following Belevitch [16]concretely

is the same as that of the Oquut waves; the weighting by 1 Sslesor concretely passiverhis is the property which inter-

wavegwdeqdmlttanceY > 0 IS no.t necessary here, but be'ests us, as it leads to a simple stability test, namely, checking the

comes significant when scattering is introduéed. positivity of the network immittances. A network may, however,
be passive as a whole, even if some of its components are not.

2When the time index is omitted in an expression, it holds for all
1The grid wave variables are here assumed to be proportional to a “force- 3An immittanceis defined as either an admittance or an impedance [16]. In
like” variable such as voltage, pressure, etc., as opposed to a “flow-like” varialaleoustic modeling applications, one normally works with the wave impedance
such as current, velocity, etc. of an acoustic tube or a vibrating string.



260 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 3, MAY 2003

For example, a series connection of a two resistors of resistances(.
R and—R is exactly lossless, even though it contains an active
element. In this case, the network is caltdabtractly losslessr
abstractly passiveAs will be shown later in this section, it is in-
deed possible for a DWN for the wave equation to be abstractly
lossless while not concretely lossless. For simplicity, “lossless”
and “passive” will henceforth mean “concretely lossless” and
“concretely passive.” . _ Fig. 4. Waveguide networks for the 2D and 3D wave equation, at left and
It should be noted that the DWN, when applied to numericaght respectively. Waveguide connections from a given junction (black) to its
integration problems, bears a very strong resemblance to filfgfghbors are indicated by thick black lines; in the representation of the 3D
; . . mesh, only connections to points in a single neighboring octant are shown.
d_e3|gns_ such agave digital ﬂlterS(WD'_:S) [17], [18], anq Ot_her Admittances of waveguides are indicated for one representative of each type
simulation methods based on scattering such asahemission in both cases.
line matrixmethod (TLM) [19], [20], [21] ananultidimensional

wave digital filter (MDWDF) methods [22], [23]. In lumped ditionally, aself-loopof admittanceYy; a self-loop is simply a
wave digital networks, for example, scattering is defined witlyaveguide whose ends are both connected to the same junction,
respect tgoort resistance$l8] instead of admittances, but thewhere one of the two signal paths has been dropped, as it is re-
scattering equation for a parallel connectiopéaallel adaptor - dundant [see Fig. 3(c)]. It is equivalent in the unit-delay case to
[18], in WDF terminology) is identical to (36); the unit-delayawave digital capacitof17], as well as &apacitive stutj20] in
waveguide, though conceived of here as a transmission line sgg TLM framework. In 3D, there are three types of connecting
ment, also exists in the lumped WDF framework, and has begaveguides, of admittancés, Y, andYs, running between any
called aunit elemenf17]. In fact, the DWN'’s presented in this junction and its neighbors at distances\fy/2X andy/3X, re-
section can be viewed as wave digital networks, where the wag@ectively. Again, there are self-loops of admittaiigat every
guide admittances are taken as port resistances at the scattgtifgtion. For either the 2D or the 3D mesh, the partial trans-
junctions. For all the methods mentioned above, scattering agission coefficients can be written as per (37), in terms of the

cording to an equation such as (36) is the key operation, aRglveguide admittancég, [ =0, ..., N, for N = 2, 3 by
passivity is the crucial attribute, regardless of whether the ap- ~
plication is filtering or simulation. 2y for Z e =

k=1

iy = 3
B. DWNs for the 2D and 3D Wave Equation

The DWN shown in Fig. 3 is unstructured; the scatterinyh_ere_y-fv ~vp i the totaljunction admittanceat a given scat-
junctions are not associated with particular spatial locations. g junction, and is equal to the sum of the admittances of all

they occur in a regular, grid-like arrangement, the network Yé@veguides connected to the junction. Thus

often referred tp as wavegu'ide mesf2], [51, [6], and it be- Yiop =Yy +4Y; +4Y,
gins to be possible to associate the behavior of such a network
with a numerical integration method. Passivity, in the context Yy 3p =Yo + 6Y1 + 12Y5 + 8Y5.

of numerical integration, can be viewed as a sufficient condi-

. . - . . . In order for the network to be passive, it is required that all
tion for numerical stability, and it is much simpler to verify than . . ; o
. - . . : of these admittances (or, equivalently, the partial transmission
numerical stability of the type discussed in Section IV—asmen- .~ AL .
. : . h - coefficientd) be positive, in either the 2D or 3D cases. This
tioned in the previous section, nonnegativity of the network elé- L : S ) -
sn};nple criterion immediately implies numerical stability, for as

ment values (the waveguide immittances) is necessary and suf-"_. . . : : o
- L L mentioned in Section V-A, there is a direct physical interpre-
ficient for passivity. The same condition also extends readl[g

. . . . tion of the sum of the squares of all the signal values in the
to more complex systems having spatially varying coefficien

passive nonlinearities, and certain types of time-variation [ Idirectional delay lines as an energy; this quantity will be non-

[14]; the frequency-domain Von Neumann analysis does n|Otcreasing as time progresses if the network is passive and there

" : re no sources.
apply to such systems. Boundary conditions are also particular YA DWN can ifits topology and immittance values are setin a
easy to deal with, as we will see shortly in Section V-C; the ter- '

mination of a passive network by passive lumped discrete cichE%rtlcular way (to be discussed shortly), be viewed as a wave im-

. : |mentation of a finite difference scheme, usually offthite-
elements must behave passively as a whole. Checking the hu- . ) : .
. . . " - difference time domai(FDTD) variety [25], [26]. That is, the
merical stability of a particular boundary condition coupled wit

a given finite difference scheme can be extremely involved Otﬁ(_:attermg and shifting/delaying operations applied to wave vari-

. ) . ables can always be reduced to an equivalent finite difference
erwise, though analysis techniques such as the so-cak&D . o ; :
scheme in the physical junction variables (sampled voltages and
theory[1], [24] and theenergy metho{l4] can be used. . ; . .
cPrrents in the electrical setting, or pressures and volume veloci-

Waveguide networks suitable for the numerical integration . . :
the 2D and 3D wave equation are shown in Fig. 4; for the 2D ng%?s In acoustic tubes, etc.). The 2D and 3D waveguide networks

work, each scattering junction is connected to its nearest neightin these DWN's for the wave equation, it is the partial transmission coeffi-
bors (a distanc& away) by Waveguides of admittantg, and cients which are of importance; the network admittances may all be scaled by

iahb in the di | di . di a common factor without affecting the calculation. In a simulation of the full
to neighbors in the diagonal directions (a distanteX away) system of conservation laws (from which the wave equation is derived), the ad-

by waveguides of admittand&. At each junction, there is, ad- mittance values regain their importance. See [7] for further discussion.
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shown in Fig. 4 can be made to behave exactly according to filgese conditions op, ¢ and\ are substantially more restrictive
difference schemes (16) and (18), respectively. This equivalertban the stability conditions from (32) and (33). The passivity
for the case of the 2D mesh can be shown by tracing the flowm@gions described by (43) and (44) are plotted in Figs. 1 and 2,
signals backward through the network. respectively.

First, let us consider the operation of the 2D mesh shown atThe passivity conditions above can thus be viewed as triv-
leftin Fig. 4 at the junction at a point with coordinates- m X, ially verifiable sufficient stability conditions for the difference
m = (my, mo) form;, mq integer. Atany giventime step+1, schemes (16) and (18); they are not, however, necessary. The
the junction accepts nine waves, which will be caligflt”*.  stability of schemes which do not satisfy the passivity condi-
The indexr = (r1, r2) refers to the wave approaching théions must be verified by the approach outlined in the previous
junction along the vector in the (x1, z2) plane, forr;, r, = section; for more involved difference schemes, this can become
—1, 0, 1 (r = 0 indicates the wave approaching from the selfquite difficult. A DWN can behave in a stable manner even
loop). The junction variableﬁff“) can be expressed, from (37),when certain components of the network are active (though in

as these configurations, power-normalization [4] of wave quanti-
ties is not possible)—as per the discussion in the second-last
1 1 . .
D) Z Z D+ (40) paragraph of Se.ctlon V-A, _such a networ!< is abstractly, but not
m m,r concretely passive [16]. It is worth mentioning, however, that

ri=—1ro=—1

it is by no means impossible that there exist concretely passive
It should be clear, from (34), that network representations corresponding to the stable difference
schemes mentioned here; such a representation will necessarily
(41) have a different topology from the structures shown in Fig. 4.
For an interesting example of alternate topologies for the same
where E; and E» and their inverses are the shift operators Jlifference scheme, the reader i_s referred to_the discus_sion of tri-
defined in (3) €9 and EY are simply identity operators). That@ngular and hexagonal waveguide meshes in Appendix A of [7].
is, a wave incident on a junction at the current time step was N )
emitted from an adjacent junction at the previous time step. Fé- Boundary Conditions in the DWN

Ry

,—r

thermore, from (36) In order to see more clearly the interest in a DWN represen-
tation for a finite difference scheme, it is useful to examine the
v,(,’l):r = — v,(,’l)fr problem of boundary termination. Consider the 2D wave equa-

_ vfﬁ) _ E—nE—rzUI(g—rl)— tion, and a boundary along the axis, atzo = 0. There are two

commonly encountered lossless boundary conditions [1]

and by inserting this expression back in (41) and (40), and using

(36) and (37) again u(z1, 0) =0 Ou

— =0.
8'172 z2=0
1 1
vl(g+1) — Z Z ozh,TQE“E“v,(ﬁ) _ v,(ﬁ_l) (42) The first, or Dirichlet, condition describes the boundary condi-
ri=—1lro=—1 tion for a membrane terminated rigidly alomg = 0, whereu
is the transverse displacement of the membrane. The second, or
which is identical to (19) under the identification®f, ., with  Neumann, condition serves to describe the termination of a 2D
ar,,r,, as defined in (20). (That is, the DWN generates a diffegcoustic space in a hard boundary or wall, whés a pressure
ence scheme identical to that obtained by applying finite diffeyzriable.
ences.) Using similar manipulations, itis possible to identify the Because updating the difference schemes (16) requires access
3D waveguide mesh in Fig. 4 with the difference scheme (223 grid variables at neighboring points, they may not be used
it Qry ra,rg = @ry, o, rgy With @y 4, 1, @s defined in (23). directly at grid points on a boundary. For the Dirichlet condi-
The important thing here is that for these networks to kgn, this is not problematic; if the grid variables are located at
made up of passive transmission line segments, the partial trgfsints on the boundary itself, they may be set permanently to
mission coefficients must always ®nnegative due to the zero, and need not be used in the updating of the grid function
nonnegativity of the waveguide admittances themselves. (Wayger internal points. The DWN implementation at such a grid
guides of zero admittance are formally allowed, although amint follows simply by cutting all waveguide connections to the
such waveguide can be dropped from the network entirely.) Agxterior, and by scattering according to (36), wheris set to
plying these nonnegativity conditions to theparameters for zero—see Fig. 5, at left. In fact, it is easy to show that this corre-

the 2D scheme, from (20), we get sponds to a “short-circuit” termination of a parallel connection
1 of voltage (or pressure) waveguides, and is thus lossless [17];

0<p<l1 N <— (43) waves incident on the boundary junction are reflected with sign

I+p inversion. Thus, the weighted sum of squares of the signals in
and in 3D, from (23) the network remains constant even when such a boundary con-

dition is applied.
The Neumann condition is slightly more complex, though we

2
2
p,g20  ptgsl A< (44) may again associate a particular termination of the difference

T A4dp+q+2°
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Again, the network will be lossless if these parameters are non-
negative, giving the additional conditions

p>-1  N<—
1+p/2
These conditions are clearly respected for any choicesamid
Fig. 5. Termination of the 2D waveguide mesh at a southern boundary, withWhich satisfy the passivity conditions given in (43), which
x2 = 0. Atleft, termination corresponding to the Dirichlet boundary conditiomust hold over the mesh interior. Thus, this particular boundary
i s nsuLerminalion of the it difference scheme does not compromise
along the boundary and self-loops are modified by identification with thdhe passivity of the DWN as a whole, and the difference scheme
coefficients (47) of a boundary difference scheme (46). remains exactly lossless in the absence of round-off errors.
The above analysis obviously can be applied to any edge
scheme (16) with a lossless termination of the DWN. First conf a rectangular domain, and extends easily to the 3D case
sider the difference scheme (16) in its expanded form (19) aaa well. What we have shown above is that, regardless of
southern boundary, i.e., where the grid varialzﬂ’gé) isto be whether one chooses a finite difference scheme or a DWN in
determined from its neighbors at time stezpandn'— 1. Thus, the actual computer implementation, the DWN representation
1 1 gives simple conditions for numerical stability; it should be
(n+1) _ ropre, (n) - (n—1) mentioned, however, that the addition of numerical boundary
0 = 2 D en BB~ vl (49) conditions can be analyzed as such only when the DWN is
passive over the interior, i.e., under restricted conditions such as
a(ﬁl&%) and not (32). The boundary termination for more general
W)Ns has been explored in great detail in [7].

ri=—1ro=-—1
Obviously, the variables,,,, —1, vm,+1, -1 Which will be re-
quired by this equation are beyond the mesh boundary,
thus the above update cannot be used at such points. Usingq
approximation

Ju
8x2

VI. DIRECTIONAL DISPERSION

~ (u(mi X, 0) —u(m X, X)) /X It is of interest to examine now the symbols of the difference

. _ schemes (16) and (18). For the 2D difference scheme, from (12),
the Neumann boundary condition becomes, in terms of the gUQing the definition off.p from (27), the symbol is

functionwv

z1=m1X, 25=0

1 s —s
Uml,O_Uml,—1:0~ PQdD(S, ﬂ)zﬁ(eT—i—e T—2—2A2F2D)

The boundary difference scheme (45) becomes

1 1
vitd = 30 Y an BB g — vl (46)
. Pip = P+ 35 8'T° = 3¢ (81 + iy + 6(1 = p)8785) X°
where +0(T*, X*).
@p,0 =000 +a_1,0

and, expanding*” in a Taylor series isT and the cosines;
andc, in Fyp(c) in a series i3X

The first term in the expansio®(s, B3), as defined previously
in (13), is simply the symbol for the 2D wave equation itself,
and indicates consistency of the difference scheme with the

ap,—1 =a1,—1=a_1,-1 =0

ai 0 =a1,0+ a1

a—1,0=0a-1,0+a-1,-1 problem; the higher order terms ifi, and 3, give rise to
0,1 = ao. 1 directionally dependent numerical dispersion in the scheme.
11 =a1 4 For the special choice gf = 2/3, this expression simplifies

L ’ to

a_1,1 =0_1,1- (47)

This modified update at the boundary grid points canbe inter- ~ Ps, = P + &5 (s*7?% — |B[*X?) + O(T*, X*)
preted as a DWN termination of the type shown at right in Fig. 5,
where the partial transmission coefficientare modified tav, and directional dependence of the scheme is confined to higher
and identified with th& given above. Note that the partial transerder terms. That is, the symbol for the difference scheme is de-
mission coefficients in waveguides leading to the mesh interipendent only of3|* (and not the individual components@fto
are unchanged, and thus scattering at internal junctions is carsedond order. This special choicepa plotted as a dashed line
out using then: parameters, and nét. &_ o, &, o, the trans- in Fig. 1. The scheme is still second-order accurafg and X ;
mission coefficients in waveguides connecting junctions on tiifét were possible to choos& /T = ¢, or, in other words) = 1,
boundary, andyy ¢, that of the self-loop are now given fromthen it would be further possible to extract a factoPgf (s, §)
(47) and (20), in terms gf and ), by as defined in (13) from the second order terms, giving a fourth
Gor0=d10=A(1+p)/2 order accurate sch_er_ne. Becapse 2/3, ho_wever, the sta_bility

’ ’ bound from (32), giving\ < 4/3/4, prohibits such a choice of

do.0=2— N (2+p). A



BILBAO AND SMITH: FINITE DIFFERENCE SCHEMES AND DIGITAL WAVEGUIDE NETWORKS FOR THE WAVE EQUATION 263

Similarly, in 3D, it is possible to write

1
P, = =3 (T + e T —2 - 2X2F3p)

:P-i—ﬁs‘*T2—%c2 (ﬂf-ﬁ-ﬂ%-ﬁ-ﬂé‘)Xz
1—p—q/2
Um0 2 (g2 1 22 + 526) X
+O(T*, X*%)

and thus, foig = —2p + 4/3, we have
Py =P+ L (s*T? — 2|BI*X?) + O(T*, X*).

This special one-parameter family of schemes is plotted as a
dashed line in Fig. 2.

Reducing the directional dependence of numerical dispersion
may be useful, because in this case, frequency-warping tech-
niques [13], [27] may be used to correct dispersion error; this
can be done only if the numerical dispersion is nearly isotropic.
Plots of this dispersion error are presented in the next section.

It is also worth noting that other sampling geometries als$gy.6. Relative numerical phase velocities; for difference scheme (16), for

provide opportunities for the reduction of the directional dispeyarious values of and; .., takes on a value of 1 & = 0, and successive

inA- ; ; ; ; eviations of 2% are plotted as contours. In (a) and (b) are shown contours for
sion; we call attention to, in particular, the triangular and hexag Simple rectilinear scheme with= 0 andA = 1, andp = 1 andA = y/1/2

onal geometries in 2D (discussed at length in [3], [7], [12], ar}@spectively, in (c) the maximally direction-independent schemewith2/3
[28]). Certain numerical integration structures can be viewegthe Von Neumann stability bound= ,/3/4, and in (d) the same scheme
as waveguide meshes or difference schemes, just as the familils? = 2/3 at the passivity bound = /3/5. All plots are over the entire
mentioned in this paper, though it is difficult to directly compansap"’mal frequency spectrum, i.e., withr /X' < 51, 5, < 7/ X.

their efficiencies with those of the rectangular grid structures in ) _ )

this paper without making certain assumptions about the spatiaf © the numerical scheme (2), there are, n tpe spatial fre-
bandwidth of the grid function (i.e., the shape of the spectrﬁpency domain, two ampllflc_atlon factoeg. = ™7, defined
region it occupies). There are other distinctions as well: triaRY (10). For stable schemes (i.e., f@] < 2), these factors have
gular and hexagonal sampling patterns do not lend themsel#&4 magnitude and can be written as

to a simple treatment of boundary conditions over a rectangular )

region, and the hexagonal scheme may exIpiéarasitic modes 2y = T = % (_B +VB? - 4) :

[1], [7]- In 3D, there are quite a few new sampling possibilities, ) ) i

notably the tetrahedral grid [11], [7]. It is possible, nonethelesthenumerical phase velocitglefined by

to perform the same type of Taylor analysis as above for all of

these schemes, though we do not pursue this direction here (and vi A1Y (48)
furthermore, these schemes do not contain any free parameters 18]
to be optimized, except fo¥). can thus be written, using (26), as
VIl. NUMERICAL PHASE VELOCITIES 4 cos Y(=B/2)
. . Yo = i
For an exponential plane wave solution of the foim= T|p|

st+i87x . .
€ , the wave equation (1) can be written as sincecos(wT) = —B/2 from (9). For the schemes defined by

P(s. _ ith Pls. B) — <2 + 2182 (16) and (18), the phase velocity of the scheme relative to that
(5, Bju=0 wit (5, 8) = 5"+ c|B] of the model system is then

For nontrivial solutionsP(s, 8) = 0, and so cos™ (1 + A\2Fxp)

XAlB]

Vpol = vg/w, =
s = jw = Lj¢|B].
The phase velocity for the wave equation is defined (disrg—is. useful at this point to examine plots of thi? quantity for
garding the sign ambiguity above) by various values of the schemg fr(_ae parameters; such plots are
provided for the 2D scheme in Fig. 6, and for the 3D scheme
w in Fig. 7.
W = By consistency of the schemes with the wave equation, it is
always true that,..; = 1, for 8 = 0; depending on the choices
Thus, wave propagation is dispersionless, and speeds are irdg-and ) (in 2D) orp, ¢ and X (in 3D), there are gross differ-
pendent of direction. ences between the behaviors of these schemes away from the

A
Vyp =
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100 (max vye; — Min Vpey)

A - 40 : . —
B.X : 8-Point Scheme
p=0 qg=0 A=1 a5t / l
0 8-pt 12-pt
|r61X max Urel min Vpel 30F
= /4 1.000 0.965
z /2 1.000 0.850 2} p=

20

‘wH

6-Point Scheme

B p=1 q=0 A=\I/3 '

o

<J’1r/4 /2 37;/4 T

[BIX | maxvpe; | minvyg 181X
x /4 1.000 0.983
£ /2 1.000 0.927

Fig. 8. Plot of the maximum percentage difference between the maximum and
minimum of v,..; as a function of 8|X". In black, directionally independent
schemes as discussed in Section VI, for various valugs ahd in grey, the
three simple schemes shown in Fig. 7 (parameter values indicated).

]

the scheme is exactly equal tpthis will be true only at the
maximum allowed value of\. In these cases, however, the
lepeint Echome dispersion of the scheme can be quite large in other directions.
F=0 =1 =1 For the optimally direction-independent parameter choices
discussed in Section VI, there is no dispersionless direction,

‘f'f: MaXbrel | M0 Dre but the dispersion is more evenly distributed among all the
5 1000 0.956 propagation directions—see the bottom two plots in Fig. 6 and

the bottom plot in Fig. 7. Also note (from the bottom two plots
in Fig. 6 for example) that the numerical dispersion is lessened
as A\ approaches the Von Neumann stability limit, although it
does become more directional.
T, To emphasize the directional independence of the schemes
§ o i discussed in Section VI, plots of the maximum percentage dif-

' o - Direction-Independent Scheme ference between the maximum and minimumQjf as a func-
p=1/3 ¢=2/3 A=+/3/4  tion of |8| are shown in Fig. 8, for various members of the 3D

family of schemes.

[VE]

‘BlX max Vpe| min Upel
z w/4 | 0.094 0.993
3 m/2 | 0.974 0.968 VIIl. CONCLUSIONS

[STE]

0 . . . -
;X An analysis of the stability of simple families of two-step
explicit finite difference schemes for the wave equation has
. _ een presented here. These schemes were dependent on several
Fig. 7. Plots ofv,..; for the 3D family of schemes (18), for several values o -
the parameters, ¢ and A (as indicated)w...; is plotted over the two surfaces ree parameters, and the stability of the_sef schemes can be
|B|X = =/4 and|B|X = =/2; white corresponds to.., = 1, indicating analyzed in a fully general manner; explicit bounds on the
correct wave propagation velocity, and black corresponds to the maximal erfﬁhe-step/space-step ratio are determined. These schemes
over the four cases shown, i.e,,.; = 0.850. For each surface, the maximum . L . ' . '
and minimum values of., are indicated. The first three plots correspondVhen viewed as digital waveguide networks, are subject to a
to simple special cases, for which difference scheme (18) makes use of eigrassivity condition, which is distinct from the stability condi-
six, or twelve neighboring pointsy is chosen at the stability bound from (33)-tion—passivity was found to be a sufficient but not necessary
Maximum and minimum values af,.., over the two surfaces are given in the " . - . . . .
adjacent tables. condition for_r_lum.erlcal stability which is easy to verify. This
ease of verification also holds when numerical boundary
conditions are applied. A means of reducing the directional
dependence of numerical dispersion, based on a Taylor series
long wavelength limit. In particular, for certain choices o&xpansion of the scheme, was also presented, as were plots of
the parameter values, there are spatial directions for whisbhmerical phase velocities for various choices of the scheme

the schemes aréispersionlessi.e., the phase velocity of parameters.
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APPENDIX [10]

In this brief appendix, we sketch a simple proof that a mul-
tilinear function defined over a hypercube must take on its ex-
treme values at one of the corners of the region. Let [11]

N
Fy(en) = Z am H i, cy € Qn (12]
j=1

meBy
[13]

be such a function, wher®y is as defined in (29)¢cy
(¢1, 2, ..., cN), @anday, are some real constants, indexed with
respect tom € By, the set of all binaryN-tuples. Fy(cy)

is clearly linear with respect to any single variaklg ; =

1, ..., N.

Pick an arbitrary pointy = éy € Qy, and suppose that [15]
FN(éN) = Fy. Fix (C]_, Cey CN_]_) = (él, Cey éN—l)- Then
Fn(é1, ..., ¢tn—1, cn) is alinear function oy, overcy €
[-1, 1], and takes on the valuéy for cy = éx. Clearly then,
this function must take on its maximudiy_; atcy = qn,
wheregy = 1 or —1, and thusﬁN < FN_l.

Now, defineFN_l(cN_l) é FN(CN_l, qN) overcy_1 €
Qn_1. Fy_1 is also multilinear, and repeating the above Ppro-j1g
cedureN — 1 times, we obtain a sequence of values

[14]

[16]
[17]
(18]

<Py (a9)

(21]

whereF; = Fn(q, ---, qn), the value ofFy at coordinates 2]

(q1, ..., qn) € Q%, the setof the™ corners of)y, as defined

in (30). Since the pointy was arbitrary, a sequence such as (49)
and a set of value§yi, ..., qn) always exists, and it is clear [23]
that the maximum of’y must occur irf2%,. The proof that the

minimum must also occur ovély; is similar. [24]
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