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The attenuation of higher order modes in rectangular and circular tubes is 
treated here by using results for the boundary layer admittance for the 
respective normal modes. Comparison with results available in the literature 
for propagating modes is given. Results for evanescent modes and at the 
cut-off frequencies are discussed. Finally, the well-known Kirchhoff theory is 
extended to obtain a test of validity for the proposed calculations. 

INTRODUCTION 

The boundary layer attenuation caused by viscous and thermal losses of lower modes in 
rigid walled small cavities has been calculated in previous work [l] by using the concept 
of boundary layer admittance [2]. On the other hand, the problem of extending the 
classical Kirchhoff result for the attenuation of plane waves in rigid walled tubes to the 
case of higher order propagating modes has been the subject of papers appearing in the 
1950s. The substantial theoretical extension of the concept of boundary layer admittance 
for higher order modes in tubes was given by Beatty [3], but his work led to infinite 
attenuation at the cut-off frequency, which is not correct when losses are taken into 
account; in fact the theory is not valid near the cut-off frequency (of course there are no 
cut-off frequencies when dissipation occurs; we refer throughout this paper to “adiabatic” 
cut-off frequencies). 

Some acoustical devices make use of cavities or ducts, the dimensions of which are of 
the same order of magnitude or greater than the acoustic wavelength, and the walls of 
which are perfectly rigid [4,5]. In order to determine the acoustic response of such cavities 
or ducts, one needs to calculate the attenuation of the modes, be they evanescent, 
propagating or at their adiabatic cut-off frequency, by taking into account the attenuation 
due to viscous and thermal effects. The attenuation of higher order modes in rectangular 
and circular tubes is treated here by using the results for the boundary layer admittance 
for the respective normal modes. Comparison with some previous results is given. 

Finally, the well-known Kirchoff theory, which provides a dispersion equation for 
m = 0 modes (in cylindrical ducts), is extended to obtain a test of the validity of the 
theory (in cylindrical ducts). 

2. WAVENUMBERS IN RIGID WALLED U’AVEGUIDES 

The tubes considered here are either rectangular or circular. The waves are propagating 
in the x direction, along a rectangular tube of width 1, in the y direction and height Iz 
in the t direction, or along a circular tube of radius a. The transverse dimensions of the 
tubes are assumed to be greater than the boundary layer thickness, but small enough so 
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that wall losses are preponderant. The effect of the thermal and shear modes on the 
boundary condition can then be treated by using the concept of boundary specific 
admittance [2,6]: 

t‘ I= sin’ eE,. + E,, (1) 

where sin* 8 is related to the second order derivative of the acoustic pressure p with 
respect to the normal to the side wail by the equation sin’ 0 = 1+ ii’ Lp/ k’p: that is, for 
separable co-ordinates, sin’ 8 = 1 - kt/ k’ (no matter the kind of mode it is). Here 

k = w/c is the wavenumber, I, is the characteristic length ~/PC, p is the viscosity coefficient 
of the gas, p is the mass density, I, is the characteristic length AM/pcC,,, c is the speed 
of sound, A is the coefficient of thermal conductivity, M is the molar mass, C, is the 
specific heat coefficient at constant pressure, and y is the specific heat ratio. 

When the modes are propagating, 0 can be interpreted as the local incidence angle 
with respect to the side wall. When the modes are evanescent, sin’ 8 is a negative quantity 
and therefore has no direct physical meaning. 

For air at atmospheric pressure and room temperature, for 0 = r/2, Re (F) = Im (F I- 
3 x 10m5 f”’ (wh eref is the frequency). Thus the results involving the effects of the wall 
admittances E are only slightly different from those corresponding to Neumann boundary 
conditions. Consequently, for the mode considered, the factor sin’ 0 may be calculated 
by using the Neumann solutions. For the rectangular tube, one obtains 

sin’ 8,. = 1 - (n,,r/ Iv)‘/ k’ and sin’ 0, = 1 - ( nzrr/ I,)‘/ k2, (2) 

where n_” and nz are quantum numbers for the mode considered (n,, nZ = 0, 1,2,3, ), 
and for the circular tube one obtains 

sin’e=I_[(Y’““Ia)Z-mlIa21 
k2 ’ 

(3) 

where m is the azimuthal quantum number, and ymn is the nth zero of the derivative of 
the cylindrical Bessel function of the first kind, Jb(-y,,,,) = 0 (n, m = 0, 1,2,. . .). 

3. THE WAVENUMBER IN THE AXIAL DIRECTION 

The wavenumber k, in the axial direction can be written as 

kf=k’-k:, (4) 

where k, is the radial eigenvalue of the mode considered. 
For the modes (m, n) in a circular tube of radius a, the radial eigenvalues k: = k’,, 

satisfy the boundary condition equation 

(k,,/k)(JL(k,,a)/J,(k,,a) = -k,, (5) 
where E,, is the value of E obtained by substituting in equation (1) the expression (3) 
for sin’ 0. Upon assuming that k,,, can be written as k,,,,,a = y,,,,, + 7, where n has the 
same order of magnitude as E, and making use of the well-known Bessel equation, 
expression (5) yields 

k,, = (r,,la)+i[ky,,i(rl, - dl~,,. (6) 
Substituting this value of k,, = k, into equation (4) gives axial wavenumber, 

k~-k’-(Ym,/a)2+{(2kla)/[l-(m/y,,)2l}[~m(&,,)-iRe(&,,)1. (7) 
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The same procedure [l] can be applied also to determine the axial wavenumber in a 
rectangular tube. One obtains 

-i 

where 6 is the Kronecker delta index, E,. = sin’ 0Y~,, + &, and E, = sin’ I~,E,. + E,. 
In both cases, rectangular and circular tubes, the axial wavenumber can be written as 

kt = A,, + (I,. - iR,), (9) 

where I,. and R,, are proportional to the specific admittances F,,,,,, or E,. and F=. 
This last equation leads to the next expressions for the real part X~ and the imaginary 

part (-a,.) of k,: 

a, = +[-(A,.-+ Z,,)+d’(A,,+ I,,)‘+ Rf,]“2. 

(IO) 

(11) 

These results are valid for propagating and evanescent modes, and at the cut-off 
frequency. 

The limiting expressions for xy and (Y,, when the losses are neglected (I, = R,. = 0 I, are 
well-known: above the cut-off frequency (f>_&, propagating mode), 

x,, = *(A,)“’ and (Y,, = 0; (12) 

below the cut-off frequency (_/“<A., evanescent mode), 

x,, = 0 and u,. = flA,,l”‘. 

Furthermore, for frequencies much greater than the cut-off frequency, A, is much 
greater than I, and R,,, and looking for an approximate solution to equation (9) leads 
to the results given by Beatty [3]: 

X,. = *(A,)“‘= *k[ 1 -fc/f)‘]“2 (13) 

with J./f_= y,,,,,/ ka (circular tube) and (A./f)’ = (nun-/ kl,.)’ + ( nZr2/ k/J’ (rectangular 
tube) 

CY,, = * R,./2( A,)“’ 

[l- (rn/~~,,)~]-’ Re (&,,,,,)/a (circulartube) (14) 
=*[(1-(‘if)21-“2{ [(2-S,,)Re(e,)/1,+(2-6,_0)Re(cZ)/IZ] (rectangulartube) 

Note that formulas (3) and (7) in the paper by Beatty [3] would be the same as equation 
(14) but they are both incorrect because the terms (2- 6,,) are omitted. On the other 
hand, the major frequency dependence is due to the factor [I -(L/f)‘]-“’ (as Beatty 
pointed out), especially near the cut-off frequency, but in this last case the results (13) 
and (14) are not correct at all. 

4. RESULTS AND DISCUSSION 

The results mentioned above are summarized in Table 1. The attenuation ratio a/a0 
is plotted in Figures l-6 for several modes and several tube dimensions (rectangular or 
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TABLE 1 

Axial wazienumber x8, - icu, ,for circular and rectangular tubes 

Circular tube Rectangular tube 

Jc l.f = Y,,,,, I ka 

A,, = k’[l -(f; / f’)‘], 1’ = ( VI, r1 J A,.-k’[l-(.f,/.f)‘]. v-t,,.f:I 

R,, = 2k 
Re ( E,,,,, / a ) 

1 -(NY,,,,)2 

I, =?k[(Z-S,,,,,) ImjF,i;l, +(2-S,,,,) Irn(FI):/~] 

f,,,,, =(I -u;/f)‘[l -(m/v ,,,,, WC, +t, 

Axial waue number, k, = ,y, - ia,. 

Without losses: 

Propagating modes x,, = *At”, a,.=0 (A,,>01 
Evanescent modes xv = 0 a,, = *iA, 1”’ (A,<01 

With losses, valid for propagating modes only, far from the CUL-OR frequency (corrected results from Beatty): 

x, = tA;,” 
a,. = f R,,/(2A1’? 

Present paper (valid for all kinds of modes) 

Plane wwe atrcnuation 

a,=zRe(~,J;a=* 
Re (F~ + F,) 

(well-known Kirchhoff results) 
a 

circular), with air under standard conditions (c = 344 m/s, Re (E,) = Im (F,.) = 
2.03 x lo-‘f”‘, Re (F,) = Im (E,) = 0.95 x lo-‘j”‘). Curves (c) give the results for propagat- 
ing modes, and curves (a) those for evanescent modes; detailed results near the cut-off 
frequencies can be seen from curves (b). Above the cut-off frequency, results for propagat- 
ing modes are the same as those given by Beatty [3]. 

Similar curves for the real part xy of the wavenumber are shown in Figures 7-12. 
In describing the behavior of the complex wavenumber in the axial direction of 

waveguides, our formulas are in complete agreement with those from previous work on 
propagating modes, which are well explained in the paper by Beatty [3]. In addition, 
they remain valid for evanescent modes and at the cut-off frequency. The only limitation 
of the method appears when the frequency goes to zero, or when the transverse dimensions 
have the same order of magnitude as the boundary layer thickness (capillary tubes), or 
when losses in the whole volume must be taken into account (see details in section 5). 
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Figure 1. Attenuation ratio CV/CQ of Cm. n) modes versus frequency parameter ,f/f,, for a circular tube 
(a =O,l ml. 
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Figure 2. Attenuation ratio a/a0 of (2,O) mode versus frequency parameter f/f,, for several circular tubes 
(from u = 0.5 m to 0.001 m). 

Finally, the method used here can be applied also to the calculation of characteristics of 
normal modes in rigid-walled cavities (rectangular, circular or spherical cavities). 

5. EXTENDED KIRCHOFF THEORY FOR HIGHER MODES 
IN CIRCULAR TUBES 

In this section the method of Kirchhoff is applied in order to obtain a test of the validity 
of equation (7) in circular tube. The well-known Kirchhoff theory [7] gives a dispersion 
equation only for modes m =0 and only for plane wave. The aim of this last section is 
to find a new dispersion equation for all modes, propagating, evanescent, or at the cut-off 
frequency. 
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Figure 3. Attenuation ratio CT/C+, of (n, = 0, nl = 1) mode versus frequency parameter f/f;., for several 
rectangular tubes (II = 0.2 m, I, /I= = 0.1 to 10). 
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Figure 4. Attenuation ratio a/u0 of (n, = 1, n, = 0) mode versus frequency parameter f/f,, for several 
rectangular tubes ri = 0.2 m, I, / I, = 0.1 to 10). 

The variables describing the dynamical and thermodynamical state of the fluid are as 
follows: p, the acoustic pressure; v, the particle velocity, v=v, +v,+v,; v,, the acoustic 
particle velocity; v,, the vorticity-mode velocity; v,, the entropy-mode velocity; T, the 
temperature variation, T = 7, + T,; T,, the acoustic temperature; T,, the entropic temperature. 

Kirchhoff’s theory of viscothermal effects in circular tubes starts with five differential 
equations, the Navier-Stokes equations, the conservation of mass equation, the Fourier 
equation for conduction of heat, and the equations expressing the entropy variations and 
the acoustic part of the density (both regarded as functions of the independent variables 
p and 7), considered as total differentials. 

Any disturbance governed by this system of linear equations can be considered as a 
superposition of acoustic, vorticity and entropy modes. The corresponding acoustic 
pressure p, the acoustic temperature T ,, the entropic temperature T, and the rotational 
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Figure 5. Attenuation ratio u/a0 of (n, = 1, n: = 1) mode versus frequency parameter f/J., for several 

rectangular tubes I: = 2 m, I, / !_ = 0.1 to 10). 
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Figure 6. Attenuation ratio ~/CT,, of (2.0) mode versus frequency parameter J/f,, for several rectangular 
tubes (!,//: = 1, !_ =0.002 m to 1 m). 

velocity v, satisfy respectively, for a simple harmonic motion, the equations 

(v2+ kf)p = 0, (V”+ I+, = 0, (lSa, 16a) 

(V’+kfjT, =o, (V’+ k-;)v,. = 0 and v * v, = 0, (17a, 1Xa) 

where k, and k, are respectively obtained from the smaller and larger roots y, and y, of 
the equation 

as 

k, = kyl” and k, = kyi” (1, = 41:./31, (17b) 
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Figure 7. Normalized real part of the wavenumber x/k of (m, n) mode versus frequency parameter f’/fo for 
a circular tube (a = 0.01 m). 
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Figure 8. Normalized real part of the wavenumber x/i k of (2,O) mode versus frequency parameter J/j;, for 
several circular tubes (a = 0.5 m to 0,001 m). 

and 

(18b) 

By using these equations, a simple calculation allows one to obtain (see, e.g., reference 
[61) 

v = A,v, + $-%[$( l- :+WT, -+WT,,], (20) 

where A,, A, and A,, are three arbitrary constants (B is the increase in pressure per unit 
increase in temperature at constant density). 
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Figure 9. Normalized real part of the wavenumber x/k of (n, = 0, n: = I) mode versus frequency parameter 
.f/ j;, for several rectangular thbes ( !_ = 042 m, I, / !_ = b. 1 to 10) 

Figure 10. Normalized real part of the wavenumber ,y/ k of (n,. = 1, n, = 0) mode versus frequency Parameter 
f/1;, for several rectangular tubes Cl= = 0.02 m, I,//: =O.I to IO). 

Note that the equations (18a) give 

VxVxv, =kfv,. (21) 

The total temperature 7 and the total particle velocity u satisfy the following boundary 
conditions: the wall is highly conducting and has a high capacity for storing heat, so 

A,T,$.A,T, =0 or A,V,r,+A,V,7, =O. (22) 

where V,, denotes the tangential “component” of the divergence; the no-slip condition 
requires vIII +v,,, +v,,~, = 0 or, upon substituting this into equations (20) and (22) for Y and 
T,, 

A,v,,~~ = [yP/(y- l)l(iw/pc’)(llkf)(l- kf/kf)A,VI,T,; (2.3) 
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Figure 11. Normalized real part of the wavenumber x/k of (n, = 1, n._ = 1) mode versus frequency parameter 
f/f,, for several rectangular tubes (!_ = 0.02 m, I, /I: = 0.1 to 10). 

Figure 12. Normalized real part of the wavenumber x/k of (2,O) mode versus frequency parameter .j’/ j;, for 
several rectangular tubes (I, /I; = 1, 1; = 0.002 m to 1 m). 

the assumption that the rigid wall is motionless leads to (v, +v, +v,) * II = 0, where n is 
the unit normal to the surface, or 

A,v;n=--- 
Y-l 

1 - kf/ kf)A,n . VT, -- 
k; 

A,n. VT, 
I 

. (24) 

It is now assumed that the solution for the acoustic pressure and the acoustic temperature 
can be expressed by a sum of modes, and each of these modes may be written in the form 

e IL\\ e “‘IV J,,[(k;-k;)‘l’r], (25) 

where J, is the cylindrical Bessel function of the first kind (order m). Thus one can write 
(l/r)a,T, = -i(m/r)T, and i),~, = -ik,T,. Moreover, the boundary conditions (22) and 
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(23) on rhe wall (r = a) are valid whatever are the values of the co-ordinates x and cp. 
Hence, the quantities 7, and v, in these equations have an x- and p-dependent factor 
which must have the same behavior as in equation (25). As a consequence, equations 
(17a) and (18a) lead to two Bessel equations and their solutions, respectively 
J,[(k:-kz)“‘r] and J,[(kt-k<)“* ] r , are required for the radial part of T, and v,. 

Starting with the set of equations (22), (23) and (24), and recognizing that the radial 
component of v,. may be written as (see equation (21)) 

v,, = (kf - kt - m2/r2)~‘[r-‘d,u,,, + r-‘;&u,,, +df,u,,] 

yields, for r = a, 

(‘6) 

Note that i),r,/r, is proportional to the specific admittance F of the walls. Conse- 
quently, upon disregarding the second order terms in (kl,)“’ or (k&)“‘, this equa- 
tion (26) gives equation (1). Letting (W,l%,),=, = (&ul.~luL.LF)T= I = 
[a,J,[(kf - k~)“‘r]/J,[(k~, - kf)“‘r]lrCu in equation (26) leads to 

(k~+m’/a’)D,+m’/a” 
kf.-kt-m2/a’ 

(27) 

where D, = (a,(J,[(k?- kt)“‘r]/J,,[(kf- k~)“‘r]),=,. By putting m =O, one obtains 
Kirchhoff’s equation. 

It is now supposed that kl, and kl, are small: only boundary layer effects are to be 
considered, and the classical visco-thermal effects in free space are to be ignored (see, 
e.g., references [8-lo]). Moreover, effects due to rotational and vibrational relaxation are 
to be neglected (see, e.g., references [2] and [ 111). Then equation (17b) reduces to k, = k, 
k, = (y- l)k/e, and 

D +~y_l~D~+(k~+m21a’)D,,+m21a”_0~ 
1 ‘kf kf,- kt-m’/a’ 

(28) 

The solution of equation (28) for the fundamental mode leads to the well-known 
“Zwikker-Kosten-Daniels” (Z.K.D.) solution (see, e.g., reference [12] that is valid if 
(wa/c)(wl/c)“‘<< 1 and 11 a << 1, where 1 is I, or I,. The extension to higher modes is more 
complicated, because one needs the assumption kt << kz, (for the calculation of D,), which 
leads to kz = k’ - yL,,/a’ c k: At higher frequencies, the condition is simply kl<< 1, but 
at lower frequencies it becomes k,a >> y,,,,,. This new condition is satisfied neither by 
capillary tubes (except for the fundamental mode), nor for very high order modes in any 
tube. Nevertheless, one may calculate an expansion of D, and D, with respect to k$‘kf. 
by assuming k,a >> ym,, and by restricting the calculation to large tubes (i.e., non-capillary 
tubes). 

The approximate method for solving equation (16) is the following. One writes kZ = 
k’- ( y,,,/a I’- q, where q is the unknown, and obtains the following expansions: 

where w=l-m’/yf,,,, s=l/k,a, g= y ,,,,, :ik,a, and X=q(a’/yf ,,,, 1, 

D = k  

[ 
JL(ka) kf 

L 
---G,,,(k,a)+O 

’ J,,,(b) k 
, 
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where G,(x) = (x/2)[(m2/x2) - 1 -JE(x)/Ji(x)], or, if &/CC< 1, 

D,=-(k,/2s)[K,(k,a)-2sg2(w+X)G,(k,a)+0(sg4(w+X)‘)], 

where K,(x) = -(2/x)(Jk/J,) - (2m*/x’)G,(x). 

By using asymptotic expansions of Kelvin functions (see the handbook by Abramowitz 
and Stegun [13]), one can write G,(x)=i/2+O(l/x*) and K,(x)= 
-(2$x) + (l/x*) + 0(1/x3). 

There are similar equations for D, and k,a. Then, equation (28) can be rewritten as 
follows (if d/cc 1): 

I 

.(l- M’) 
+2s---- 

M’ ’ 

or 

X[l-K,(l/s)(l/w-2ug”)+O(sg4)]+X’ SW 
[ 

* 1-w+&,+o(sg4) +0(x”) 
W I 

where 

A,=_[(~-*)K,(k,a)+K,(k,a)l k’ 
g2w 

-72 
kti 

u = 1 t2s22::“;. 
m s 

Because the expansion is limited to terms of second order in X, it is convenient to 
write the unknown as a combination of the following terms: A, s, As, A*, s*, sg’, s2g2, 
where A = (s/g’w)(k*/ki). Other terms, such as A3, s3, sg4, As*, A’s, A’s’, and Asg’. 
can be neglected. As examples, As2<c s because wl/c and ri,, - rn*> 2.4 Vm t n f 0; 
Asg’<c s, because one can show that s2/ w << 1 if g << 1. One can also summarize these 
assumptions as follows: A2, s* and g’ need to be small quantities. Then, knowing that 
g2 is always larger than s’, one obtains 

wl w a’ wa w -e 1, - ->>yin, - - 
C c 1 (7 

l/2 
<< ykn - ml. 

c c (29) 

One can then write the final result: 

X=2iQA+[2(l-w)/w]Q2A2+[(4Q/w)-Q’]As-2is-3s’+iwsg2+(4+w)s~g’, 

where Q=l+(y-l)(l,/l,)“‘and Q’=l+(r-1)1,/L,, which can be developed as 

(JOa) 
or 

(30b) 
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Equation (30b) is more general than equation (7) (for cylindrical tube). It is more 
convenient when conditions (29) are only approximately satisfied. At very low frequencies 
or for very high modes ( ym,, > a/l,), one can calculate the solution of equation (28) by 
assuming k: >> k:, and obtain the following result: 

kz= k2-(Ymn/u)2-(y-1)(k;7k,./kZ). 
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