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The purpose of this paper is to give a new set of equations derived from the basic classical theory of the acoustic propagation 
in visco-thermal fluid and valid in the time domain, and to provide us with a general dispersion equation for harmonic waves 
in several boundary problems of interest. It is shown that this dispersion equation generalizes some known results as the 
equivalent specific impedance of plane boundaries and resonance frequencies of spherical resonators, and that it provides 
us with a new general equation giving the propagation constant of waves for all kind of modes in rigid walled cylindrical tubes. 

1. Introduction 

One hundred and twenty years ago (1868), the famous scientist G. Kirchhoff proposed a very fertile 
description of sound propagat ion in gases [1]. This theory was mainly based on the Navier-Stokes equation 
and the Fourier equation of  heat conduction as modified to account for linear acoustics approximations.  
The author derived an algebraic equation (dispersion equation) and he found solutions to it, that is, 
propagat ion constants, for plane waves and spherical outgoing waves in an unbounded medium and for 
waves propagating along the axis of  a circular tube. In the latter case, he assumed the boundary conditions 
of  zero particle velocity and acoustic temperature at the tube wall. Then he calculated the attenuation 
factors and speed of propagations from the real and imaginary parts of  the propagat ion constants 
respectively, which are solutions of  the dispersion equation, for the wide tube case and the upper  wavelength 
range (compared with the thickness of  the boundary layers), making approximations to the lowest orders 
possible. Lord Rayleigh has included a detailed account of  this theory in his book "Theory of  Sound" [2]. 

Eighty years later (1948), L. Cremer [3] showed that, for the reflection of a harmonic plane-wave on 
an infinite rigid plane wall, the acoustic behavior of  the medium, in the neighborhood of  the boundary 
but outside the boundary layer, is adequately described by a simple propagational acoustic mode in a 
perfect gas, most of  the power losses through viscosity and thermal conductivity occurring within the 
boundary  layer (see for example [4]). As a consequence, assuming the temperature fluctuations and the 
particle velocity to be nearly equal to zero at the boundaries, the properties of  plane-wave reflection on 
a plane surface are described by the ratio of  the normal component  of  the acoustic particle velocity to 
the acoustic pressure at the boundary, called apparent  specific admittance and depending on the shear 
and bulk viscosities, the coefficient of  thermal conduction, and also the angle of  incidence 0. Making use 
of  this innovative result, the problem of extending the classical Kirchhoff result for the attenuation of  
harmonic plane waves in rigid walled tubes to the case of  higher order propagating modes was given by 
Beatty [5], but the theory is not valid near the adiabatic cutoff frequency and for the evanescent modes. 
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Attempts to solve this problem have been made recently [6]: useful results have been given at the cutoff 
frequency and for the evanescent modes, but unfortunately the extension to all kind of modes of the 
above-mentioned Kirchhoff theory given in eq. (27) of that paper is not correct. Finally, in another paper 
[7], an extension for the Kirchhoff theory to the spherical shell leads to an equation which determines 
the complex resonance frequencies of the gas in the shell. 

Our purpose is to definitely provide a correct dispersion equation for all kind of  modes in cylindrical 
tubes. In fact, the main feature of our work is a new set of  equations, derived from the basic classical 
theory of the acoustic propagation in visco-thermal fluid and valid not only in the frequency domain but 
also in the time domain; as a consequence, all the results mentioned above for harmonic waves, i.e. the 
equivalent specific impedance of  a rigid plane wall (equivalent to the viscosity and thermal conduction 
effects inside the boundary layers), the propagation constant of waves for all kind of modes in a rigid 
wailed circular tube, and the resonant frequencies of a rigid walled sphere, are three particular solutions 
of  a unique general dispersion equation. (Note that only differentiable boundary surfaces, that is, piece-wise 
~g~ boundary, can be taken into account.) 

2. The basic equations 

In this section, we give the basic linear equations governing the acoustic disturbances, in the presence 
of  viscosity and thermal conduction. In most classical cases, the effects of vibrational molecular relaxation 
can be taken into account by changing nothing but the specific heat ratio 3' in %, which depends on the 
frequency and the relaxation time (see for example [8], [9]). But this last approach is strictly restricted 
to the frequency domain. 

The variables describing the dynamical and thermodynamical state of  the fluid are the acoustic pressure 
p, the particle velocity v, the variable part of the density p', the entropy variation 6, and the temperature 
variation r. The parameters which Specify the properties and the nature of the fluid are the ambient values 
of the pressure P, the ambient values of the temperature T, the ambient values of the density p, the 
viscosity/z, the bulk viscosity r/, the coefficient of thermal conductivity A, the heat coefficients at constant 
pressure and constant volume per unit of mass Cp and Cv, the specific heat ratio % and the increase in 
pressure per unit increase in temperature at constant density/3. 

A complete set of linear homogeneous equations governing small amplitude disturbances [8, 9] includes 
the following: 

- The Navier-Stokes equations 

1 1 
- ~,v + - -  grad p = ~v grad div v - Cv curl curl v (1) 
c pc  

where the characteristic lengths ~v and £'v are defined as follows, with c the velocity of  sound: 

gv=(~+n)/pc, e'=~/pc. 

- The conservation of mass equation, taking into account that the equation expressing the acoustic 
part of the density (regarded as a function of  the independent variables p and ~-) is considered as total 
differential 

1 
pc div v+ 3'-  ~ , (P- f l z )  =0. (2) 

c 
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- The Fourier equation for conduction of heat, taking into account that the equation expressing the 
entropy variations (regarded as a function of the independent variables p and ~') is considered as total 
differential 

[1 0 t - - /hAir  = y--.._~l 10,p (3> 
fly C 

where the characteristic length •h is defined as /h = A/pcCp. 
Under the usual gauge conditions, the particle velocity v of any disturbances governed by this system 

of linear equations can be considered as a superposition of a rotational velocity Vv (due to viscosity effects) 
and a solenoidal velocity re (due to acoustic and heat conduction effects): 

V = V / + V v . 

Consequently, eq. (1) can be split into two equations in such a way tha t  eqs. (1), (2) and (3) yield: 

1 11  
-c 0t'r T/3 div Ve =-tic- Otp, (4) 

O,-E.A r - f l y  c 

) 1 
/), - gv A Ve = - - -  grad p, (6) 

pc 

(1  O,- [ 'vA)vv=0 (7) 

with div Vv = 0 and curl Ve = 0. (8a, b) 

Associated with boundary conditions (see Section 3), this set of equations is the basis for the calculation 
of the acoustic fields outside the sources. 

It is convenient, as regards the calculation of the acoustic propagation, to find out the homogeneous 
wave equations for p, z, and re. 

Combining eq. (4) and the divergence of eq. (6) to eliminate the term div re, then eliminating the terms 
Otp and Ap in the resulting equation, and making use of eq. (5) and its Laplacian, yields: 

- O , . r  = O. ( 9 )  g" 1 + Y/v c c c 

It is easy to verify that this equation can be written formally as follows, after multiplication by the 
factor (1/c)O,: 

where 

1 
F =  1 + (Iv + y~'h)--0,, 

c 

1 2 1 2 ~ 1/2 
R =  l + 2 [ g ~ - ( 2 - y ) g . ] c 0 , + ( g ~ - y g . )  ~-i0.~ . 
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Note that an equivalent equation was previously given by Truesdell [ 10], only in the frequency domain, 
but has never to our knowledge been used in acoustic until now. 

This equation shows clearly the well known result that the total temperature r can be written as the 
sum of an acoustic temperature Aara and an entropic temperature Ah'rh, which are respective solutions 
of the homogeneous equations (Aa and A h are arbitrary constants): 

F - R  ( ~  02" F + R A )  (~02tt -~ A)' rh=0 ( l la ,  b) 

where eq. (1 lb) is a diffusion equation because the Taylor expansion of the function ( F - R )  shows that 
the operator (1/c)a, can be factorized. That is one reason why rh is associated with the heat transfer due 
to thermal conduction. 

Starting from the set of equations (4) to (7), one can demonstrate easily that the total pressure p and 
the solenoidal particle velocity ve satisfy the same equations (9) and (10) as z. To show this result for p, 
one combines eq. (4) and the divergence of eq. (6) to eliminate the term div re, then one applies the 
operator [(1/c)a,- ~h A] to the resulting equation and one eliminates r directly making use of eq. (5). To 
obtain the same result for Ve, first one applies the operator grad [(1/c)a, - Eh A] to eq. (4) and one eliminates 
directly 7- making use of eq. (5); then one eliminates the term grad p in the resulting equation making use 
of eq. (6). 

Last, combining eqs. (5) and (11) along with the relation r = A~ra+ Ahrh yields: 

with 

P =P~+Ph (12) 

3,/3 [1 _ 2 C , ( F +  R)_I p a = - ~  
c y - 1  

and combining eqs. (6) and (11) (which are also verified for Ve~ and Vgh) along with the relations (12) yields: 

with 

VT -'~ IDla "~- IDIh 

[1-2[v(F+R)- ' lot]pOtvea - 

[ l - 2 [ v ( F - R ) - l l c g t ]  p O t v e h - c  

7/3 [ l _ 2£h( F + R )-l l a, ] grad Aa ra, 
y - 1  c 

7fl [1--2Ch(F--R)-' lo,]gradAhrh. 
3'--1 

(13a) 

(13b) 

Hence, the general solutions of the problem can be derived from the next set of formal equations where 
all divisions by a, formally mean integration: 

(1  a, + l"  curl curl) vv = 0, 

r +  
2 R A )  %=0,  

P=Pa+Ph=yY~fl--l {[1 F+R2~ah cl0t]aaT"a+[ 1 

Ve = Yea+ Veh = aa grad Aa ra + ah grad Ah7 h 

div Vv = 0, 

] .=0, I" = Aa'r a + Ahl" h , 

2~h lc9t] Ahrh},  
F - R c  

(14a, b) 

(15a, b, c) 

(16) 

(17) 
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where 

2Eh 1 2/h 1 
1 at 1 at 

7fl 1 F + R c 7fl 1 F -  R c 
Ol a : Ol h .-~ 

7 - 1  pot 2gv 1 ' 
1 0t 

F + R  c 

7 - - 1  pot 2~'v 1 
1 0t 

F - R c  

and F and R are given in eq. (10). 
For an harmonic motion (0, = ito), this set of  equations gives the following equations: 

2 curl  curl v v -  kvvv = O, div Vv = 0, (18a, b) 

(A+ k2)z. = 0, (A + k2)'rh = 0, "r = Aa'ra + Ah~'h, (19a, b, c) 

y - 1  to 

ve = yr .+  Vth = a .  grad Aa'ra + ot h grad Ah~'h (21) 

where 

kv = - -  ka = l+itO~vh - to2  ' - -  1--i--~'~h , (22a, b ,c )  
c~ e ' '  c - ~  Chgh , k~ = - C/h C 

C 2 
1 - i - -  ghka 1 -- i c__ ghk 2 

i 7fl w i 7fl w 
O~ a , a , -  (22d, e) 

pto 7 1 1 - i - - C k a  1 - i C C k ~  - c 2 pro 7 - 1  

tO tO 

with 

ev, = t v + ( 7 -  1)th. e , = ( 7 -  1)(th--¢0. 

3.  B o u n d a r y  c o n d i t i o n s  

In order to extend the formalism derived so far to bounded  media, let us define generalized coordinates 
on a neighborhood of the boundary surfaces (assumed to be piece-wise ~ ) .  At any point located on the 

boundary,  let e be an outward normal vector to the boundary surface and e~ and e2 two orthogonal vectors 
defining the tangent plane. To each vector e, e~ and e2 can be associated a generalized coordinate u, w~ 
and w2 respectively, also noted (u, w). Hence the variation vector d M  of a point M located in the 
neighborhood is given by: 

d M =  du  e + d w l  el +dw2 e2, (23) 

and the geometrical properties of  the neighborhood of  the boundary are contained in its linear element: 

d f i  = v 2 du2+ v~ dw~-l- v~ dw~ 

where v, v~ and v2 are the modulus of  vectors e, e~, e2 respectively [13]. In other words, if n is the normal 
unit vector to the boundary,  e - -  vn. We then define the boundary surface by a constant value s taken by 
the coordinate u on it, and introduce the notation Os for the partial derivative O. taken at u = s. 
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In the case of a spherical or a cylindrical boundary surface, the role of the normal coordinate is naturally 
played by the radial coordinate and the constant s simply represents the value of the radius of the boundary 
surface. 

The remainder of this paper gives an extension of earlier works in order to obtain a general dispersion 
equation valid for common shapes of boundaries, Thus the next sections aim at establishing theoretical 
results in the frequency domain only, the analysis being based on eqs. (18) to (21) and the boundary 
conditions we now develop. 

3.1. Thermal boundary conditions 

Under low density conditions, it is more exact to assume a slight temperature jump at the gas-wall 
interface, instead of the usual continuity of  temperature (see for example [11]). The temperature jump, 
equal to the gas temperature at the interface z(s, w) minus the wall surface temperature to(S, w), is assumed 
to be proportional to the normal derivative of  the gas temperature near the wall, i.e.: 

T(s, w) - %(s, w) = - Lj 1 0sz(s, w) (24) 
/7 

where Lj is a coefficient depending on thermal accommodation coefficients (see for example [12]), and 
1/u accounts for the non-unity modulus of vector e. 

In addition, the normal heat flux must be continuous at the interface. Then, the total, outwardly directed, 
heat flux can be written either as [ - ) t  (1/~')~s~'] or [-)t0(1/u)~sZo]. If we neglect heat-transfer parallel to 
the wall on the account that the temperature varies slowly in that direction, the diffusion equation for 
heat inside the wall takes the following form: 

1 0 .  ~---~0~) -iwpoCo/Ao ~'o(u)=O (25) ( A  - iwpoCo/Ao)ro(U) = 11~1 1"72 

where Po and Co are the density and the heat coefficients of the wall respectively. In all usual cases 
(including most capillary tubes), the curvature radius R of the boundary satisfies the inequality R 
()to/~poCo) 1/2, and eq. (25) can be separated into 

---~-0, + u, u2x/iwpoCo/ )to] [--~--0, - u, ~'2~/ioJpoCo/ )to] ~-o(U) =0,  (26) 

and since the heat sources are all located on the boundary surfaces, the only equation admissible in the 
context of the problem at the interface is: 

1 
- O~Zo = -~/iwpoCo/)to to. (27) u 

Finally, combining (24) and (27) along with the continuity of the heat flux at the interface yields: 

l+Lh-~0s r(s, w ) = 0  where Lh=Lj+A/.,/iwpoCoAo (28) 

which is an impedance-like boundary condition. 
It is convenient, as regards the calculation of the constant Ah (see eq. 19(c)),,to explicit (28) with the 

generalized coordinates (u, w). Since in most applications we consider single eigenmode solutions, the 
field quantities can be factorized, leading to: 

( l + Lhlos)[Aara(S)qj~(w)+ AhZh(S)qJh(w)]=O (29) 
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which involves the acoustic and entropic temperature in the gas, expressed as the product of a function 
of u (still denoted za and ~'h) and a function of w (denoted Oa and Oh). 

Since this equation must be satisfied for arbitrary values of w all over the boundary surface, we must write 

0a(w) = 0.(w) ~ 0(w), vw, (30) 

and, consequently, eq. (29) can be written as follows: 

A. ( l + L h l O s )  7"a(s) 
= ( 3 1 )  

A, ( l + L h l o s )  rh(S) 

providing us with a relationship between the amplitude A h of the entropic temperature and the amplitude 
A, of the acoustic one. 

In most applications, it is well known that the temperature jump is nearly null at the interface (Lj ~ 0), 
and that the product of the thermal conductivity and specific heat per unit volume of the shell material 
greatly exceeds the corresponding quantity of the gas; so, the condition (28) is practically equivalent to 
the requirement that the temperature be constant on the wall, i.e. L h ~ 0 (see for example [7] and [11]). 
Then eq. (31) reduces to 

Ah "ra(S) 
Aa ~'h(S)" (32) 

(Note that the amplitude A. is fixed by the strength of sources.) 

3.2. Velocity boundary conditions 

The boundary conditions for the particle velocity assume on one hand a slight velocity slip at the 
interface, proportional to the normal derivative of the tangential component of the velocity of the gas 
[11], and, on the other hand, include a slight normal velocity written in terms of a boundary specific 
impedance. We write these conditions as: 

( 1 +  ~los)  vu(s, w)=0,  (33) 

( 1 +  ~:10s)v,(s ,  w)=0 (34) 

where vu(s, w) and Vw(S, w) are the normal (outwardly directed) and the tangential components to the 
interface respectively of  the particle velocity, ~: is a coefficient depending on the tangential momentum 
accommodation coefficient [11], and ~" is linked to the usual boundary specific impedance 

i(to/c)~ =p/(pcvu). 

Note that eqs. (33) and (34) are impedance-like boundary conditions, as in eq. (28). 
In most applications, perfectly rigid walls and nonrarefied gases are considered, and the quantities 

and ~: are nearly equal to zero. So, we assume henceforth that the total particle velocity v is equal to zero 
on the boundaries: 

v~ (s, w) = O, v,~(s, w) = 0. (35) 
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It is convenient, as regards the relationship needed between the rotational velocity Vv and the temperature 
on the boundaries, to replace eqs. (35) by 

1 
I Aaaa l Os% ( S ) + Ahah -~ Os~'h( S ) ] t~( W) = -- Vvu( S) Ovu( W ), (36) 

[Aaota'/-a(S ) + AhO~hTh(S)] V wry(W)  -~ -- Vvw(S ) ~/vw(W) (37) 

which involve the acoustic, entropic, and vorticity velocities in the gas (given in eqs. (7) and (21)), 
expressed as the product of a function of u and a function of w. 

Since these equations must be satisfied for arbitrary values of w all over the boundary surface, we must 
write: 

~bw(w) = O(w), ~vw(W) = V~b(w) (383, b) 

and this implies in turn the independence of Vvw on w, i.e.: 

Vvwl(s) = vw2(s) A Vvw(S). (39) 

Finally, combining eqs. (36) and (37) along with eqs. (32), (38) and (39) yields a general dispersion 
equation: 

( 1 _  ah~ Vvu(S) 1 [0~,~(S) ahO~,h(S) 1 (40) 
~ a / v ~ ( s ) -  ~ L ~(s) ~a ~(S) J" 

k~ = k~u the square the Note that, as the square of the acoustic wavenumber k~ can be written 2 2 2 + kaw , of 
entropic and vorticity wavenumber can be written k~ = 2 2 k~=k~+k~w,2 2 2 khu + k ~  and because the behavior 
of the w-dependence of each kind of movement is given by the same function ~/,(w). 

Various applications of these results (especially eq. (40)) are presented in the next section, for the case 
of cartesian, cylindrical and spherical coordinates. 

4.  A p p l i c a t i o n s  

For further developments, the general dispersion equation (40) must be particularized for each boundary 
problem. This last section demonstrates that this equation includes some known results as the equivalent 
specific impedance of plane boundaries and resonance frequencies of spherical resonators, and provides 
a new general equation giving the propagation constant of waves for all kind of modes in rigid walled 
circular tubes. 

4.1. The equivalent specific impedance of plane boundaries 

Let a semi-infinite medium bounded by an infinite plane rigid wall set at x = 0 (the x-axis being inwardly 
directed). As a consequence of eq. (40), we will show that the effects of the thermal and shear modes on 
the boundary conditions can be treated by using the concept of boundary specific admittance pc/Za = 
pcvea/p, (see for example [3] or [4]): 

Za 

where the acoustic wavenumber has been written as usual: 

k~ 2 2 2 kaz • = kax + kay + 
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To demonstrate that, we solve the set of equations (18) to (21), assuming that the function O(y, z) (see 
eqs. (30) and (38)) has the form: 

e -ikayy e-ikazZ. (42) 

Then, upon disregarding the first order terms in [(to/c)/h] and [( to/c) l ' ] ,  we can solve eq. (19), i.e. 
(A+kh2)¢h =0,  to obtain 

• . ~ - - i t o  ~Ox~h - ix/k 2 -  kEy-- k2z - - lk , -  l X [ _ ~  (43) 
7" h V Ceh 

and, on the other hand, one can write (see eq. (22)) 

Cth /aa~  --i to (~/-- 1)/h (44) 
C 

and (see eqs. (20) and (21)) 

(9x'1"a/7 a ~ i 00 pCVea/ Pa = i to pC (45) 
c c Z a  

where Z~ is the acoustic impedance. 
At this step, in order to demonstrate the result (41) from eq. (40), we have to solve eq. (18), assuming 

that Vv has the form (see eq. (38)): 

Vv = (Ovx(X) e -ikayy e -ik'~z, /)vy(X) Oy e -ik~rv e -ikazz, 1)vz(X ) e-ikay'V0z e-ikazz).  (46) 

The incoming wave (i.e. coming into the fluid from the plane boundary) is the solution of the first 
equation (18) 

[ 0 2 +  kv2- kay2 _ k 2 ] v , , x ( x ) = O ,  (47) 

and has the following property 

• 2 2 2 . ~ - i t o  Vvx 
OxVvx = -- lx/kv - kay - kazvvx - - ik~v~x ~ - I X [ ~  v~x (48) 

Combining this last result with the equation 

divvv = OxVvx(X) 2 + kayvvy(X) + k2zv, ,z(x) = 0 

along with the relation (39), i.e. v,,y(x = O) = v,,z(x = 0), yields: 

Vvx = iff~k2 1 ~/g~' (49) 
vvw k 2 ] " 

Substituting the results (43), (44), (45), and (49) into eq. (40) gives the specific acoustic admittance 
(41) on the boundary in the form that we were looking for. In terms of this admittance, boundary conditions 
can be conveniently stated for many practical problems in acoustics. 

4.2. Acous t i c  resonance f requencies  o f  spherical resonator 

The spherical acoustic resonator is a remarkably accurate tool for measuring several properties of gases, 
because the speed of sound can be obtained with an accuracy better than 10 -5 through the acoustic 
resonance frequencies• In fact, a detailed model is needed, which was given for the first time in the 
literature in 1986 [7]. We will show here that the dispersion equation used by the authors to calculate the 
resonant frequencies is simply eq. (40), expressed in spherical coordinates. 
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We assume a spherical coordinate system with the origin at the center of a geometrically perfect rigid 
spherical shell. The solutions of eq. (19) can be written as follows: 

%(r)=j . (k j ) ,  %(r)=j.(khr), ~b(0, ~) = Y.,.(O, ~) (50a, b, c) 

where j~(z) is the nth order spherical Bessel function, and Y.,.(O, ~) is a spherical harmonic. 
On the other hand, a quite lengthy but simple calculation, taking into account eq. (38), gives the solution 

of  the four equations (18), which are redundant: 

BJ.(k~r), B 
v~( r )=  r - v~o(r)=v~(r) n(n+l)  Or[rj.(k~r)] (51a, b) 

where B is arbitrary constant which can be calculated in using any equation from among the three 
equations (36) and (37). We obtain: 

B =- -n (n  + 1)Aa(~t a -  a,)j.(kaR)/OR[Rj.(kvR)]. 

Note that the condition on the boundary surface given by eq. (39) is automatically satisfied because 
v~o(r) = ova(r) for all values of  r (including r = R). 

Using eqs. (50) and (51). eq. (40) can now be expressed as: 

(Zc~h )  n(n+l)  k~Rj'.(k~R) c~. k, Rj ' (khR) 

1 -__  1 .... j"(k~R) +k~RJ'.(kvg)- j.(k~R) c~ j.(khR) 
(52) 

where j ' ( z )  is the derivative o f j , ( z )  with respect to z. 
This 'exact' equation can be used to determine the wavenumber k~, that is, the resonance frequencies. 
Note that starting from eq. (34) instead of the second equation (35) permits us to take into account a 

shell admittance (as the cited authors did). On the other hand, other effects such as molecular vibrational 
relaxation can be taken into account by an approximate model for k~ (see Section 2). 

4.3. Axial wavenumbers in infinite cylindrical waveguides 

As we saw in Section 1, no 'exact' equation giving the complex axial wavenumbers for all kinds of 
modes (propagative or evanescent ones) in infinite cylindrical waveguides has been available yet. This 
last section provides such a result. 

We assume a cylindrical coordinate system (r, ~, z), the axis of the infinite waveguide considered being 
the z-axis. The solutions of eq, (19) can be written as follows: 

2 2 = J,.(x/k 2 -  r), (53a, b, c) %(r) = Jm(x/ka- ka~ r), %(r) k2z ~b(q~, z) = e ~ik~ e ±im~ 

where J,.(z) is the mth order cylindrical Bessel function, and where the sign + or - depends on the 
traveling direction of the waves considered, 

On the other hand, a quite lengthy but simple calculation, taking into account eq. (38), gives the 
solutions of the four (redundant) equations (18), which must also satisfy the boundary conditions (39). 
Hence, we can write: 

vvz =ct J,.( k~-~-k2~r), vv~ = 2 2 rot-  "~¢,.(R) J.,(x/-k2~-k2~r) (54a, b) 
kv - ka~ 

a [ m2 k2~ ~g,.(R)Or] J,.(x/-~-k2~ r) (54c) 
Dvr~ 2 ~  2 r 2 k~ - ka~ k~ 
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where 

cOrn(R) = ROn Jm(  kNI/~v ~ k2z R)/J,,( k4~-k2z R). 
The constant a can be calculated in using any equation from among the three equations (36) and (37). 

We obtain: 
2 2 

k 2 J , , ( ~  R) (55) 
C¢ = - A a ( o t  a -  Oth) 

RORJ,,(~/kv-kaz R)" 
Using eqs. (53) and (54), eq. (40) can now be expressed as: 

[ O/h~k2[  Jm(Xv R ) k 2 z X v R J t m ( X v R )  1 ,¥aRJm(,¥a R ) OlhXhRJtm(Xh g ) 
\ L10~a]Xv 2 m E (56) xvRJ',,(XvR) k2v ~ J Jm(x~g) aa Jm(Xhg) 

with 

xa=4k~ ~ 2 2 : ~ / k  2 _  2 - kaz, Xh = ~/kh -- kaz, Xv k,z. 
This 'exact' equation can be used for determining the complex axial wavenumber k~z, i.e. for determining 

the axial speeds and attenuations of all kinds of modes in circular waveguides, no matter what the 
transverse dimensions of the tubes are. 

For the wide tube case and the upper wavelength range compared with the thickness of the boundary 
layers (roughly speaking), making approximations to the lowest orders possible, this last equation leads 
to the solution given in table 1 in the reference mentioned [6]. In this paper, the solution starts with the 
concept of equivalent boundary specific admittance, which appears to be appropriate only when the 
surface is 'locally planar' on the scale of an acoustic wavelength. 
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