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Abstract-In a recent note “On Conservation Laws for Dissipative Systems”, a new method of 
constructing conservation laws applicable to dissipative systems was proposed. It is the purpose of 
this present paper to explore how this new method, called the “Neutral Action Method”, is related 
to the concept of symmetry, and how it embodies the classical methods for obtaining conservation 
laws of Noether and Bessel-Hagen which are applicable only to Lagrangian systems. Copyright 
0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Conservation laws, i.e. divergence-free forms, are of the utmost importance in many fields 
of physics and mechanics. Mathematically, a conservation law of a physical system with 
four independent variables x, y, z, and t, for example, is an equation of the form 

DivP = D,Px+DyP~+D,P”+D,P* = 0, (1) 

where P = (P”, Py, P, P’) is a vector function that can depend on the independent variables, 
the dependent variables and derivatives of the dependent variables of the system. Physically, 
a conservation law states that the rate of change of P inside any domain is equal to the net 
flux of (P”., Py, F) through the surface of the domain. Uses and implications of these 
divergence-free forms are widely appreciated as in the case of the J, L, and M integrals of 
fracture mechanics. A systematic approach for constructing conservation laws was by use 
of the classical Noether’s theorem (Noether, 1918). While providing a direct procedure for 
obtaining divergence-free expressions, Noether’s approach is applicable only to Lagrangian 
systems, i.e., to systems possessing a Lagrangian function and governed by the Euler- 
Lagrange equations obtained variationally. Bessel-Hagen (1921) extended Noether’s work 
by introducing the concept of divergence symmetries. Nonetheless, his generalization of 
Noether’s theorem also operated only in the realm of Lagrangian systems. 

Recently, a brief note entitled “On Conservation Laws for Dissipative Systems” (Hon- 
ein et al., 1’991) introduced a new method for constructing conservation laws. This newly 
proposed method, subsequently referred to as the “Neutral Action (NA) Method”, offers 
a systematic procedure for obtaining conservation laws valid for both dissipative systems 
(systems without a Lagrangian) as well as for Lagrangian systems. In fact, the NA method 
allows one to construct systematically divergence-free expressions that are valid for any 
system governed by a set of differential equations, regardless of whether they are Euler- 
Lagrange elquations or not. 

The purpose of this present paper is to establish how the NA method embodies the 
classical methods of Noether, with extension by Bessel-Hagen, and how it is related to the 
concept of isymmetry. 

As widlely recognized, conservation laws are intimately related to symmetries. Within 
the classical framework of Noether, there is a one-to-one correspondence between con- 
servation laws and symmetries (Olver, 1986). In this light, it can be expected that con- 
servation laws obtained via the NA method are also symmetry-related. Utilizing the concept 
of a Ggteaux derivative, directional derivative of a function or functional referred to by 
Olver as thle FrCchet derivative, it will be shown that there exists an “adjoint” relation 
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between the condition for existence of conservation laws via the NA method and the 
condition for finding generalized symmetries of the governing equation of any system. 

In addition to the relation between conservation laws derivable by the NA method 
and symmetries, it will also be shown that this method is related to classical methods of 
constructing conservation laws. If one transforms the condition for existence of a diver- 
gence-free expression, as required by Noether and Bessel-Hagen, into a slightly different 
form, this condition can be shown to be mathematically equivalent to that of the NA 
method when the governing equations are the Euler-Lagrange equations. Therefore, one 
can conclude that the NA method not only allows one to obtain conservation laws for non- 
Lagrangian systems, but also yields identical results as Noether and Bessel-Hagen if applied 
to Lagrangian systems. 

In order to describe how the NA method is related to symmetries and to classical 
methods of constructing conservation laws, concepts such as infinitesimal generator, pro- 
longations, symmetries, Gateaux derivatives, and Noether’s theorem will be briefly intro- 
duced first. A thorough presentation of these concepts is available in Olver (1986) or 
Bluman and Kumei (1989). 

2. SYMMETRIES 

Symmetry, by definition, is a map of the object into itself which leaves the object 
invariant. The symmetry of an object is the set of all transformations leaving the object 
invariant. In this paper, we are interested in two types of symmetries, namely, variational 
symmetries and symmetries of the differential equations. In a variational symmetry, the 
object which is left invariant is the action integral (integral of the Lagrangian density 
function over material space). In symmetries of differential equations, the solution space 
of the differential equations is left invariant. The symmetries of a set of differential equations 
is the set of all transformations which transforms solutions of the system into other 
solutions. These concepts will be illustrated in the sequel. 

Symmetries can also be categorized as being geometric or generalized, depending on 
the character of the transformation functions. Given a system of m independent variables 
xi(i= 1,2,... , m) and n dependent variables uk (k = 1,2, . . . , n), we can subject this system 
to an infinitesimal transformation 

xi ~ xi* = X’+&ly, (2) 

Uk + l.F = uk+.qP, (3) 

where E is an infinitesimal parameter. 
If the transformation functions ri and I$” are functions of the independent and depen- 

dent variables only, the symmetries generated are called geometric or point symmetries. On 
the other hand, if ti and c$” are also dependent on derivatives of the dependent variables, 
we speak of generalized or Lie-Backlund symmetries. (It might also be relevant to note 
that if the transformations are functions of the independent variables, the dependent 
variables and first derivatives of the dependent variables, they are termed “contact sym- 
metries”.) All references to symmetries that follow in this paper will implicitly refer to 
generalized symmetries. 

2.1. Infinitesimal transformations 
If one applies an infinitesimal transformation as described by eqn (2) to a system with 

m independent variables x’ and n dependent variables uk, one must realize that derivatives 
of the dependent variables in this system will also be transformed. 

Using the multi-index notation introduced by Olver (1986), with J = (j,,j,, . . . ,jJ as 
an unordered p-tuple of integers, 1 < j, < m indicating which derivatives are being taken, 
#J = p indicating how many derivatives are being taken, a formula for all possible pth 
order partial derivatives of uk can be given as 
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u”E 8d 
axjl axj2 . . . axjp ’ 

Subjected to an infinitesimal transformation, & is transformed into u”;, 

k’ _ apd 
UJ = axi: ax3 . . . ax4 ’ 

(4) 

with 

and DJ = Dj,Dj, . . . DjP being a total differential operator of pth order. Here Djs indicates a 
total differentiation with respect to XL. 

Having established how derivatives transform, any functional f = f(x’, uk, us) can be 
shown to transform intop =f(x’*, uk’, u”;) by means of the relation 

f+f* =f+&pr@‘u(f), (5) 

where pr% is the pth order prolongation given by 

pr@‘v = ci; +@$ +o:--$, 1 <#J<p, 
J 

(6) 

and p is the highest order derivative of uk appearing inf. 
Alternatively, pr@‘)u can also be written in its evolutionary form (Olver, 1986, p. 297) 

with 

pr@‘v, = (DJQk)$, O<#S<p, 
s 

where 

Q” = qbk-ufri 

2.2. Symmetries of differential equations 
For symmetries of a set of q differential equations 

~(xi,uk,u$)=O, a=(1,2 ,..., q), 

(8) 

(9) 

we seek a transformation such that 
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Aa(x’-+, uk*, us’) = 0 

From eqn (5), it follows immediately that the condition for symmetries of the set of 
differential equations is simply 

pr’P’u(Ay = 0, (10) 

or in its evolutionary form 

pr@‘~g(&) + <lOi = 0. (11) 

However, since d” must be set equal to zero along the solutions of the system, the 
symmetry condition can also be written as 

pr@)uQ(A”) = 0, (12) 

for all uk satisfying 8” = 0. 
Therefore, in order to determine the symmetry group of A”, one only needs to solve 

eqn (12) for the unknown functions Qk. In this sense, Qk can be regarded as the characteristic 
functions for symmetries of differential equations. 

2.3. Variational symmetries 
As previously stated, a transformation group defines a variational symmetry of a 

Lagrangian functional L(x’, uk, u”J) if the transformation leaves the action integral A 
invariant for an arbitrary domain R. Mathematically, this condition is written as 

with d V and d v* being volume differentials in R and R*, respectively. 
BY eqn (5), 

L* = L + cpr@)u(L) 7 

(13) 

(14) 

and it is known that 

dV+ = JdV, (15) 

where J is the Jacobian of the transformation. Given the infinitesimal transformation, eqn 
(2), the Jacobian is found to be 

J = 1 + &DiSi. (16) 

With eqn (14) and eqn (16), it follows immediately that the condition for finding 
variational symmetries, eqn (13), can be stated as 

pr@‘v(L) + LDisi = 0, (17) 

or in its evolutionary form 

pFuQ(L) +Di(L5’) = 0. WV 
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3. CLASSICAL METHODS FOR ESTABLISHING CONSERVATION LAWS 
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3.1. Noethe.r’s$rst theorem 
Noether’s first theorem provides the classical procedure for obtaining conservation 

laws for Lagrangian systems. Given a Lagrangian function L, Noether asserted that if the 
action integral remains invariant under a set of infinitesimal transformations of both the 
dependent and independent variables, then a divergence-free expression exists in the space 
of the independent variables. Noether’s requirement for existence of conservation laws is 
identical to that for variational symmetries of the Lagrangian function L. 

In short, Noether requires that 

pr%&L) + Di(L<‘) = 0. (19) 

Using eqn (8) and after some manipulations (Olver, 1986, p. 278), the above can be 
rewritten as 

pr@be(L) = Q”E”(L) +DiAi, (20) 

where 

Ek(L) = (-D),$, 0 <#J<p, 
J 

(-D)J = DJ, 

(-D)J = -DJ, 

for # J = even, 

for#J = odd, 

and A’ is so-me known function of L and Qk. 
Noether’s conditions for existence of conservation laws, eqn (19), can now be stated 

as 

Q”E”(L) + D&4’+ L5’) = 0. (21) 

Upon closer inspection, the term Ek(L) is the Euler operator operating on L, i.e., 
Ek(L) = 0 yields the Euler-Lagrange equations that govern the system. Therefore, if the 
condition of eqn (19) holds for some infinitesimal transformations, then we can always 
construct conservation laws in the form 

Di(Ai+Lt’) = 0. (22) 

Since the condition for existence of conservation laws, as required by Noether, is 
identical to that of variational symmetries, every transformation group that yields a vari- 
ational symmetry of the Lagrangian will also provide the associated conservation law for 
the system, and vice versa. This indicates the one-to-one correspondence of conservation 
laws and symmetries within the framework of Noether. 

3.2. Bessel-Hagen’s extension 
Bessel-Hagen (1921) extended Noether’s theorem by inclusion of the so-called diver- 

gence symmetries. Instead of the requirement of Noether, eqn (19), he requires that 

pr@)ve(L) + Di(Lti) = DiBi, (23) 

where B’ is a set of arbitrary functions. 
Following developments similar to those for Noether’s first theorem, Bessel-Hagen’s 

condition c.an be stated as 
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QkEk(L)+Di(Ai+L&Bi) = 0, 

and the corresponding conservation law reads 

D,(Ai+L~‘-Bi) = 0. 

(24) 

(25) 

4. THE NEUTRAL ACTION (NA) METHOD 

Having introduced all the background material on symmetries and classical methods 
for constructing conservation laws, we are now ready to explore how the NA method 
proposed in the brief note “On Conservation Laws for Dissipative Systems” (Honein et 
al., 1991) relates to these concepts. 

4.1. Conservation laws 
Given a system of q differential equations, 

A=(xi, Uk, US) = 0, a = (1,2,. . . ) q), (26) 

the NA method states that it is possible to construct conservation laws valid for the system 
governed by this set of differential equations in the form 

f”k = Dipi = 0, (27) 

if 

EkCf”a”) = 0, (28) 

where Ek is the Euler operator, and f” =p( xi, uk, u$) are called the characteristics of 
conservation laws. 

Since our objective is to construct some divergence-free expressions out off01P, and 
since the Euler operator acting on any total divergence always gives a null result by calculus 
of variations, it follows that we should require the product f”F to be a null Lagrangian. 
Equation (28) implies thatf”F is a null Lagrangian, i.e., it requires that the action integral 
off”A*, 

A= f”FdV, 
s n 

(29) 

has zero variation, 6A = 0. In other words, for existence of conservation laws, we try to 
construct a product off”& whose action integral has vanishing variation for any dependent 
variable uk. Hence the name “Neutral Action” method given to this procedure. 

In practice, given any set of differential equations, one only needs to solve eqn (28) for 
the unknown characteristics f*, and then proceed to construct the conserved currents P 
valid for the system governed by this set of differential equations. Examples on application 
of this method have been given in Honein et al. (1991). 

4.2. Relation to symmetries 
In order to show how the proposed method is related to the concept of symmetry, the 

idea of a Gateaux derivative will be useful. 
A Gateaux derivative of a differential functional is the directional derivative of that 

functional in jet-bundle space (the space of the independent variables, the dependent 
variables, and the derivatives of the dependent variables). Details on this subject can be 
found in Olver (1986). 

In short, the GEiteaux derivative, Dp(Q), of a set of q differential functionals P[u], 
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P[U] = P@(Y) uk, u?), L7 = (1,2,. . . ) q), (30) 

in the direction of another set of n (n being the number of dependent variables) differential 
functionals Q[u], 

Qbl = Q%‘,u~,&), B= (1,2,...,4, (31) 

is defined by its differential operator, Dp, such that 

h(Q) = $ _ Pb + ~Qbll. 
E-O 

It can be shown that the GSiteaux derivative can also be written as 

O<#J<p, 

(32) 

(33) 

with the diff’erential operator being 

(34) 

To define a (formal) adjoint differential operator for the Gfiteaux derivative, Dp*, this 
adjoint operator must satisfy 

s 
F * Dp(Q) dx = Q . Dp*(F) dx, (35) 

R 

where F is any set of q differential functionals. The adjoint GAteaux derivative D,*(F) is 
found to be 

D,*(F) = (D,*),,F* = (-D)., SF 
[ 1 , O<#J<p, 

J 

and the adjoint operator is given by 

(36) 

(37) 

For any system governed by a set of differential equations, d* = 0, the necessary and 
sufficient condition for existence of conservation laws is given by eqn (28), which must hold 
for all uk. This condition can be written explicitly as 

(-D)#$ +(-D+$ = 0, 
J I 

(38) 

and in terms of GBteaux derivatives 

DXA)+DX(f) = 0. (39) 

In Section 2.2, it is shown that for symmetries of a set of differential equations (in this 



2966 N. Chien et al. 

case, the governing equations of the system of interest), the characteristics of symmetries 
Q” must satisfy eqn (12), 

pr@)ve(P) = DJ Qk$ = 0, 
[ 1 0 < #J < p, J (40) 

for all uk satisfying b” = 0. In terms of the Gateaux derivative, this condition on Qk can be 
written as 

DA(Q) = 0. (41) 

Since the condition for symmetries of differential equations, eqn (41), exists only in 
the space of the solutions; and since we are interested in obtaining divergence-free 
expressions that are valid along the solutions of the system A” = 0, a connection might exist 
between conservation laws via the NA method and symmetries of the governing differential 
equations in the solution space. 

In the solution space, where Aa = 0, the term Dj(A) appearing in eqn (39) is identically 
equal to zero. The condition for existence of conservation laws thus reduces to 

Z(f) = 0, (42) 

which must hold for all uk satisfying k = 0. 
Upon inspection of eqn (42) and eqn (41), withy” being the characteristics of con- 

servation laws, and Qk being the characteristics of symmetries of the governing equations, 
it is apparent that the condition for existence of conservation laws and the condition for 
finding symmetries of the governing differential equations are adjoint to each other in the 
solution space. In other words, if we restrict ourselves to the solution space, there is a one- 
to-one correspondence between the set of ally” that satisfies the condition for existence of 
conservation laws and the set of all Qk that characterizes symmetries of the governing 
equations. This establishes the connection between conservation laws via the NA method 
and the symmetries of the governing equations for any system of interest. 

4.3. Relation to classical methods 
Classical methods of constructing conservation laws as discussed in Section 3 are based 

on concepts of variational symmetry. On the surface, there seems to be no relation between 
the NA method and the classical methods. However, it has been noted in Olver (1986) that 
for Lagrangian systems, there is a correspondence between conservation laws and the 
symmetries of the governing differential equations similar to that discussed for conservation 
laws derived via the NA method. Olver noted that the Gateaux derivative for any Euler- 
Lagrange equation is a self-adjoint operator. Thus, for Lagrangian systems governed by 
such equations, there is a direct correspondence between conservation laws and symmetries 
of the governing equations in the solution space. Since both classical methods and the NA 
method can be shown to be related to symmetries of the governing equations, it is expected 
that these two methods should themselves be related. It is the purpose of this sub-section 
to show directly how the NA method relates to classical methods of constructing divergence- 
free expressions valid for Lagrangian systems. 

As discussed in Section 3, for existence of conservation laws, both classical methods 
of Noether and Bessel-Hagen require that 

QkEk(L) = DiPi, (43) 

with 
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J” = A’+Lc, for Noether (eqn 21) (44) 

pi = A’+@-Bi, for Bessel-Hagen (eqn 24), (45) 

where Qk, in the present context, can be regarded as the characteristics of conservation 
laws. 

Since the Euler operator acting on any total divergence will always yield a null result, 
eqn (43) can also be written as 

E’(QkEk(L)) = E’(D,P’) = 0, I = (1,2,. . . ,n), (46) 

or explicitly 

(-D)~[E*(L)~]+(-D),[Q*~] = 0, 0 G #JGP, (47) 

and in terms of the Gateaux derivative 

RW(L)) +&,(Q) = 0, (48) 

which is a dilferential equation for the characteristics Qk. Equation (48) is also the necessary 
and sufficient condition for generating conservation laws within the framework of Noether 
and Bessel-Hagen. 

On com,parison of the necessary and sufficient condition for generating conservation 
laws, eqn (48) for classical methods and eqn (39) for the NA method, it is obvious that 
these equations take the same form, with A = E(L) for Lagrangian systems and Q = f 
being the characteristics of conservation laws. 

Therefore, for Lagrangian systems, the requirement for existence of conservation laws 
by the NA method is mathematically equivalent to that of Noether and Bessel-Hagen. All 
conservation laws obtainable via the classical methods can also be obtained by the NA 
method. In short, the NA method not only extends systematic construction of conservation 
laws to non-Lagrangian systems, it also encompasses classical results of Noether and Bessel- 
Hagen for systems governed by Euler-Lagrange equations. 

5. CONCLUSIONS 

In this paper, it has been shown that the Neutral Action (NA) Method of constructing 
conservation laws as proposed by Honein et al. (199 1) is related to the concept of symmetry. 
This new method is also shown to embody classical methods of obtaining divergence-free 
expressions based on Noether and Bessel-Hagen. 

For any system governed by a set of differential equations, the condition for obtaining 
conservation laws is expressible in terms of Gateaux derivatives. In the solution space for 
the system, .this condition of existence, as imposed by the NA method, is adjoint to the 
condition for symmetries of the governing differential equations. In the space of solutions, 
characteristics of conservation laws by the NA method are adjointly related to the charac- 
teristics of the symmetry for the governing equations of the system of interest. This reveals 
the connection between conservation laws and symmetries in the present context. 

It is also shown in this paper that the NA method of constructing conservation 
laws is related to the classical methods of Noether and Bessel-Hagen. The condition for 
construction of a divergence-free expression as imposed by Noether and Bessel-Hagen can 
be transformted into such a form that it is identical to the necessary and sufficient condition as 
required by the NA method. Therefore, for Lagrangian systems governed by the associated 
Euler-Lagrange equations, the classical method and the NA method of constructing con- 
servation laws will yield identical results. The NA method not only extends systematic 



2968 N. Chien et al. 

construction of conservation laws beyond Lagrangian systems, it also encompasses the 
classical procedures of Noether and Bessel-Hagen. 
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