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MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 190 
APRIL 1990, PAGES 545-581 

THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS 
GALERKIN FINITE ELEMENT METHOD FOR 

CONSERVATION LAWS IV: THE MULTIDIMENSIONAL CASE 

BERNARDO COCKBURN, SUCHUNG HOU, AND CHI-WANG SHU 

ABSTRACT. In this paper we study the two-dimensional version of the Runge- 
Kutta Local Projection Discontinuous Galerkin (RKDG) methods, already de- 
fined and analyzed in the one-dimensional case. These schemes are defined on 
general triangulations. They can easily handle the boundary conditions, verify 
maximum principles, and are formally uniformly high-order accurate. Prelimi- 
nary numerical results showing the performance of the schemes on a variety of 
initial-boundary value problems are shown. 

1. INTRODUCTION 

This is the fourth article of a series in which we introduce, analyze and test 
numerically the RKDG methods. These new numerical methods are designed to 
obtain approximations of the physically relevant solution of the initial-boundary 
value problem associated with the hyperbolic conservation law 

(I.la) Atu+divf=O in(OT)xQ, 

where Q C IRd, u = (ul, ... , Um)t, and f is such that any real combination 

of the Jacobian matrices EZd X i has m real eigenvalues and a complete 
set of eigenvectors. The case d = 1 has been treated in [5, 6, and 7]. In 
[5] the idea of the method was introduced, and the model scheme, for which 
the approximate solution is taken to be piecewise linear in space, was studied 
in the framework of periodic boundary conditions. The resulting scheme was 
proven to be formally uniformly of order two, and to converge to a weak solu- 
tion of (1.1). Numerical results showing the uniform second-order accuracy as 
well as the convergence to the entropy solution in several cases were displayed. 
In [6] we extended these results to the general case, i.e., to the case of arbi- 
trary boundary conditions and an approximate solution piecewise polynomial 
of degree k in space. A local maximum principle, the TVBM (total varia- 
tion bounded in the means) and the TVB (total variation bounded) properties, 
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as well as convergence to a weak solution were proven. A formal uniform 
order of accuracy of (k + 1) was obtained, and was verified numerically for 
k = 1, 2 in several cases. Convergence to the entropy solution, as well as sharp 
capture of discontinuities, were also observed in these cases, even for non- 
convex fluxes f. Finally, in [7] the schemes were extended to systems ( m > 1), 
and numerical examples (showing the good performance of the methods for 
k = 1, 2, and m = 2, 3) were presented. Special attention was given to the 
Euler equations of gas dynamics. In this paper we shall extend our schemes to 
the multidimensional scalar case (m = 1, d > 1). We thus complete (1.1 a) 
with the initial condition 

(1. lb) u(t=0)=u0 inQ, 

where uo e L??(Q), and the boundary condition 

(I.lc) u=y in(0,T)xaQ, 

where y E L' ((0, T) x aQ). See Bardos et al. [1] for a correct interpretation 
of this condition. For the sake of clarity we shall restrict ourselves to the two- 
dimensional case, d = 2. 

When passing from the one-dimensional case to the multidimensional case, 
the main challenge comes from the complicated geometry the domain Q may 
have in practical applications. In this respect, finite element methods, such as 
the SUPG-method of Hughes and Brook [19, 20, 21, 22, 23, 24] (which has 
been analyzed by Johnson et al. in [25, 26, and 27]), are better suited than finite 
difference methods, like for example the current versions of the ENO schemes 
[17, 18, 15, 16, 38, 39], or the Bell-Dawson-Shubin scheme [2]. This is the main 
reason why the RKDG methods use a finite element discretization in space. The 
particular finite elements of our method allow an extremely simple treatment of 
the boundary conditions. No special numerical treatment of them is required 
in order to achieve uniform high-order accuracy, as is the case for the finite 
difference schemes. 

Another challenge is given by the increase of the complexity of the structure 
of the discontinuities. In the one-dimensional case, the Riemann problem can 
be solved in closed form, and discontinuity curves in the (x, t) plane are sim- 
ple straight lines passing through the origin. However, in two dimensions, only 
some special cases of the general Riemann problem have already been solved, 
and those display a very rich structure; see the works of Wagner [43], Lindquist 
[28, 29], and Tong et al. [41, 42]. Thus, methods which allow triangulations 
that can be easily adapted to resolve this structure, should seriously be taken 
into consideration. Our methods allow extremely general triangulations. More- 
over, the degree of the polynomial defining the approximate solution can be 
easily changed from element to element. Thus, adaptive versions of the RKDG 
methods can be easily defined and shall constitute the subject of a forthcoming 
work. 

From a theoretical point of view, the passage from d = 1 to d = 2 is dra- 
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matic. In the one-dimensional case, it is possible to devise high-order accurate 
schemes with the TVD (total variation diminishing) property, a property that 
implies the compactness of the sequence of approximate solutions generated by 
the schemes. (The TVD schemes were introduced by Harten [14], and a wide 
class of them was analyzed by Sweby [40]. Among these schemes we have, for 
example, (i) the MUSCL schemes, as analyzed by Osher [32], (ii) the schemes 
of Osher and Chakravarthy [33], (iii) the schemes obtained by a TVD time 
discretization introduced by Shu [37], and (iv) the quasi-monotone schemes 
introduced by Cockburn [8, 9, 10].) Unfortunately, in two dimensions, any 
TVD scheme is at most first-order accurate. This interesting result was proven 
by Goodman and LeVeque [13]. In [10] it is shown under which conditions a 
quasi-monotone scheme (which is TVD) is formally high-order accurate in two 
dimensions, but these conditions are quite restrictive. Thus, for d = 2, there 
is a strong incompatibility between TVD compactness and high-order accuracy. 
We must emphasize, however, that even in the one-dimensional case these two 
properties are in conflict, for TVD schemes cannot be uniformly high-order ac- 
curate: they are at most first-order accurate at the critical points of the exact 
solution. This difficulty prompted the appearance of the so-called TVB (total 
variation bounded) schemes, which came out from rather different approaches. 
(Lucier [30] introduced a semidiscrete TVB scheme for which he proved an 
L? (0, T; L ) rate of convergence of O(N ), where N is the number of de- 
grees of freedom defining the approximate solution. This result is true even if 
the exact solution has a finite number of discontinuities, a very surprising result 
that is now leading to even more surprising regularity results for the continuous 
problem; see [31]. Shu [35, 36], introduced a general technique to obtain uni- 
formly high-order accurate TVB schemes starting from TVD schemes; Sanders 
[34] introduced a third-order accurate TVB scheme (which is TVD under an- 
other definition of total variation) whose accuracy degenerates to second order 
at critical points; the RKDG schemes are TVB schemes which are uniformly 
kth-order accurate, k > 1, [5, 6, 7].) However, to prove the TVB property in 
two dimensions is a rather difficult task, even for the simplest monotone scheme, 
if arbitrary triangulations are considered. On the other hand, maximum prin- 
ciples are not incompatible with high-order accuracy, but it is well known that 
L?? boundedness does not allow us to pass to the limit in the nonlinearity. 
Some kind of workable compactness criterion, one between TVB compactness 
and L?c boundedness, which is not in conflict with high-order accuracy, is 
still to be discovered and seems to be an interesting and challenging problem. 
Meanwhile, we shall content ourselves in obtaining maximum principles for the 
RKDG methods, a very desirable property in this kind of problems in which 
the values of the solution u have physical meaning only in determined inter- 
vals. We remark that to the knowledge of the authors, no other class of schemes 
has a proven maximum principle for general nonlinearities f, and arbitrary 
triangulations. 

An outline of the paper follows. In ?2 we present aid analyze our schemes. 
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The main result is the definition of the local projection All for arbitrary trian- 
gulations, which does not destroy the high-order accuracy of the scheme while 
enforcing a local maximum principle and allowing an extremely simple treat- 
ment of the boundary conditions. In ?3 we present several numerical results, 
and in ?4 we end with a summary and some concluding remarks. 

2. GENERAL FORMULATION 

2.1. Preliminaries and notations. Let {tn nto be a partition of [0, T]. Set, as 
usual, Atn = tnl _ tn n = O ...,nt- 1. Let us assume that the domain Q 
is polygonal, and let us denote by 9S a triangulation of Q. For the sake of 
simplicity we assume that if two elements of 19, say K1 and K2, are such that 
e = Kf n K2 : 0, then e is either an edge of both K1 and K2 or a point. 

We shall denote by VJ the space of elements of L' (Q) whose restriction 
to K E 9S belongs to a vector space V(K). Note that the space V(K) may 
be different for different elements K. The triangulation 9S of Q induces a 
triangulation of aQ that we shall denote by O9S . Let us denote by a VJ the 
space of functions of L??(0 Q) which are traces of functions of V*(Q). 

As stated in [5, 6, and 7], to construct the RKDG methods, we proceed 
as follows. First we discretize (1.1) in space using the Discontinuous 
Galerkin Method. The resulting equation can be put in ODE form as uh = 

Lh (Uh, Yh (t)). Then, this ODE is discretized in time using the TVD Runge- 
Kutta time discretization introduced in [38]. Finally, a local projection Aflh is 
applied to the intermediate values of the Runge-Kutta discretization, in order 
to enforce stability. The general RKDG method then has the following form 
[7]: 

(2.la) Set uo= AlIh IPj, U0); 

(2. lb) For n = 0... , nt - 1 compute uh+ as follows: 

(i) set U0) =Un 

(ii) for i = 1, ..., k + 1 compute the intermediate functions: 

uh Afluh{ + fil\t Lh (U5' Yh(t + di/tn))]} 
l=O 

se n 1 = (k+ 1)* (iii) set unlUhkl 
2 2 

where Pv is the L2 projection into Vh, and Yh is the L2 projection of y 
into a Vh . Note that this method is easy to code, for only a subroutine defining 
Lh (uh, 2yh (t)), and one defining Aflh, are needed. Some Runge-Kutta time 
discretization parameters are displayed in the table below, see [39]. 

In what follows we shall first describe in detail the operator Lh. Then we 
shall obtain conditions under which the RKDG methods satisfy maximum prin- 
ciples. The local projection Aflh will then be constructed in order to enforce 
those conditions. The stability and convergence properties of these schemes are 
summarized at the end of this section. 
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TABLE 1 

Parameters of some practical Runge-Kutta time discretizations 

order ad 8d di max {fij/aj} 

2 1 101 
1122 1 1 1 

1 1 ~~~~0 

3 3 1 1 
4 

3 3 3 2 

2.2. The operator Lh . In order to determine this operator, we multiply (1.1a) 
by vh e VJh, integrate over K E h;, and replace the exact solution u by its 
approximation Uh e Vh: 

d t fU(t, X) Vh(X) dx + div f(u h(t, X)) Vh (x)dx=0 h E hJ 

Integrating by parts formally, we obtain 

dtf UK X)Vh(x)dx+ ff(Uh(t, x)) *ne K Vh(X)dJ 

- f(uh(t, x)) * grad Vh(x) dx = 0, VVh e Vh, 

where ne, K is the outward unit normal to the edge e . Notice that f(uh (t, x)). 

ne K does not have a precise meaning, for uh is discontinuous at x e e E 

aK. Thus, as in the one-dimensional case, we replace f(uh (t, x)) * 
e, K by the 

function he K(Uh (t, xint(K)), Uh (t Xext(K)) , where 

h( 
int(K) h( y) 

yEK 

f yh(x t) if xeOQ, 
Uh(t, xext(K)) = lim uh(t, y) otherwise. 

yE(K)c 

The function he K(. ) is any function satisfying the following conditions: 

(2.2a) he K(u u) = f(u) ne,K 9 

(2.2b) he K (u, v) is nondecreasing in u and nonincreasing in v, 
(2.2c) he K(.K .) is (globally) Lipschitz, 
(2.2d) 

he- K K(Uhx(t Xi( xU ))U U (t xi ext(K)lK 

heK(U*(t, X t(K )) U( ext(K'))) KnK=e 
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i.e., it is a consistent two-point monotone Lipschitz flux, as defined in [11], 
consistent with f(u) , ne K. The last property justifies he KG' .) as a flux. 
Examples of he, K can be found in [7, Remark 2.4]. Sometimes we shall write 

simply he K(t) x) instead of he K(Uh(t Xint(K)) Uh(t, Xext(K))) 
In this way we obtain 

dtIK U X)Vh(x)dx + heK(t, X) Vh(X) dr 

- f(uh(t Ix)) * gradvh(x) dx = 0, Vvh E Vh. 

K 

Of course, we have to replace the integrals by quadrature rules that we shall 
choose as follows: 

L 
(2.3a) fhe K(t, x) vh(x) d I` E ol heK(t, Xel) v(xel)IeI, 

e l~~~~~~~=1 
M 

(2.3b) f(uh (tI x)) * grad Vh(x) dx 1 EW j f(Uh (t a XKj)) * grad vh (XKj)IKI. 
j=1 

Thus, we finally obtain the weak formulation: 

d fUh (t, X)Vh (x) dx + E co/ he K (t LXed ) (Xed e 

(2.4) e9eOK 1=1 

-E Aid f(uh (t I XKi)) * gradvh (XKj)IKI = 0, Vvh E Vh, VK EJ. 
j=1 

These equations can be rewritten in ODE form as Uh = Lh(uh, Yh)' where 

(2.5a) Lh: h X 1y Vh I 

(2.5b) d (Uh WIVh)=(Lh(UhI Yh)IVh) VVh C_ h t ( 

where = {w: Q - R: WIK E F'0(K), VK E 4}, OI = {w: aOQ 

R: Wle E iF?(e), Ve E a8h}, and (., ) is the usual L2(Q) inner product. 
Notice that in order to go from the weak form (2.4) to the ODE (2.5b), a matrix 
has to be inverted. However, this can be easily done by hand, for its order is 
equal to the dimension of the local space V(K) . It is also important to remark 
that any choice of the degrees of freedom of the approximate solution is allowed 
in this formulation. 

Thus, the operator Lh (Uh, Yh) is a discrete approximation of -div f(u) (to- 
gether with the corresponding boundary conditions!). The following result gives 
an indication of the quality of this approximation. 
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Proposition 2.1. Let f(u) E Wk+2, (Q), and set y = trace(u). Let the quadra- 
ture rule over the edges be exact for polynomials of degree (2k + 1), and let the 
one over the element be exact for polynomials of degree (2k) . Assume that the 
family of triangulations 7 = {fh}h>0 is regular, i.e., that there is a constant a 
such that 

(2.6) hK > V C K VE S, E E , 
PK h 

where hK is the diameter of K, and PK is the diameter of the biggest ball 
included in K. Then, if V(K)D pk(K), V K ES : 

IILh(u, y) + divf(u) IIL| (Q) < Ch If(U)IWk+2 oo(Q) 

We are, of course, assuming implicitly that the dimension of the local space 
V(K) is uniformly bounded from above. A p-version of these schemes can 
certainly be considered, but we shall leave this as the subject of future work. 

For the proof we shall need the following direct consequence of the Bramble- 
Hilbert Lemma, [4, Theorem 4.1.3]. 

Lemma 2.2. Let EQ(q) = - El=, co 0(x1)IKI, and suppose that EQ(q) = 

0 , Ve E Pr(Q). Then, 

IE2(gyi)I < CQ0h r+l- sIVIL-(Q)IgIwr+1-s(oo () Vy1/ E Ps(Q) 

where h = diam Q. 

Proof (of Proposition 2.1). We have 

II Lh(u, y) + divf(u) IIL| (K) < el + e2, 

where 

el = Ildivf(u) - Ppk(K)(div f(u)) II L??(K), 

e2 = IILh (u , y) + Ppk(K) (div f(u)) II L' (K) 

and PP k(K) is the L2 projection into Pk (K). Using the regularity of the tri- 
angulation S , we obtain by a well-known approximation theory result, [4, 
Theorem 3.1.6], that: 

el < C hk+l Idivf(U)I W(K)k+1 
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To estimate e2, we proceed as follows. Taking into account the definition of 
Lh, (2.5), (2.4), we have, for vh e P (K), 

E)(vh) 
I 

IKJ((U y) +IPpk (K) (divf(u)))vh dx 

= 
I K(LJ(U y) + div f(u))Vh dx 

=IKJK yvd 
KI |KLfh(U t Xy) Vh dx 

IKI 
|K |d 

f (u(t, x) ) ne, K Vh (x) dF + 
KIeEOKe 

- |k'K f(uh (X, t)) * grad Vh (X) dx 

=T eK Ee(f(u) ne, K Vh)- 14g EK (f(u) gradvh), 

where 

L 
Ee (1$) = | -E a $0(xe)IeI ) 

i=1 

M 

EK (q) = 1 
-: Zj 0 (XK4j) IKI. 

j=1 

But, 

K|Ee(f() *ne K Vh) I < C ijKh 
k 

If(u) * leKIW k+2 ?? (e) IVh hIL(K) 5 

by hypothesis and Lemma 2.2, 

< Ch k+1 f(u) IWk+2 ??(K)IVh IL? (K) 

by the regularity of the triangulation, 

and similarly, 

I I EK (f(u) * gradVh) I < Ch I f(u) I Wk+2?(K)IVhIL?(K). 

The result follows by setting vh = Lh (u, y) + Pv (div f(u)) and using the in- 
h 

equality 

lhl L??(K) <_ C_ KI Wh IL2 (K) 

which is valid if Wh e V(K) . (Notice that all the norms are equivalent in finite- 
dimensional spaces; the factor 1 /IKI follows from a standard scaling argument, 



DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS 553 

see [4, (3.2.24)].) The constant C depends solely on the dimension of V(K), 
which was implicitly assumed to be uniformly bounded. 5 

2.3. In quest of a maximum principle. We now consider the problem of ren- 
dering our schemes L' stable. As we said earlier, we shall construct a local 
projection Allh whose task will be to enforce a maximum principle on them. 
The fact that this is indeed possible is to a great extent due to the form of the 
time discretization technique, as we show below. Let us write uh as ah + Uh, 

where ah is piecewise constant and Uh has zero mean in each element K. The 
restriction of Uh to the element K will be denoted by UK. 

Lemma 2.3. Let the coefficients ail of the Runge-Kutta time discretization be 
positive and such that ZI=' a = 1 for i= 1, ...,k+1. Set Wh = Uh+ 

YAtmLh(uh, Ih), and suppose that for cfl E [0, cflo/ !61], where 

(2.7a) efi = sup Atn iSLIlf' -ne,KIIL-[a0,b0]1 
n=1 , nt; eEaK; KE4 |h K |[ IKI 

(2.7b) ao = inf {uo(x), y(t, y)}, 
XEQ, tE (0, tn ),yEa Q 

(2.7c) bo = sup {uo(x), y(t, y)}, 
XEQ, tE(0, tn ), yEaQ 

the following maximum principle is verified: 

(2.8) uh I Yh E [a, b] = Wh E [a-Mh , b+Mh ], 

where M is some nonnegative parameter. Then, if cfl E [0, cfl0/l maxi l{Ifl} I ], 

uhn E [ao - (k + 1)nMh 2, bo + (k + 1)nMh2]. 

Proof. We proceed by induction. Assume that 

-M 2 2 
Uh E [ao - (k + 1)mMh , bo + (k + 1)mMh] for m = 0..., n. 

The case m = 0 is trivially verified. Let us prove that the same is true for 
m = n + 1 . Set [a, b] = [ao - (k + 1)nMh , bo + (k + 1)nMh 2]. We claim that 

Uh/) e[a - lMh2, b + lMh 2] for I = 0,..., k + 1 . This is true for I = 0, for 

U(0)= u by (2.lb) (i). Assume it is true for I = 0..., i- I. Then, by the 

definition (2.1b) of the intermediate function Uhl) 

i-l 

uh) = E [aiU(f + ilIAt Lh(u', h(tn + d1Atn))] 
1=0 

=Zcvil { ( U+ h Yh(t+dAt))}. 
1=0 
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This implies, using (2.8), that 

i-l 

iil E ,oil [a - (I + I)Mh 2, b + (I + I)Mh 2] 
1=0 

C ail f[a - iMh , b + iMh ] 

=[a - iMh2 b + iMh I. 

n+1 (k+ 1) n1 -(k+ 1) 2 
But, by (2.1b)(iii), Uh = Uh , and so = Uh e [a - (k + 1)Mh 
b + (k + 1)Mh . This completes the proof. o 

In this way, the existence of a maximum principle for the RKGD schemes 
is reduced to the existence of the maximum principle (2.8). Thus, to construct 
the projection AH h, we first study the conditions (on uh ) under which the 
maximum principle (2.8) holds, and then we define AIh in order to enforce 
them. This is the approach we took in the one-dimensional scalar case, and is 
the same we shall take in this case. Next, we study those conditions. The actual 
construction of Arh will be considered in the next section. 

If e E OK, let us denote by Ke the element such that K n Ke = e . In this 
way, if Xel is the Ith point of the quadrature rule (2.3a) on the edge e, we 
shall write 

Uh(Xel) = UKe = UK + UK el1 

Uh(Xel )=UK el =TiKe,+ iKele1 

Yh(XeI) = Yel 

Set Wh = Uh + a'Lh(uh r Yh), where a' = Atm * a. Thus, by the definition of 
Lh(Uh 5 Yh)' (2.4), (2,5): 

UK =K E E [ uIeI] he K(UK el' UK, el)} 
eE0K\0Q 1=1L 

K J 

-{eE0KnO l [5wIeIK ] e K(U K, el , Yei)}. 

Noting that 

E h e [K (] -eK( K5-aUK) - ff(-iK) n = O 
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we can write 

WK UK {eE [ IeI] (h K(U e/' UKeI )heK(UKUK)} 

{eEO =E [3Ke] (he, K(UK, el YeUl) eK(UK 'UK))} 

-UK {eE OE [5wIeI ] {(he K(UK el ' UKele) heK(UK ' UKe eI)) 

eEYK\,2 1=1l 

+ (heK(ilK UKeIe)-heK(UK 1UK))}} 

{e 2E [ IeI] {(he K(UK el' Yel) he K(uK, YeI)) 

eEOKnou l=il IK 
j 

+ (IKe K( Kel Yel) he, K(iK, UK))}}. 

Using the fact that the one-dimensional flux he K iS Lipschitz, we obtain 

WK =UK - {EO~ L5 [w11e1] {hei l{UK el} 

eE0K\0Q 1=1l 

+heI2({K UK}+ { KeI } )} 

{eE i 1=E [5KIe] {e, l {K, e} +heI 2({Ye,-KIK})}} 
eEOKnEoui l e 

=~~~~~~~~~ (he + (-a I Yd [_ he K) |ea h ] {ae u 

+UT E E [ e IK k hei 2] {YeI UK}} 

eE0K\0eQKn0 1=1l 

+ {zzE6 1=12 h (K el,1] { UK ee} 

+ eEO Kel [ 'el el, hel2] {UK }}) 

eE0K\0QE0\0 1=1Ll 

If we assume that wl > 0, then the quantities between brackets are nonnegative 
numbers, by (2.2b), which are bounded from above, thanks to (2.2c). Now, if 
the quantities -aK el and UK el can be written as positive linear combinations 



556 BERNARDO COCKBURN, SUCHUNG HOU, AND CHI-WANG SHU 

Of UK uK and Ye - uK, i.e., if 

(2.9a) -aKel S OK,eld(UKd UK) + z OK,eld(2d UK)' 

dE0K\0Q dEO KnaQ 

(2.9b) UKe el = S Ke eld (UKd UK) + S 
7Ke ,eld (Yd -UK), 

dEOK\DQ dEO KnrQ 

where 

(2.9c) 6K,eld I lKe,eld ?0, 

and 
L 

(2.9d) Ye =Z Ye,, 

1=1 

then 

f L 

WK UK + tAt * e{ 9JK, -UK} + 5 Eel(Yel aK) 
eE0K\0Q eE0Kn0Q 1=1 

where 

L~~~~~ C0K\, le= l 1 

(2.lOa) Eel |Kj [-hel, 2]+ E S Kj [hdl, l] K, dle 
/=I dEOKI1=1 

+ 2d SE |K | [hdl, 2] Kd, dle 
dE0K\0Q 1=1 

(2.l1Ob) Eeei=wl 
e [-hel,2I +W 0)IE [hl IIO, die IKI dEOK 1=1 K 

dEOK\OQ Z1=1 "hI2f~de 

Thus, if 
L 

(2.11) 5 Ee + 5 Zel < 1/, 
eE0K\0Q eE0Kn0Q l=l 

then 

(2.12) WK e I( (K; "Ke e e OK \ 0Q ; Yel, e E OK n , = 1 , ...,L), 

where I(al, ... , an) = [minfal, ... , an}, maxfal, ... , an}]. This is the local 
maximum principle we were looking for. Let us summarize this result as follows: 

Proposition 2.4. Assume that all the weights of the quadrature rule (2.3a), w), 
are nonnegative. Set wh = uh + . * Atm * Lh (uh, Yh), where Uh satisfies conditions 
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(2.9). Then, the maximum principle (2.12) holds for the elements K E ST for 
which the condition (2.1 1)-(2. 10) is satisfied. 

2.4. The AIh projection. We now prove that conditions (2.9) can actually be 
satisfied without compromising the order of accuracy of the method, provided a 
class of (very general) triangulations is used (the so-called B-triangulations), and 
give a sensible rule for computing the coefficients 6K eld and lKe eld . Then, 
we define a class of local projections AIh which enforce conditions (2.9) under 
a suitable cfl-condition which results from condition (2.11 )-(2. 10). 

Pick an element of the triangulation -, say K. We associate with it the 
vectors 

(2.13a) dK e={M -B if e OQ, K~e 
M- B if e OQ, 

where B denotes the barycenter of K, Be denotes the one of Ken and Me 
denotes the midpoint of the edge e. To each point Xel of the quadrature rule 
(2.3a) we associate the vectors 

(2.13b) dK el = 
Xel-Be dK, el = Xel-Be 

and express them as linear combinations of the vectors dK e as follows: 

(2.13c) -dK, el 6=K, eledK, el + 6K, ele2 dK,e2' 

(2.13d) dKeel = e lKe ele/ dK, e' + 1Ke elej dK, ev 

In the figure below we show this construction in the case in which the element 
K is an interior triangle and the quadrature rule on the edges is the two-point 
Gauss rule. The quadrature points are indicated by a 'co'. 

\ KXei el z 

\ BK~e2 B 

diK,e2 
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Now, if we associate with dK, e the value 
- 
uK -u if e oY AQ 

(2.14a) A { K U f-Q K,e Y UK if e E Q, 

and with -dK el and dK el the values 

-U int(K) ext(K) (2.14b) -UK l = -Uh(Xel ) + ' UK el = Uh(Xel UK 

respectively, we have 

(2. 1 4c) UK,elL [K, elel AK, e, + OK, ele2 AK, e2 ] + 2(h ) 

UKe, el =[q1Ke, ele A K, el + qKe, ele iAK, eI + O(h ), 
in the sense of the truncation error analysis. (Compare with (2.13c).) Thus, the 
conditions 

UK el EI(ObUK el) UKe, elEI(ObU;,el), 

where b > 1 and 

(2.15a) UKel =[6 KeleiKe+ 6K, ele2 K, e2 K 

U, el = [?1Ke, ele' AK, el + qKe, elel AK, e) ] 

are naturally satisfied (in the sense of the truncation error analysis) away from 
critical points. If M is some upper bound of the second derivatives of u, then 
the conditions 

uK el e [al - Mh2, a2 + Mh2], 

(2.15b) where (2.1 5b) [l a2] = 
{[I(? 5 b go 

,e) ( b UKe)if e 00A 

I(O, bUKe) if eelQ, 
are satisfied uniformly. Moreover, these conditions (with M = 0 ) imply con- 
ditions (2.9) provided the coefficients 60K,eld and qKe,eld' are nonnegative. In 
order to guarantee this last property, it is clear, from (2.13) and (2.14), that we 
have to restrict ourselves to consider a special class of triangulations Sh that 
we introduce next. 

Definition 2.5. A triangulation Th is said to be a B-triangulation if for each 

dK el and dK el it is possible to pick the vectors dK e, dK e2 dK e ,and 
dK e such that the coefficients 6K, ele 60K, ele2 ')KC , eele' and Ke, ele' are non- 
negative. 

Definition 2.6. A family of triangulations ' = {h}h>0 is said to be B-uniform 
if each triangulation Th is a B-triangulation, and there is a constant [u such 
that 
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In the next subsection we shall give examples of this kind of triangulations. 
We are now ready to define the Al-h-projections. Let us denote by #e(K) 
the number of edges of the element K. The conditions (2.15a) and (2.15b) 
represent # e(K) x L restrictions which, together with the condition 

(2.15c) fKh = 0 

define a nonempty convex set C(K; uh) C V(K). We can now define the 
projection AIh as follows: 

(2.17a) 
Uh I-) Wh, 

such that 

(2.17b) WhIK is a projection of UhIK into C(K; uh). 

Notice that we did not specify the exact form of the local projection in (2.1 7b). 
We can take, for example, the L2 projection into C(K; uh). In this case, car- 
rying out the projection amounts to solving a minimization problem, which can 
be reduced to a one-dimensional maximization problem via a duality argument; 
see [3]. In fact, thanks to (2.14c), in most elements we have UhIK E C(K; uh), 
and so the operator A1lh K becomes the identity. Thus, if the exact solution 
is piecewise smooth, it is reasonable, from the computational point of view, to 
have a 'very complicated' projection into C(K; uh) . On the other hand, as the 
projection is actually carried out only very near the discontinuities, it is not nec- 
essary to define it in a very sophisticated way. Some practical implementations 
of this projection are considered in ?3. 

Note also that if K is a triangle and V(K) = P (K), or V(K) = P2 (K), 
then from the fact that Wh E C(K; ilh) we deduce easily that there is a constant 
c0 such that 

(2.18a) lKihlL(K)?Co{fZ IK UK liel hKX 
EOK 

where the constant c0 depends solely on the parameter a of the triangulation, 
see (2.6). The same property is verified if K is a rectangle and V(K) = Q1 (K). 
We can define Arh IK in order to enforce (2.1 8a) without damaging the accuracy 
of the method. If we set 

(2.17c) Z(KTih) ={Vh E Vh :if Vh(Xel) =UK VeaEOa , 
thenvh(x) =iK, VxeK}, 

and we replace (2.1 7b) by 

(2.17b') wh|K is a projection of UhIK into C(K; Uh) nZ(K; uh), 

then property (2.1 8a) is always satisfied. 
Thus, we have proven the following result. 
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Proposition 2.7. Let Arh be the projection defined by (2.17), with (2.17b') 
replacing (2.1 7b), and let S/ be a B-uniform family of triangulations. Set wh = 
Uh + . *AtmLh (Uh , Yh), assume that Uh = Anh (Uh), and suppose that 

Uh , Yh e [a , b]. 

Then 
Wh e [a-Mh ,b+Mh2], 

provided 

(2.19) cfl <1 
(I( + 4bu)max{ #e (K)}I' 

Moreover, 

(2.18b) ll~bhllL1(Q) < Coll'0hllsv(Q)h 
Proof. Property (2.1 8b) is a simple consequence of (2.1 8a) and of the definition 
of the total variation of Uh: 

11 -9h IBV(Q) = - I K-UK|e| +a -- lah - _h} I 

Ke5,7' eEaK\00 eEOKnfo 

see [12], where we are assuming that uh(x) = yh(X), Vx E OQ. 
Now, we only have to prove condition (2.19). This condition is nothing but 

another version of condition (2.11 )-(2. 10). Consider the following expression: 
L 

T EE ee+ E ZEel 
eEOK\00 eEOKnfo 1=1 

By the definition of Ee and Eel, (2.10), we can write 

T= E E I II[-hel, 2] 
eEOK\0 d 1=1OK1 

+ E ZWE / IeI [2dl, ] IK,dle 
eE0K\,Q d/1K /= l 

+ ?l K! j11 [hdl, 2] qKdK dle 
eE9K\9Qd d= K\dQ 1=1 

L 
0),le 

+ E E I L L"hel,'2 [ 
eEOKnro l=l dKK 

+ E (01 E E IK [hdl, 1] I K, dle 
eEOKnou l=i1 dEOK 1=1 1K 

+ E (O ~~E JKJ [-hdl, 2] qKd, dle 
eEcKnau l=il d .0K\0Q 1=1l 
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Thus, 

L 

AtmT < cfl 1 + Cfl E Z OKf dle 
eE0K\0Q eEOK dEOK /=I 

+ cfl E Z ZW1Kd ,dle 
eEOK deYK\O00 /=I 

L 
< cfl #e(K) + A A X E OK,dle 

dEOK 1=1 eEOK 

L~~~~~~~~ 
+ E EqKdddle 

dE0K\0Q 1=1 eEOK 

L 

< cfl #e(K) + E 0w1 4b/1 < cfl #e(K)[1 + 4bu]. 
dEOK 1= I 

This proves the result. 5 

In this way, we have obtained a class of local projections Anh which enforce 
maximum principles on the RKDG methods. In particular, if we set M = 0, 
Proposition 2.7 and Lemma 2.3 guarantee that uh e [ao, bo] provided u0, Ih E 

[ao, bo]. Notice, however, that there are some values of the boundary data Yh 
which are irrelevant and should not be taken into consideration when carrying 
out the projection AI-h, for they could destroy the accuracy of the methods. 
Those values are the so-called outflow values, i.e., the values ye, such that 

(Yed) ne K > 0 . Thus, to avoid this inconvenience, we simply replace Ye, by 

(2.20) 
g/f{ 

Yeif (Ye/) 
Ie,K 

< ?' 

(2.20 ell otherwise, 

in (2.9). This completes our treatment of boundary conditions. Proposition 2.7 
remains valid in this case. 

2.5. On B-triangulations. We now give two main examples of B-uniform fam- 
ilies of triangulations. We begin with a very simple result, which shows that a 
B-uniform family of triangulations need not be regular. 

Proposition 2.8. Let S/ be a family of triangulations made of rectangles. Then 
S/ is a B-uniform family. Moreover, [ I = 1 in (2.16). 

A more delicate case is the following. 

Proposition 2.9. Let S/ be a regular family of triangulations made of acute 
triangles. Then 7 is a B-uniform family. Moreover, [1 = 2a3(1 + a2)3/2 
where a is the constant in (2.6). 
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Proof. First, let us prove that each triangulation T; E 7 is a B-triangulation. 
Consider the figure below. The straight line I is parallel to a2 - a , the line 11 
is parallel to bI -a2, and the line 12 to b2 -a . The point Pi is the intersection 
of I with 1i, i = 1, 2. The triangle whose barycenter is B (resp., Bi ) will be 
denoted by T (resp., T ). We shall prove that the angle (al + a2) is bounded 
below by a positive constant depending solely on a. This implies that Sh is a 
B-triangulation. 

b2 

B2X b, 

~b2% 

Note that 

lB1 -Blsina1 = lB1 -P1Isin i1. 

By construction, B1 - B = 3(l- a1) = 3l- a2) + 3(a2 -a1), and 

a2 +Ia - a1 

By the regularity condition (2.6) we have: 

1I<a2-a < 1 <a2-a31< 

<aa, a 
a~a2-a31 a~b1-a21 
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and so 

siala > 1 i 1 
1+a 

If we set cot = a, the regularity condition (2.6) can be restated as follows: 
every angle of K is larger than 2a0I This is the so-called Zlamal condition, 
see [4, Exercise 3.1.3]. Thus, 

= 7f - 1 - fl, E- - -2o - ol] 

V2 = - '2 - 1?2 E - 2' P2 - 2a0 - p2]v 

if VI > , then sinVIg > sin4ac0. If VI E [I - 1, 12 then sinVIg > 
sin(' - ) If V'1 and q/2 are smaller than 2,then 

maxfsin VI1, sin V2} > max{sin(2 - (), sin ( - (2)} 

> inf max {sin ( -(Pi) sin ( - (P2) 

By symmetry, the infimum is attained when ( = = A, so that 2 = 2 
ao, and so max{sin y1, sin V/2} > sinao. 

As a consequence, 

maxfsin a, , sin a2} > sin3 aiO = (1 + a2 3/2, 

which implies that (a, + a2) is uniformly bounded from below by a strictly 
positive constant depending solely on a. This shows that any vector can be 
written either as a negative combination of the vectors d1, d2, and d3, or 
as a positive combination of them. This implies that Y is a family of B- 
triangulations. 

Now let us prove the estimate for ,t. Set d = vid1 + v2d2, where the coeffi- 
cients vi are nonnegative. Let 412 be the angle between d, and d2, and let 
be the one between d and d2. Let us estimate vi I By definition, 

d dI <dl I sinkI I 
dd d'L - Id1l sin121V 1 2 

If 412 E [O, /2],then E[O, 12],andso < <1 . If 412 E [7r/2, A], then If ~~~~~12 E= 
n i~~~S~l~2 - 

al + a2 = 7t - 412 E [0, ir/2), and so 

sin 12 > maxfsin a 1 , sin a2} > sin3a. 
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Thus, 

v < Idl -* 
sin 3a 

But, by construction, Id, I = 3 lb, - al . If the edge a2 a3 lies on OQ, then b, is 
the midpoint of it, by construction. This implies that Idl I > PT!3. If the edge 
a2 a does not lie on OQ, a simple calculation shows that Idl > ( 1 + '2 )PT/3. 
The regularity of the triangulation has strongly been used in this last step. Thus, 
we always have that Idl I > PT!3. 

It remains to estimate Idl. The cases of interest are when (i) B + d lies 
on the border of the triangle T, and when (ii) Bi + d lies on the border of 
the triangle T, for i = 1, 2, 3. The first case corresponds to the equation 
(2.13c), whereas the second corresponds to equation (2.13d). In the first case 
we simply have Idl < 2hT/3. In the second we obtain Idl < 2hT/3 < 2a2hT/3, 

as a consequence of the regularity of the triangulation. As a > v's, we have 
dl < 2cr2hT/3 in all the cases under consideration. Thus, 

2l 
a 
P 13 sin (v)<23(1 + U2)3/2. VI<-P13 (o 2a~h/ 

This proves the result. C1 

2.6. Stability and convergence. We summarize the results obtained above in the 
following theorem. 

Theorem 2.10. Consider the RKDG method (2.1), where the operator Lh is de- 
fined by (2.5)-(2.4)-(2.3)-(2.2), and the projection Afnh is defined by (2.17)- 
(2.15)-(2.20). Assume that the family of triangulations 9 is regular and B- 
uniform. Suppose that V(K) D pk (K), VK E 5/f, 8h E 9, and that the 
quadrature rule over the edges is exact for polynomials of degree (2k + 1), and the 
quadrature rule over the elements is exact for polynomials of degree 2k . Then: 

(1) The RKDG method is formally uniformly (k +1 )st-order accurate in time 
and space if At = 0(h); 

(2) the approximate solution generated by the RKDG method verifies the 
maximum principle (2.8) if the cfl-condition (2.19) is verified with 3 = 

maxi -I; 
(3) the approximate solution converges to a weak solution of ( 1.1) if there is 

a constant C such that 11 ihlBv(Q)<C. 

The proof of (3) is similar to the proof of the same result for the one- 
dimensional case and will be omitted; see [7]. 

3. NUMERICAL RESULTS 

In this section we display some preliminary numerical results. Extensive 
computations, in which we explore numerically several fluxes, triangulations, 
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finite elements, quadrature rules, and local projections, are the subject of a 
forthcoming paper. 

We consider triangulations made only of triangles (see Figure 1), and we take 
the local finite element space V(T) to be P1(T), i.e., the space of linear func- 
tions on T. Proposition 2.1 affirms that we can reach a second-order accurate 
space approximation (which is in fact the best possible order of accuracy that 
can be reached with the given elements), provided we take a quadrature rule for 
the edges exact for polynomials of degree 3, and a quadrature rule for the ele- 
ments exact for polynomials of P . Accordingly, we take the two-point Gauss 
quadrature rule for the edges, and the three midpoint rule for the triangles. We 
take the Godunov flux as the flux hem T, and the Runge-Kutta time discretiza- 
tion parameters of order two; see Table 1. To complete the definition of this 
RKDG 1 method (which is formally uniformly second-order accurate) we need 
to specify the local projection, Aflh . 

This projection is defined as described in subsection 2.4, only, the points 
Xel associated with the quadrature rule of the edges are replaced by the points 
associated with the degrees of freedom, the midpoints of the edges. In this way, 
four conditions are to be enforced by the projection on each triangle. Each of the 
degrees of freedom generates a single condition (2.1 5b). The fourth is provided 
by the conservativity condition (2.15c). First, the projection Atlh enforces 
each of the conditions (2.15b) independently of each other. This constitutes 
three simple one-dimensional projections. After this step, the conservativity 
condition (2.1 5c) is enforced via a trivial arithmetic computation which leaves 
the conditions (2.1 5b) satisfied. 

It is important to stress the fact that the choice of the degrees of freedom as 
the values at the midpoints of the edges of each triangle increases the compu- 
tational efficiency of the method. It allows us to save time in the evaluation of 
the integral over the triangles, and it allows us to define a simple and efficient 
local projection Aflh . 

We are going to test the RKDG 1 method described above in three examples. 
We point out that we compute the L' error on the triangle T by evaluating the 
error at the barycenter. The L1 (T) error is obtained by multiplying that value 
by the area of the triangle. The errors are evaluated over the whole domain, 
unless otherwise stated. The L' error is divided by the area of the domain 
over which it has been computed. We also need to comment about the graphic 
outputs. A given function v, which is typically either the exact solution, or 
its finite element approximation, is represented graphically as a surface (and 
its level curves). To obtain such a surface, we evaluate the function u at each 
of the points of a 70 x 70 uniform grid. Then, we interpolate them linearly. 
Finally, in the figures in which we display cuts along the diagonal of the domain 
Q, the solid line always represents the exact solution. The '+' represent the 
approximate solution. A single '+' per triangle has been displayed. 

Example 1. In this problem, we test the capability of the method to achieve 
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uniform second-order accuracy away from discontinuities. We consider the two- 
dimensional version of Burgers' equation with periodic boundary conditions: 

31 u+ ax (u'/2) +ay(u /2) = 0 in (0, T) x Q, 
(3.1) 1 1. 

u(t = 0, x, y) = + -sin(r(x + y)), (x, y) E Q. 
2 

where the domain Q is the square [-1, 1] x [-1, 1]. We take M = 20, and 
b = 3 in (2.15b). The triangulations h, unif are like the one displayed on 
Figure 1 (top). (Notice that in that figure h = 1/16.) 

At T = 0.1 the exact solution is smooth, see Figure 2. In Table 2, the L1 
and L?? errors at T = 0.1 are displayed. The approximate solution (associated 
with the triangulation of Figure 1 (top)) is shown in Figure 3 and Figure 6 (top). 
Uniform second-order accuracy has been achieved. 

At T = 0.45, the exact solution presents a discontinuity curve, see Figure 
4. The errors away from the discontinuity curve are shown in Table 3. The 
approximate solution is displayed in Figure 5 and Figure 6 (bottom). Again, 
uniform second-order accuracy has been achieved away from discontinuities. 
Notice how the discontinuity curve has been captured within a single element, 
see Figure 6 (bottom). 

Example 2. In this problem, we test the boundary treatment of the method. We 
consider the preceding equations, but this time we impose a boundary condition: 

atu + Ox(u2/2) + (u2 /2) = 0 in (0, T) x Q, 

(3.2) u(t = 0, x, y) = + sin(7r(x +y)), (x, y) E Q, 
4 2 

u(t, x, y) = v(t, x, y), (x, y) E O0, 

where v is the exact solution of problem (3.1). See [1] for a suitable interpre- 
tation of the boundary conditions. The exact solution of this problem coincides 
with the one of problem (3.1). Notice that since we use a pure upwind mono- 
tone flux, the outflow boundary condition, even if provided redundantly, is 
never used in the computation. All the discretization parameters are the same 
as in the preceding example. 

The results are indistiguishable from the ones of the preceding problem. The 
L' errors are the same as those displayed in Tables 2 and 3. Thus, the boundary 
treatment does not introduce any spurious oscillation, maintains the maximum 
principle, and does not destroy the uniform accuracy of the method. 

Example 3. In this last example we test the convergence of the method in 
the case of nonconvex fluxes. We also test the ability of the method to take 
advantage of nonuniform triangulations. Consider the initial-boundary value 
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problem: 
Atu + ax(u) + ayf(u) = 0 in (0, T) x Q, 

(7/8 forx>Oandy>0, 

(3.3) u(t = 0 x, Y) 1/4 for x < O and y < 0, 
0/ for x <Oand y <0, 

0 for x > O and y < 0, 
u(t, x, y) = v(t, x, y), (x, y) E aQ, 

where f(u) = 5(1/8+(u- 1/2)3), Q is the square [-1, 1] x [-1, 1], and v is 
the exact solution of the corresponding Riemann problem. The exact solution 
has been computed following [29], and is displayed in Figure 7 for T = 1 . We 
take M = 0 and b = 3. In Table 4, we can see that convergence to the entropy 
solution is achieved. 

In Figures 8, 9, and 10 we display the approximate solutions. The approxi- 
mate solution of Figure 8 is defined on a triangulation whose triangles do not 
match the discontinuity curve. Nevertheless, the curve has been captured within 
two triangles, except at its cusp. The approximate solution of Figure 9 has, on 
the contrary, been defined on a triangulation designed to fit the discontinuity 
curve, and to better resolve the structure of the cusp. An excellent capture of 
discontinuities can be observed. See also Figure 10. In Table 5 we compare the 
L errors of the approximate solutions under consideration. 

In conclusion, the numerical results show that (i) the RKDG 1 method is 
uniformly second-order accurate away from discontinuities, that (ii) it does take 
advantage of suitable (nonuniform) triangulations, that (iii) it can resolve very 
complicated structures of the discontinuity curves, and that (iv) it converges to 
the entropy solution, even when the fluxes are nonconvex. 

4. CONCLUDING REMARKS 

This paper is the fourth of a series, [5, 6, 7], in which we introduce, ana- 
lyze, and test a new class of methods for numerically solving nonlinear hyper- 
bolic conservation laws. These methods are called Runge-Kutta Discontinuous 
Galerkin Methods. In the previous papers, the one-dimensional case, d = 1, 
has been considered. In this paper we consider the multidimensional scalar 
case. A general theory for these schemes has been developed. These methods 
can easily handle complicated geometries, for they can be defined using quite ar- 
bitrary triangulations. For the so-called uniform triangulations, these methods 
are formally uniformly (k + 1)st-order accurate (when At = O(Ax) ). They can 
easily handle the boundary conditions. They also verify a suitable maximum 
principle for general nonlinearities, if the triangulations are B-triangulations, a 
concept introduced in this paper. The methods are easy to code, and show high- 
order uniform accuracy, good capture of discontinuity curves, and convergence 
to the entropy solution, even for nonconvex nonlinearities. Extensive computa- 
tional experiments for the scalar case, as well as extensions to two-dimensional 
systems, constitute the subject of ongoing work. 
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TABLE 2 
Example 1. Initial value problem (3.1), T = 0.1. 

I I 1 f1 
h o104 error order l'04 error order 

1 1/2 1 500.92 1 - I 248.55 
1 1/4 1 118.20 1 2.08 1 61.27 1 2.02 
1 1/8 1 37.27 1 1.67 1 15.04 1 2.03 

1/16 8.65 2.11 3.73 2.01 
1/32 2.20 1.97 0.94 1.99 

TABLE 3 
Example 1. Initial value problem (3.1), T = 0.45. The errors are 

computed in the region [-0.2, 0.4] x [-0.2, 0.4]. 

Loo LI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [ T 
r + 1 ] 

h 104.error order 104 .error order 

1/2 63.71 23.61 
1/4 8.38 2.93 2.52 3.05 
1/8 3.92 1.10 0.72 1.98 

1/16 0.92 2.09 0.17 2.10 

1/32 0.22 2.07 0.03 2.39 

I _ _ _ [ _ _ I _ __ I _ 
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TABLE 4 
Example 3. Initial-boundary value problem (3.3), T = 1. 

1 11 

h | 0 1 0 error order 

1/2 7.17 - 

1/4 4.73 0.60 
1/8 2.92 0.69 

1/16 1.71 0.77 
1/32 0.99 0.78 

TABLE 5 
Example 3. Initial-boundary value problem (3.3), T = 1. 

Effect of the triangulation on the overall L1 error. 

triangulation number of elements | 101 * error 

gh=1/16,unif 2048 1.71 
j ;, nOnUnif | 2048 0.89 

A=1/32,Unif | 8192 0.99 
_ _ _ __3 u if _ _ _ _ . _ _ 
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FIGURE 1. The triangulations: $=1/16, unif (on top) and gh nonunif ' 

Both triangulations have 32 x 32 x 2 = 2048 elements. 
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FIGURE 2. The exact solution. Initial value problem (3.1), T = 0.1. 
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FIGURE 3. The approximate solution. Initial value problem (3.1), 
T = 0.1. 

The triangulation is 4-1/16,unif' cf = 0.21 . 
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FIGURE 4. The exact solution. Initial value problem (3.1), T = 0.45. 
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FIGURE 5. The approximate solution. Initial value problem (3.1), 
T= 0.45. 

The triangulation is gh=1/16,unif ef l = 0.21. 
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FIGURE 6. Initial value problem (3.1). Cut along the diagonal. 
Top: T=0.I, bottom: T= 0.45. 
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FIGURE 7. The exact solution. Initial value problem (3.3), T = 1 . 
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FIGURE 8. The approximate solution. Initial-boundary value problem 
(3.3), T = 1 . The triangulation is 51/16 unif l efi = 0.59. 
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FIGURE 9. The approximate solution. Initial-boundary value problem 
(3.3), T = 1 . The triangulation is 5h, nonzif' cfl = 0.59 . 
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FIGURE 10. Initial-boundary value problem (3.3). Cut along the diagonal. 
Top: triangulation 5-71/16 unif ' bottom: triangulation - nonunif. 
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