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ABsTRAcEr The propagation of harmonic pressure waves through a Newtonian fluid
contained within a thick-walled, viscoelastic tube is considered as a model of arterial
blood flow. The fluid is assumed to be homogeneous and Newtonian, and its motion
to be laminar and axisymmetric. The wall is assumed to be isotropic, incompressible,
linear, and viscoelastic. It is also assumed that the motion is such that the convective
acceleration is negligible. The motion of the fluid is described by the linearized form
of the Navier-Stokes equations and the motion of the wall by classical elasticity
theory. The frequency dependence of the wall mechanical properties are represented
by a three parameter, relaxation-type model. Using boundary conditions describing
the continuity of stress and velocity components in the fluid and the wall, explicit
solutions for the system of equations of the model have been obtained. The longi-
tudinal fluid impedance has been expressed in terms of frequency and the system
parameters. The frequency equation has been solved and the propagation constant
also expressed in terms of frequency and system parameters. The results indicate
that the fluid impedance is smaller than predicted by the rigid tube model or by
Womersley's constrained elastic tube model. Also, the velocity of propagation is
generally slower and the transmission per wavelength less than predicted by Womers-
ley's elastic tube model. The propagation constant is very sensitive to changes in the
degree of wall viscoelasticity.

INTRODUCTION

The problem of blood flow and wave propagation in the arterial system has stimu-
lated the interest of physiologists and mathematicians for years. Its fundamental
importance for the complete understanding of the control and regulation of cardio-
vascular function is well-known. Much of the impetus for present day research on
these problems can be traced to the pioneering work of Witzig (1914) and later to
the work of Womersley (1955, 1957). Other significant contributions to the theory
of "oscillatory blood flow" have been made by Morgan and his coworkers (1954,
1955), Taylor (1959a), Atabek and his coworkers (1961, 1966), Whirlow and Rou-
leau (1965), and Mirsky (1967). Generally, most of these workers dealt with models
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that were either extensions or modifications of Womersley's original work (1955).
Thus, the contributions of Womersley represent the best attempt to date in de-
veloping a complete, practical, unified theory of arterial blood flow and pressure
propagation.
There are, however, several significant points of discrepancy between the predic-

tions of Womersley's theory and experimental data published in the literature
(Taylor, 1959b; Fry et al., 1964; Klip, 1962). Because of these contradications, this
work was undertaken in order to develop, as fully as possible, a complete and re-
alistic hemodynamic model, which could be tested experimentally.

ANALYTICAL MODEL

The model we have developed considers the propagation of harmonic traveling
waves through a Newtonian fluid contained within a cylindrical, thick-walled, visco-
elastic tube. The motion of the fluid is assumed to be described by the linearized,
axisymmetric form of the Navier-Stokes equations, and the motion of the tube is
assumed to be given by classical elasticity theory. Using the boundary conditions
coupling the motion of the fluid and tube, this system of equations has been solved
explicitly.

Equations of Motion of the Fluid

For the case of a viscous, incompressible fluid the equations of motion are governed
by the momentum equations and the equation of continuity. For axisymmetric
motion, these equations are given in cylindrical coordinates by (Pai, 1956):

dvr_ ladp av i x
(1)At p ar ar2 rar ar x2

49v" 1 ap a2v7 IcV7 ' c
avz~ ~~=_ -,P+ -dr + r dr + (x2 (2)

d + d + v 0=O (3)

where p is the fluid density, v the fluid kinematic viscosity, p the pressure, v. and
v. the radial and axial components of velocity, respectively, r the radial coordinate,
x the axial coordinate, and t the time.

In the development of these equations it has been assumed that the fluid motion is
(a) laminar, (b) axially symmetric, and (c) contains negligible convective accelera-
tion. Also, it has been assumed that the fluid is incompressible, homogeneous, and
Newtonian.
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Equations of Motion of the Tube

The tube, representing the arterial wall, is assumed to be thick-walled; linear, visco-
elastic; and isotropic, incompressible. The equations of motion of an isotropic
material are given in cylindrical coordinates by (Love, 1944):

Pw.Ur =2
2u lOu u O2u,r 1 A

*~~~2 ++ O + *(4)IA* Clt2 dr2 r clr t2 CX2 A* clr

Pto O2U2 2us 1 ausU 2u2 1 OQ
* at2 Or2 r cr Ox2 *O* (r

+ dur + U-r = (6)

where pu, is the density of the wall material, ,u* is the modulus of rigidity of the wall,
Q is a finite pressure, and u,; and u, are the axial and radial components of the wall
displacement, respectively. Equation 6 represents the condition of incompressibility.

Boundary Conditions

The boundary conditions, coupling the fluid and tube motions, involve the con-
tinuity of stress and velocity components at the fluid-tube interface and may be
specified as follows: (a) the fluid velocity components are finite at r = 0; (b) the
axial and radial velocity components of the fluid and wall are continuous at the
boundary r = a; (c) the stress components of the fluid and wall are continuous at
the boundary r = a; and (d) the stress components in the wall at r = b are zero.
Stated mathematically these conditions are equivalent to (Klip, 1962)

V7=0° r =0 (7)

d vx= @, r = (8)
Olr

v, = dtr @? r =a (9)

V r= a (10)
at

dxc{r} {x+ X @ r= a (11)

-p + 2A = _aQ + 2,u* d r =a (12)Or Or
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a{du,+ a}U., 0 @, r =b (13)

-Q+ 2,* = @ rU= b. (14)

Solution of the System of Equations

We seek solutions of this system of equations for the case of the propagation of
forced pressure waves in the form of a finite series of harmonic terms. The pressure
and velocities are assumed to be of the form

N

p(r, x, t) = nnP(r) exp j(nwt - -ynx) (15)
n-0

N

V.(r, x, t) = nnV,(r) exp j(nwt - 'YnX) (16)

N

v.(r, x, t) = n V., (r) expj(nwt - ynX) (1)7
n=O

where w is the angular frequency, n the harmonic number, 'Yn the propagation
constant of the nth harmonic, and N a constant.
The solutions to equations 1-3, subject to the conditions 15-17 and satisfying the

boundary conditions in equations 7 and 8, have been given by Witzig (1914) and
may be expressed as

N

vz = - 2jtA1yn>Jo(j7yr) + A2Kx,Jo(jfnr)} expj(nct - ynx) (18)
n=O

N

Vr = - E jn4A1JI(jynr) + A2JI(jiKnr)I exp j(nwt - 'YnX) (19)
n=O

N

p = F, A3Jo(jrYnr) exp j(nwt - 'YnX) (20)
n=O

where Al, A2, and A3 are complex constants of integration, Jo and J1 are Bessel
functions of the first kind, and Kcn is defined by

Kn2 j_ + -n2 (21)
v,
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Also A1 and A3 are related according to (Karreman, 1952)

A1= J A3. (22)nwp

The solutions for the displacement components are assumed to be of the form

N

ur(r, x, t) =E nU7(r) exp j(ncwt - y.x) (23)
n=O

N

u,(r, x, t) = nnU(r) exp j(ncot - yx). (24)

The solution of equations 4-6 are obtained in a manner similar to that used for the
velocity components and may be expressed as

N

8 = - jnI{A4JI(knr) + B4Y1(knr) + A5J1(jy.r) + B6Yl(jynr))n=O

X exp j(nwt - ynx) (25)

N

uX = E-{knA4Jo(knr) + knB4YO(knr) + jy,A5Jo(j'Ynr) + jYnBsYo(i'Ynr)1n=O

X exp j(nwt - 7nx) (26)

N

= E {A6JO(jyjnr) + B6YO(jyjnr)} expj(nct - 'Yx) (27)
n=O

where the A's and B's are complex constants, J0 and J1 are Bessel functions of the
first kind, Yo and Y1 are Bessel functions of the second kind, and kn is defined as

2 2

kn = -WPW_ 2 (28)

Also A5 and Br are related to A6 and B6 according to

A6 = n2co2pwAs; B6 = n2W2pwB6. (29)

In order to complete the solutions of the equations of motion, they must be sub-
stituted into the boundary conditions. Doing this we obtain six simultaneous equa-
tions in the six unknown coefficients A1, A2, A4, A5, B4, and B5. In order that the solu-
tions to equations 18-20 and 25-27 be nontrivial, it is required that the determinant of
the coefficients of the unknown constants be zero (Wylie, 1960). By expanding the
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determinant, given by equation 30 (see facing page ), it is possible to obtain a rela-
tionship expressing the propagation constant as a function of frequency and system
parameters, the so-called frequency equation. The roots of the propagation constant
from equation 30 are complex and can be assumed to be of the form z = 3 + ja.
Here j3 is the wave number, a the attenuation coefficient, and the phase velocity is
given by c, = c/lp.

Since the system of equations obtained from the boundary condition is homo-
geneous, the unknown constants cannot be calculated independently. Instead, they
may be interrelated according to the relations (Wylie, 1960)

A1 _ A2 A4 B4 A5 _ B5
Ali A12 A13 A14 A15 A16

where Akl is the cofactor obtained by eliminating the kth row and Ith column of
equation 30. Using these relations, the nth harmonic of the fluid velocity components
becomes

I?PAJ{O(j7nr) - A Jo(jKnr) (32)jflcop 'Yn All 32

-= RA{Jl(jYnr) - JI (jKnr) } (33)

where use has been made of equation 22. The axial flow rate is obtained by integrat-
ing the axial velocity over the cross-section of the tube and is given by

Qn 1ra2 jYnA3Jo(jYna) 2J1(jYna) _ 2Ji(j,,na) A12 (34)
jncop j7naJo(j7na) j7naJo(j7na) A1

The term in the numerator outside the bracket is equal to the negative of the axial
pressure gradient, so that the nth harmonic of the hydraulic fluid impedance is given
by

jnwp
Zn = 2 {J2n(jYna) J2aJ(jKna) An}2 (35)

7raj7naJO(jYna)' jYnaJO(j^Yna) Anl

As previously mentioned, the frequency equation expresses the dependence of the
propagation constant on frequency and the system parameters and is obtained by
determining the value of 'Yn that makes the determinant in equation 30 zero. As a
first approximation of the solution of equation 30, series expansions were used to
approximate the Bessel functions of arguments j'Yna, j7nb, kna, and kgb, since all of
these values are generally much less than unity, about 103. Using these approxima-
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tions, solutions of the frequency equation were obtained. Later, when the complete
frequency equation was solved using an iterative approach, it was found that these
approximations resulted in a substantial error in the propagation constant in some
cases. The approximation method was then abandoned and the iterative approach
used thereafter.

RESULTS

The frequency variations of the theoretical fluid impedance given by equation 35 is
shown in Fig. 1. The fluid impedance has been nondimensionalized by dividing by
the Poiseuille resistance, and the abscissa is the amplitude of the nondimensional
parameter z. Also shown in the figure for comparison is the nondimensional fluid

0.20-
N

U;
10

O- f

.j ~ /

0 a ~~~ 10 lB
NONODENSL FREQUENCY, IZI

FIGURE 1 Comparison of the dependence of theoretical nondimensional fluid impedance
from present model (continuous line) with that of rigid tube model (long dashed line) and
Womersley's elastic tube model (short dashed line) on z.

impedance of the rigid tube model (Crandall, 1927) and of Womersley's elastic tube
model (1955). Fig. 2 shows the frequency variation of thenondimensional fluid resist-
ance and inductance. Similar values from the rigid tube and Womersley's elastic
tube model are shown for comparison. The theoretical impedance functions in
Figs. 1 and 2 as well as in subsequent figures were derived from equation 35 using
the following "typical" values for the various parameters: a = 0.2 cm, b/a = 1.15,
IA = 3.3 centipoise, p = 1.056, and p,,O = 1.1 g/cm3, IAo = 6 X 106 dynes/cm2, XI =
35 msec, and r = 1.3. The last three parameters are viscoelastic constants and
their significance will be discussed more fully in succeeding paragraphs. The de-
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FiGuRE 2 Comparison of the dependence of theoretical nondimensional fluid resistance
(upper half) and fluid inductance (lower half) from present model from rigid tube model,
and Womersley's elastic tube model on z.

pendence of the fluid impedance on the inner tube radius, the fluid viscosity and
density, and frequency are eliminated by nondimensionalizing the fluid impedance
by the Poiseuille resistance and considering its variations with respect to the pa-

rameter z.' The fluid impedance is not significantly altered for values of the static

I While z is actually proportional to the square root of frequency, it will be referred to herein as the
nondimensional frequency as a matter of convenience.
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modulus of rigidity, Ao , between 106 and 108 dynes/cm2 (typical range for the fem-
oral artery) or for any nominal values of the two time constants. There is a small
dependence of the nondimensional fluid impedance on the ratio of the external to
the internal radius (b/a) at low values of z. Table I shows the value of the non-
dimensional fluid impedance at six different values of z, for b/a = 1.1 and 1.2. These
two levels represent approximately the limits of the radius ratio for the femoral
artery.
The amplitude and phase of the nondimensional fluid impedance for values of z

from 0.1 to 20 in steps of 0.1 are given in Table II. The modulus of rigidity was taken
as 107 dynes/cm2 and the radius ratio as 1.15. Linear interpolation for intermediate
values of z is accurate to better than 0.1 %.

TABLE I

DEPENDENCE OF THE NONDIMENSIONAL FLUID
IMPEDANCE ON THE RADIUS RATIO (b/a)

b/a = 1.1 b/a = 1.2
z

Amplitude Phase Amplitude Phase

2 1.11 30.0 1.13 30.4
3 1.63 54.9 1.66 54.7
5 3.87 73.3 3.90 73.0
7 7.15 78.9 7.19 78.7
10 13.94 82.7 13.99 82.5
15 30.26 85.4 30.32 85.3

The amplitudes are nondimensionalized using the Poiseuille
resistance; the phase angles are given in degrees.

It has been shown elsewhere (Cox, 1968)2 that the frequency-dependent mechani-
cal properties of the femoral artery can be represented approximately by a three pa-
rameter model given by the following equation,

,A JA1 +]COX2 (36)
1 + Jcoxl

where Ao is the static modulus of rigidity, 1A* the dynamic modulus, and X1 and X2 are
the relaxation and retardation time constants, respectively. This model is based
upon experimental evidence which has shown that the dynamic elasticity of arteries
increases with frequency from the static modulus, at first moderately and then more
slowly, finally attaining a high frequency asymptotic value above 10 Hz (Bergel,
1960). Also, it has been shown that the viscous modulus of arteries decreases with
increasing frequency. The model given by equation 36 exhibits this sort of behavior.

2 Cox, R. H. 1968. Submitted for publication.
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TABLE II

VARIATION OF THE AMPLITUDE AND PHASE OF THE THEORETICAL
NONDIMENSIONAL FLUID IMPEDANCE WITH Z

Z Amplitude Phase Z Amplitude Phase Z Amplitude Phase Z Amplitude Phase

0.1 1.000 0.07 5.1 4.032 73.53 10.1 14.231 82.71 15.1 30.680 85.34
0.2 1.000 0.31 5.2 4.175 73.93 10.2 14.499 82.79 15.2 31.073 85.38
0.3 1.000 0.70 5.3 4.320 74.31 10.3 14.769 82.87 15.3 31.468 85.41
0.4 1.000 1.24 5.4 4.468 74.67 10.4 15.042 82.95 15.4 31.866 85.44
0.5 1.000 1.94 5.5 4.619 75.02 10.5 15.317 83.02 15.5 32.266 85.47
0.6 1.001 2.79 5.6 4.772 75.35 10.6 15.595 83.10 15.6 32.669 85.51
0.7 1.002 3.79 5.7 4.927 75.66 10.7 15.875 83.17 15.7 33.074 85.54
0.8 1.003 4.96 5.8 5.085 75.97 10.8 16.158 83.24 15.8 33.482 85.57
0.9 1.004 6.27 5.9 5.245 76.26 10.9 16.443 83.31 15.9 33.892 85.60
1.0 1.006 7.74 6.0 5.408 76.54 11.0 16.731 83.38 16.0 34.305 85.63
1.1 1.010 9.36 6.1 5.573 76.80 11.1 17.021 83.45 16.1 34.721 85.66
1.2 1.014 11.14 6.2 5.741 77.06 11.2 17.313 83.52 16.2 35.138 85.69
1.3 1.019 13.07 6.3 5.911 77.31 11.3 17.609 83.58 16.3 35.559 85.72
1.4 1.026 15.14 6.4 6.084 77.55 11.4 17.906 83.64 16.4 35.982 85.74
1.5 1.034 17.36 6.5 6.259 77.81 11.5 18.210 83.70 16.5 36.407 85.77
1.6 1.045 19.72 6.6 6.437 78.00 11.6 18.509 83.76 16.6 36.835 85.80
1.7 1.059 22.20 6.7 6.617 78.22 11.7 18.815 83.82 16.7 37.265 85.83
1.8 1.075 24.80 6.8 6.800 78.43 11.8 19.122 83.88 16.8 37.698 85.85
1.9 1.095 27.49 6.9 6.985 78.63 11.9 19.432 83.94 16.9 38.133 85.88
2.0 1.119 30.24 7.0 7.173 78.82 12.0 19.745 84.00 17.0 38.571 85.91
2.1 1.148 33.04 7.1 7.363 79.01 12.1 20.060 84.05 17.1 39.011 85.93
2.2 1.182 35.83 7.2 7.555 79.19 12.2 20.378 84.11 17.2 39.454 85.96
2.3 1.221 38.59 7.3 7.751 79.37 12.3 20.698 84.16 17.3 39.900 85.98
2.4 1.266 41.28 7.4 7.948 79.54 12.4 21.021 84.21 17.4 40.347 86.01
2.5 1.316 43.88 7.5 8.148 79.70 12.5 21.346 84.26 17.5 40.798 86.03
2.6 1.372 46.35 7.6 8.351 79.86 12.6 21.674 84.31 17.6 41.251 86.06
2.7 1.434 48.68 7.7 8.556 80.02 12.7 22.004 84.36 17.7 41.706 86.08
2.8 1.501 50.86 7.8 8.764 80.17 12.8 22.337 84.41 17.8 42.164 86.11
2.9 1.572 52.89 7.9 8.974 80.31 12.9 22.672 84.46 17.9 42.624 86.13
3.0 1.649 54.78 8.0 9.187 80.45 13.0 23.010 84.51 18.0 43.087 86.15
3.1 1.730 56.52 8.1 9.402 80.59 13.1 23.350 84.55 18.1 43.553 86.18
3.2 1.815 58.12 8.2 9.620 80.73 13.2 23.693 84.60 18.2 44.020 86.20
3.3 1.904 59.60 8.3 9.840 80.86 13.3 24.038 84.65 18.3 44.491 86.22
3.4 1.996 60.96 8.4 10.063 80.98 13.4 24.386 84.69 18.4 44.964 86.24
3.5 2.093 62.22 8.5 10.288 81.11 13.5 24.736 84.73 18.5 45.439 86.26
3.6 2.192 63.37 8.6 10.516 81.23 13.6 25.089 84.78 18.6 45.917 86.29
3.7 2.295 64.44 8.7 10.746 81.34 13.7 25.444 84.82 18.7 46.398 86.31
3.8 2.402 65.42 8.8 10.979 81.46 13.8 25.802 84.86 18.8 46.880 86.33
3.9 2.511 66.34 8.9 11.214 81.57 13.9 26.162 84.90 18.9 47.366 86.35
4.0 2.623 67.18 9.0 11.451 81.68 14.0 26.525 84.94 19.0 47.854 86.37
4.1 2.738 67.97 9.1 11.692 81.78 14.1 26.890 84.98 19.1 48.344 86.39
4.2 2.856 68.70 9.2 11.934 81.89 14.2 27.258 85.02 19.2 48.837 86.41
4.3 2.976 69.38 9.3 12.180 81.99 14.3 27.628 85.06 19.3 49.333 86.43
4.4 3.099 70.02 9.4 12.427 82.08 14.4 28.001 85.09 19.4 49.831 86.45
4.5 3.225 70.61 9.5 12.677 82.18 14.5 28.376 85.13 19.5 50.331 86.47
4.6 3.353 71.17 9.6 12.930 82.27 14.6 28.754 85.17 19.6 50.834 86.49
4.7 3.484 71.70 9.7 13.185 82.36 14.7 29.134 85.20 19.7 51.340 86.51
4.8 3.617 72.19 9.8 13.443 82.45 14.8 29.517 85.24 19.8 51.848 86.53
4.9 3.753 72.66 9.9 13.703 82.54 14.9 29.902 85.27 19.9 52.358 86.55
5.0 3.891 73.11 10.0 13.966 82.62 15.0 30.290 85.31 20.1 52.871 86.56
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FIGURE 3 Dependence of the dynamic elastic modulus ratio (IA'/po) and dynamic viscosity
ratio (coW"/puo) on nondimensional frequency (,Xi) for various values of time constant
ratio, T.
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The frequency variation of the real and imaginary parts of the theoretical modulus
of rigidity are shown in Fig. 3. Defining ,u* = ,u + jco,u', the upper panel shows the
dependence of the nondimensional elastic modulus (u'/M1o) on the nondimensional
frequency (wX,) at four different values of the ratio of time constants, 7 = X2/X1-
The dependence of the wall viscosity ratio (w,.u"/to) on nondimensional frequency is
shown in the lower panel for the same values of r. It should be noted that the fre-
quency variation of the real and imaginary parts of the complex modulus are not
independent but are coupled according to the definition of IA* in equation 36.

1.00

~-

0x0.25 /

0 5 10 15
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FIGuRE 4 Comparison of the dependence of the phase velocity (Cil/Co) of the first root from
present model (continuous line) and from Womersley's constrained tube (long dashed line)
and elastic tube models (short dashed line) on z.

The frequency equation is quadratic in y2, having four solutions for y, two of
which represent forward propagating waves. The frequency dependence of the phase
velocity of the first root is shown in Fig. 4 for the case of an elastic tube (T = 1.0).
Both the phase velocity and frequency are nondimensionalized in the graph, the
former by dividing by the inviscid phase velocity, co. The inviscid phase velocity is
obtained by setting Iu equal to a very small number, about 10-8 cp, and then solving
the frequency equation from 30. Also shown in the figure for comparison are the
phase velocities predicted by Womersley's constrained elastic tube model (1957) and
Womersley's freely moving elastic tube model (1955). The frequency dependence
of the transmission per wavelength for the first root is shown in Fig. 5. The trans-
mission per wavelength is given by eax, where a is the attenuation coefficient for the
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FIGURE 5 Comparison of the dependence of transmission per wavelength of first root of
present model (continuous line), Womersley's constrained tube (long dashed line), and
elastic tube models (short dashed line) on z.
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FiGURE 6 Dependence of phase velocity of first root (cil/c) on z for various values of time
constant ratio, T.
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FiouRi 7 Dependence oftransmission per wavelength of first root on z for various values of
time constant ratio, r.
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FiGuRE 8 Dependence of phase velocity of second root (c2/cO) on z for various values of
time constant ratio, r.
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FIGURE 9 Dependence oftransmission per wavelengthof second root on z forvarious values
of time constant ratio, T.

first root of the frequency equation. Corresponding values of the transmission per
wavelength from Womersley's two models are also shown for comparison.
The variation of the phase velocity of the first root with the frequency for the case

of different degrees of wall viscoelasticity is shown in Fig. 6. The variation of the
transmission per wavelength of the first type of wave with frequency, for various
levels of wall viscosity are shown in Fig. 7. Again, increasing the amount of wall
viscosity (r) affects both the phase velocity and the attenuation because of the cou-
pling between the real and imaginary parts of the complex modulus of rigidity. The
phase velocity and transmission per wavelength of the second type of waves are
shown in Figs. 8 and 9, respectively, as a function of frequency and wall visco-
elasticity.

DISCUSSION

In the formulation of hemodynamic models for the purpose of representing the pul-
satile flow of blood in arteries, it is necessary to apply certain simplifying assump-
tions to obtain solutions of the resulting system of differential equations. The
assumptions that have been employed in the derivation of the model presented
herein have been listed briefly in the analytical section, and some comments on their
validity seem appropriate. Concerning the Navier-Stokes equations, it has been
assumed that blood flow is linear and that the convective acceleration terms can be
ignored. Morgan and Kiely (1954) and others have shown that the nonlinear terms
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in the Navier-Stokes equations can be neglected with respect to the linear terms
provided V-, << c and a << X, where V. is the average axial velocity, c the phase
velocity, a the inner tube radius, and X the wavelength of the pressure wave. Using
representative values of these parameters for the aorta (Attinger, 1965) (V. = 25
cm/sec, a = 1 cm, and c = 500 cm/sec), Vs/c = 0.05 and a/X = 0.02 at a fre-
quency of 10 Hz. For the case of the femoral artery (V. = 5 cm/sec, a = 0.2 cm,
and c = 1000), Vs/c = 0.005 and a/X = 0.002 at a frequency of 10 Hz. Thus, both
ratios decrease peripherally and the values for the femoral (at least) seem small
enough for the assumption to be valid.

Implicit in the use of the Navier-Stokes equation is the assumption that blood is a
Newtonian fluid. It has been shown directly by several authors (Haynes and Burton,
1959; Replogle et al., 1967) that over a wide range of shear rate, blood is not New-
tonian. However, these authors have concluded that at the normal, physiologic
levels of wall shear stress existing in larger arteries the shear stress-shear rate curves
are linear, and blood behaves as a Newtonian fluid.
The boundary conditions, equations 7-14, were applied at the mean rather than

at the instantaneous values of the inner and outer radii. This amounts to a lineariza-
tion of the boundary conditions. Morgan and Kiely (1954) have shown that the
error introduced by this approximation is of the same magnitude as that associated
with the linearization of the Navier-Stokes equations. Again this effect will be small
provided a << X and u, << a, where u, is the radial displacement. The former has
already been shown to be small and the latter has been shown experimentally to be
small (Peterson et al., 1960). Thus, the assumption also appears to be valid.

Despite the fact that a large number of different hemodynamic models have been
published in the literature, only two quantitatively different models for the fluid
impedance have been derived explicitly. One is the rigid tube model first derived by
Witzig (1914), and the other is the elastic tube model of Womersley (1955). In a
number of models, the fluid impedance relationships were not derived (Morgan and
Kiely, 1954; Klip, 1962), in some cases numerical solutions were indicated (Streeter
et al., 1963; Barnard et al., 1966; Mirsky, 1967), while in other cases the assumptions
employed were such that the fluid impedance reduced to the same form as the rigid
tube model (Womersley, 1957; Jager, 1965; Whirlow and Rouleau, 1965).
There are some areas in which there are significant differences between these

former two explicit fluid impedance models, as well as with the model derived herein.
Womersley's elastic tube model predicts a fluid impedance that is lower than that
of the rigid tube, while the model we have derived predicts a fluid impedance greater
than Womersley's elastic tube model but less than the rigid tube model at all values
of z. It is worth noting that for an infinite elastic modulus (rigid wall), the fluid
impedance of Womersley's model and our model are identical with that of the rigid
tube model.
The theoretical values of the fluid resistance and inductance (shown in Fig. 2) also

indicate significant differences between the three models.
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The elastic tube phase velocity from the present model shows significant dif-
ferences compared with the phase velocity predicted by Womersley's models (1955,
1957), being lower than the latter over most of the frequency range of interest. The
transmission per wavelength from our model for the same case also possesses a
significantly different behavior from the Womersley models.
The effects of viscoelasticity on the phase velocity and transmission presented in

Figs. 6 and 7 are in agreement with intuition; viscoelasticity increases the phase
velocity and decreases the transmission. The variations of the phase velocity and
transmission per wavelength of the second type of waves shown in Figs. 8 and 9 are
similar to those found by Atabek and Lew (1966) and Mirsky (1967).
While the field of theoretical hemodynamics has witnessed the presentation of

a large variety of mathematical models, little experimental data exist in the litera-
ture for use in the verification of such models. The validity of the rigid tube model
has been demonstrated several times by experiments utilizing flow in rigid tubes
(Thurston, 1952; Richardson and Tyler, 1929), but the applicability of this model to
the arterial system is still to be proven. In a subsequent paper, the model developed
in this paper will be tested on measurements of fluid impedance and propagation
characteristics from the femoral artery of anesthetized dogs.

SYMBOLS

a, b Inner and outer tube radii.
Ai, Bi Complex integration constants.
Cl , c2 Phase velocities of first and second roots of frequency equations.
cO Inviscid fluid phase velocity.
i Complex number, v'~i7
Ji, Y, Bessel functions of first and second kind of order i.
k,n Complex tube parameter.
n Harmonic number.
p Intra-arterial fluid pressure.
Qn Nth harmonic of axial flow.
r, x Radial and axial coordinate.
Rp Poiseuille resistance, Rp = 8 ,4/ra4.
t Time.
u,, u_, Radial and axial components of tube displacement.
VI Average axial velocity.
v,, v, Radial and axial components of fluid velocity.
z Nondimensional fluid parameter, z = jKi,a.
Zn Nth harmonic of fluid impedance.
a Attenuation coefficient.
(3 Phase constant.
7 Propagation constant.
K,, Complex fluid parameter.
X Wavelength.
X1, X2 Time constants of viscoelastic waH behavior.
A Fluid viscosity.

BIOPHYSICAL JOURNAL VOLUME 8 1968708



,u* Complex modulus of rigidity, ,u* = IA' + jwjA".
,Ao Static modulus of rigidity.
v Kinematic viscosity, v = IA/p.
P, Pt. Fluid and tube densities.
T Time constant ratio, T = X2/Xi.
w Angular frequency.
Q Tube wall pressure.
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