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A variational treatment of the problem of sound transmission in narrow tubes is
described as an alternative to the more usual analytical procedures, which are timited to
mathematically tractable geometries. This method can be used for any cross-sectional
geometry, as long as the cross-section of the tube is uniform along its length. Very simple
low frequency and high frequency approximate solutions are obtained by the use of ideal-
ized trial functions, and these compare tolerably well to existing analytical solutions for a
variety of geometries.

1. INTRODUCTION

The propagation of sound in a narrow tube containing a viscous, heat-conducting fluid
is a topic that has attracted considerable interest over the years, mainly because of its
peneralization to the acoustics of porous media. The exact solution of Kirchhoff [1] and
Rayleigh [2], for a tube of circular cross-section, has been examined by Zwikker and
Kosten [3], who described a simplified treatment involving various approximations. Tijde-
man [4] has examined these approximatons in some detail and presented numerical solu-
tions to the exact Kirchhoff equations, Biot [5] and Smith and Greenkorn [6] (for example)
have discussed the extension of a single tube model to a bulk porous medium, and intro-
duced the idea of a “‘shape factor”, relating the circular tube solution to that of a tube
having an arbitrary cross-sectional shape. Attenborough [7] has discussed this question
further, and highlighted the role of circular tubes and slits as extreme cases of cross-
sectional geometry. Roh ef al, [B] described a series solution for sound propagation in
rectangular tubes. Stinson and Champoux [9, 10] reported an exact solution for tubes of
equilateral triangular section and defined a new, frequency-independent, shape factor that
is applicable at both low and high frequencies (the apparent need for a frequency-depen-
dent “dynamic shape factor’” had been evident in previous published work, for instance
that of Attenborough [71). It would seem that the geometries for which analytical solutions
are available are restricted to circular, triangular and rectangular shapes. No doubt there
are other configurations, such as the ellipse (the solutions for which would involve Mathieu
functions) that could be treated by analytical means, but the range is clearly rather limited.

Craggs and Hildebrandt [11, 12] carried out a finite element analysis of sound propaga-
tion in tubes of arbitrary cross-section. They addressed themselves only to the solution to
the velocity equation, however, making the assumption that the thermodynamic process
involved in the wave motion was isothermal; this assumption is valid only at relatively
low frequencies. Consequently, their results are of somewhat limited applicability, although
their computed particle velocity contours and effective fluid density and flow resistivity
provide a useful check on other methods of analysis.
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Stinson [[3] discussed the matter of sound propagation in both narrow and wide tubes,
and derived low and high frequency approximations from the exact Kirchhoff solution.
He also presented a ‘““general procedure”, applicable to tubes of arbitrary cross-sectional
shape. The generality disappeared from his analysis, however, as soon as specific geometries
had to be considered, and he restricted himself to circular and rectangular cross-sectional
shapes in discussing applications. In finding selutions to the governing equations, one is
still faced with limitations imposed by the co-ordinate system appropriate to the cross-
sectional geometry of the tube, and the available solutions to the governing equations in
that co-ordinate system.

These limitations are, of course, removed when a numerical solution (such as the finite
element method) is adopted, but the penaity here is a certain loss of “feel” for the physics
of the problem; certainly, it is difficult, from purely numerical results, to obtain approxima-
tions to the solution such as those discussed by Stinson [13] for low and high frequencies.
A “halfway house” between exact solutions and numerical solutions is the sort of approxi-
male result that may be obtained by the use of variational methods. Provided that we
choose a trial function that bears a passing resemblance to the expected form of the exact
solution (and this, of course, is open to speculation in cases in which no exact solution is
known), we may obtain tolerably good results. The attractive feature of a simple varta-
tional solution is that it gives rise to mathematical expressions that may readily be inter-
preted in terms of appropriate physical aspects of the problem.

In this paper both low frequency and high frequency variational solutions are described
for sound propagation in a narrow tube of axially uniform, arbitrary cross-section, contain-
ing a viscous, heat-conducting fluid at rest and with uniform properties. The resuits will
be compared to other solutions for tubes having various cross-sectional shapes.

2. THEORY

2.1. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The transverse velocity components in the tube may be shown to be relatively small
compared to the axial component for narrow tubes at sufficiently low frequencies and, in
the linsarized Navier-Stokes equation for axial components, the terms containing the
divergence of the particle velocity and the second axial derivative of the axial velocity
are also negligible (see, for example, the paper by Stinson [13] for justification of these
assumptions, and also that by Cummings and Chang [14]). This equation may thus be
written in the approximate form

uViu~p dufdt=2ap/ox (1a)

(see Figure 1), where u is the coefficient of dynamic viscosity, g is the fluid density, u is
the axial particle velocity, p is the pressure perturbation (assumed to be uniform across

Figure 1. A uniform tube of arbitrary cross-sectional shape.
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the tube) and V? is the Laplacian operator on the cross-section of the tube. If one takes p
and « to be proportional to exp [i{(@t— ax)], & being the radian frequency and « the axial
wavenumber, then equation (la) becomes

(Vi —io/viu={(—ia/m)p, {1b)

where v is the kinematic viscosity coefficient of the fluid.

In the linearized energy equation, if the second axial derivative of the temperature
perturbation T is discarded as being negligibly small compared to V:T, then this equation
may be written as

KV2T—pC, 3T/ot=—ap/ot, (2a)

where C, 1s the specific heat of the gas at constant pressure and K is the thermal conductiv-
ity. A priori, one may write equation (2a) as

(Vi —iwpC,/K)T=(—iw/K)p. (2b)

Stinson [13] has pointed out that equations (1b) and (2b) are isomorphic. Furthermore,
the boundary conditions imposed in this problem are the same in both equations, viz., u
and T are both zero on C, the tube boundary (since it is assumed that the particle velocity
must be zero at a sohd boundary, and that the thermal capacity of the tube wall is such
that the temperature is constant at the wall). Stinson therefore wrote the two equations in
the form

(Vi~ie/mw=—ie/7, (3)

where w=(wp/ap)u, n=v in the velocity equation, w=(pC,/p)T, n=v/Pr in the tem-
perature equation and Pr is the Prandt! number of the gas. A function F(#) is defined as
{w>, the average of ¥ over R (the tube cross-section), and then the axial wavenumber is
given by the expression

a=(a/){ly —(y = DFv/Pl/Fn}"", 4)

where ¢ is the adiabatic sound speed in the gas.

The problem now is to solve equation (3) on the cross section of the tube, subject to
the boundary condition y =0 on C. The resulting solutions for y yield the distribution of
the axial particle velocity or temperature perturbation (as the case may be) on the cross-
section of the tube. From a combination of both these solutions one finds the axial
wavenumber a by the use of equation (4), and one also can note that

axial attenuaton rate A (dB/unit distance) = —8-6858 Im (a), (5a)
phase speed ¢,= o /Re (). (5b)

2.2, VARIATIONAL FORMULATION
If y=¥(y)exp [i(wt— ax)], one may define a functional @(¥) as

®=(1/2) ” V¥ V¥ +(iw/n) ¥ —(20/7)¥] dR. (6)

By putting §@ =0 and using Green’s formulae, it readily may be shown that the Euler
equations for @ are the governing differential equation (3) and the natural boundary
condition V¥ - n=0, n being the outward unit normal from R, on C (see, for example,
the book by Zienkiewicz and Taylor [15] for a discussion of variational techniques). This
natural boundary condition is not, in fact, the appropriate physical boundary condition
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{¥ =0 on C) which must, therefore, be imposed as a forced boundary condition. This
procedure is valid provided that § ¥ =0 on C. Therefore, the choice of a trial function
must be such that this condition is satisfied. As will be seen, it is not a particularly restrictive
requirement, and it is compatible with a number of trial functions that would seem to be
acceptable in their simplicity and possible resemblance to an exact solution to
equation (3).

Here two very simple trial functions will be chosen on an experimental basis, the first
derived from the very low frequency solution to (3) for a circular tube, and the second an
idealizaton of the high frequency solution. These trial functions will, therefore, be appli-
cable, respectively, at low and high frequencies.

2.2.1. Low frequencies

In Figure 2 it is shown how the trial function ¥ is defined at Jow frequencies. 1t is first
assumed that there is one unique point O on R at which ¥ has a maximum value and,
moreover, that ¥ decreases monotonically in a radial direction from © to C. The cross-
section is then split up into a series of triangular regions (shown in Figure 2(a}), each of
which has a vertex at 0. The opposite side of each triangle forms a line segment A C which
becomes a part of a polygonal approximation to the boundary C. Gne such triangle, with
a co-ordinate s in the direction normal to AC, and having its origin at O, is shown in
Figure 2(b). The distance from O to AC is L;, and the area of the triangle is 4;. The
number and arrangement of these triangles must be chosen so as to be compatible with
the cross-sectional shape of the tube. For polygonal cross-sections, the number of triangles
will be finite, but for more general curved shapes, it could be arbitrarily large. In practice,
a reasonable approximation to the actual shape, by the juxtaposition of triangles, would
suffice; an example of this is given later in this paper.

P

{a) {b)

Figure 2. Low frequency trial function; (a) discretization of R; (b) a triangular sub-region of R.

The exact solution of equation (3) for a circular section tube, and numerical computa-
tions of the velocity field by Craggs and Hildebrandt [11] for rectangular and triangular
sections, suggest that, at low frequencies, a simple approximation to the true distribution
of ¥ on R is such that lines of constant ¥ would run paralle] to AC. Thus one would
have W= W(¢), where { =5/L; ; clearly, V¥ will be parallel to the direction of the co-
ordinate s. The exact solution for a circular tube, in the low frequency limit, has a parabolic
radial variation of ¥ (cf. Poiseuille flow), and therefore one may choose

P=¥,0-5) (M

as the radial dependence of ¥ in the low-frequency trial function; here, ¥, is the value
of ¥ at O. Note, at this point, that finding ¥ simply involves taking 3P/, ; this
derivative is zero everywhere on C, as is obvious from equation (7), so the aforcmentxoned
requirement concerning the application of the forced boundary condition is met.
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Finding the location of O in a tube of arbitrary cross-section presenis a problem. In
the case of cross-sectional shapes having rotational symmetry (such as reguiar polygons,
rectangles and ellipses), O would generally be located at the centroid of the R, but in the
case of irregular figures (for example, right-angled triangles), the situation is less clear.
Here one can have recourse again to the calculations of Craggs and Hildebrandt [11], who
presented particle velocity contours in tubes having a right-angled triangular section. Their
data at low frequencies indicate that O is located close to a point equidistant from the
three sides of the triangle, that is, at the centre of the inscribed circle. This can be taken
as a “rule of thumb” in the present case, although clearly it is not possible to inscribe a
circle in an irregular polygon having more than three sides, so that it touches all sides.
One may suggest, however, that in such cases, the location of O may be determined by
inscribing the largest possible circle. Otherwise the centroid of the area could, perhaps, be
chosen.

By inserting the expression for ¥ from equation (7) into equation (6) and integrating
over A;, one finds that the contribution to @ from a singie area element is

@, =(1/[WSAC/L + (i0/m) ¥ad: /3~ 20/ 1) V.4, /2], (3

and, if one takes @ =3 @, , it is clear that
CD(‘P)=(I/2)(‘I’3 fF dC/L+io¥ZR/3n—iw ‘I’OR/q), 9)
C

where L is just the normal distance from O to a line segment at any point (note that L
can vary between area elements). Now, putting § @ =0 simply involves equating 6@ /3 ¥,
to zero, and this yields

lJ.v=(im1z/2q)/[§ dC/L+icoR/3n], (10)
<

and, from the above definition of F(7),

F(n)= ‘P,,/2=(ia)R/4n)/|: if dC/L+imR/3n}. (1)
c

It is evident that the integral in equations (10) and (11) can be evaluated for a continu-
ously curved boundary € (which can be viewed as a series of infinitesimally short line
segments) such as a circle, or for a polygonal shape such as a triangle or a pentagon.
Equation (11) may be used in conjunction with equation (4) to find the axial attenuation
rate and phase speed of the wave at low frequencies in a tube of arbitrary cross-sectional
shape. One obvious limitation of the present approach is that, if L becomes less than zero,
then the trial function—as defined above—ceases to have any meaning; however, this
should not prove unduly restrictive in most cases of interest.

If the cross-sectional shape is a regular polygon, the length L is simply the hydraulic
radius of the cross-section, r, (equal to twice the area divided by the perimeter). It is clear
in this case that R=r,C/2 and §C dC/L=C/r,. Then equation (11) becomes

F(n)=(iri/4m)/[2 +iwr/3n]. (12)

If the shape is not a regular polygon then, of course, L varies between area elements and
cannot be identified with the hydraulic radius. According to the present model, therefore,
the hydraulic radius is a useful parameter only in the case of a regular polygonal cross-
section.



32 A. CUMMINGS

The low frequency model should be applicabie up to a frequency at which the viscous
or thermal boundary layer thickness (whichever is the smaller) becomes equal to the Jargest
value of L (which we will denote L,,..). The boundary layer thicknesses are given by the
expressions

viscous: §o=(2v/m)"”, (13a)
thermai: §,=Q2v/wPr)” (13b)

{see the book by Morse and Ingird [16], p. 286) and so the upper limiting frequency of
the low frequency model is given by

fi=min (V/ﬂernaxs V/]'[L,Z;,,,XPF‘). (14)

2.2.2. High frequencies .

Both the exact solution for a circular tube and the numerical data of Craggs and
Hildebrandt [11] indicate that, at high frequencies, the solution of equation (3) predicts
roughly constant values of ¥ in the central region of the tube, with a fairly rapid fall-off
to zero as the wall is approached in the boundary layer region. Typically, there is also an
“overshoot” region just outside the boundary layer. An idealizaton of this sort of profile,
which may be employed as the trial function, has a constant value of ¥(=¥,) in the
central region, with a lincar decrease of ¥ from the limit of the boundary layer to the

L 31
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Figure 3. High frequency trial function; (a) discretization of R; (b) form of the assumed trial function.

wall. One again can split up the area R into discrete triangular regions, as shown in Figure
{3a). The central point O is the same as that in the low frequency model. The assumed
dependence of ¥ on s is shown in Figure (3b); here, the boundary layer thickness & is
equal to 8, or §,, as appropriate. '

Now one finds (as in the case of equation (8)) that the contribution to @ from a single
element is

@, =(1/D[P24: (26— ))/ 8"+ (io/n) PoA.(1— 45, /3 + £7/2)
—(i20/m) ¥, 4,(1 — & + &/3)], (15)

where ¢, =§8/L;, and, a priori,

O(¥)=(1/2)[Po1,/5 + (/) Pil,— (i20 /1) F.h3), (16)
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where

1,=§ (6 - 8*/2L)dC, Izsz (L/2—28/3+8%/4L) dC, (17a, b)
(o C

L= § (L/2-8/2+ 8%/6L) dC. (17c)
[

Putting 8@ =0 yields, in this case,

Vo=(o/mh//8+(o/mbL]  and  F()=(o/qR)3/1/8+ (iw/mE).
(18a, b)

Equation (18b) may be used in the same way as equation (11) to find the axial attenua-
tion rate and phase speed of the wave in the tube. In cases where the cross-section is a
regular polygon, one may define a quantity e=§/L=5/r, and also note that §°=275/w
(see equations (13a, b)); now, equation (18b) becomes

F(m=i2(1— g+ &*/3)*/[(2e— ) +i2(1 —4g/3+ £2/2)]. (19)

The high frequency model should be valid at frequencies above a limit f;, at which the
viscous or thermal boundary layer thickness (whichever is the larger) is equal to the
smallest value of L (which we shall cali L,,;). Therefore

fo=max (v/rLk,, v/TL.Pr). 20)

3. RESULTS

In this section predictions made by the present method are to be compared to those
based on other published work, for several cross-section geometries. It will be possible to
assess the accuracy of the variational method, implemented by the use of the above trial
functions, and to offer comments about other methods of solution. One example of an
irregular cross-sectional geometry will also be described.

3.l. COMPARISON BETWEEN PREDICTIONS FOR VARIOUS GEOMETRIES

3.1.1. A circular tube

The classical case of the circular tube is the obvious choice for initial comparisons. Here,
the radius « is equal to r, in equation (12}, and one has

F(n)=(iwd’/4n)/(2 +iwd’/3n) (21)

as the low frequency variational solution, the high frequency solution being given by
equation (19), with e=§/a.



34 A. CUMMINGS

T T T T 171717 T T T T T 1T1717T T T 1 T
| 1)

100 =
£ ]
o E
= 4
<] / 7

! .

10

100
w
S~
E
[

1
10 1 o gyt 1 [ G N 1 [
10 - 00 000

Frequency (Hz}

Figure 4. Axizl attenuation rate and phase speed in a circular tube of 0-2 mm diameter; (a) attenuation rate,
A; (b) phase speed, ¢, ; , exact solution (Stinson [t3]); A-—A, low frequency variational solution (equation
(21)); O—0O, high frequency variational solution {equation (19)); x — %, B—M, isothermal, adiabatic numeri-
cal solution (Craggs and Hildebrandt [11, 12]).

In Figure 4(a) are shown plots of the axial attenuation rate, based on the present low
frequency and high frequency models, together with the exact solution (see, for example,
that of Stinson [13]) and the numerical results of Craggs and Hildebrandt [11, 12] for
isothermal and adiabatic processes. The tube is 0-2 mm in diameter and contains air at
20°C (it is assumed that p=1-2kg/m®, c=344m/s, y =14, v=1-5x 10" m?*/s and Pr=
0-71). At frequencies up to 200 Hz, all methods agree closely in predicting A (except, of
course, the high frequency variational curve, which is valid only above f5, and the adiabatic
data of Craggs and Hildebrandt, which would not be valid except at high frequencies).
Above this frequency, the Craggs and Hildebrandt isothermal curve falls below the exact
solution, presumably because the imaginary part of the effective fluid compressibility
becomes significantly large, causing the isothermal assumption to break down. The adiab-
atic solution of Craggs and Hildebrandt is in even poorer agreement with the exact solution
than the isothermal solution, though presumably at extremely high frequencies (beyond
the range of the data presented in references [11, 12]) it should agree better. Above t kHz,
the low frequency variational solution begins to give rather inaccurate results (as expected},
but the high frequency solution is in quite good agreement with the exact solution.

The calculated phase speed is shown in Figure 4(b). All methods except the high
frequency variational solution and the Craggs and Hildebrandt adiabatic solution agree
very closely up to about 800 Hz, above which frequency the Craggs and Hildebrandt
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isothermal predictions are low compared to the exact solution; their adiabatic predictions
give results that are too high, although the trend is toward better agreement as the fre-
quency increases. The low frequency variational solution gives quite good results for ¢,,
even up to 6 kHz (well above f;, the notional upper frequency of validity). The high
frequency variational solution agrees well with the exact solution above about 300 Hz and
the agreement improves at higher frequencies.

3.1.2. A parallel slit

A slit with parallel walls has a suitably simple geometry for further comparison between
theories; moreover, Attenborough [7] has considered the parallel slit and the circular tube
as extremes of cross-sectional shape and for this reason too some attention should be
devoted here to the slit. Clearly, the trial function proposed in section 2.2.1 is not appropri-
ate in this case, and instead one can simply employ a parabolic function, which has the
same form as the quasi-steady laminar flow solution for the velocity field or the very low
frequency solution for temperature fluctuations. Following a process analogous to that
given in equations (6)-(11) yields

F(n) = (iwa*/12n)/(1 +i0d*/101) (22a)

(a being, in this case, the width of the slit) for the low frequency variational solution and,
in the high frequency case, the aforementioned linear boundary-layer profiles on both
walls give the result

F(m=i(1— &y /[e+i(1—4¢/3)), (22b)

where £=4d/a.

In Figure 5, the axial attenuation rate in a slit 0-2 mm wide, calculated from the exact
expression [7, 13] is compared with those from the low frequency and high frequency
variational solutions (Craggs and Hildebrandt [11, 12] also computed data for a slit, but
these are not shown here). The fluid properties have the above values. Up to 1 kHz, the
low frequency curve is in close agreement with the exact solution, but falls below it above
this frequency. At and above 1 kHz, the high frequency curve is in good agreement with
the exact solution, although at lower frequencies, agreement is poorer; at f=f,, for
example, the variational solution overpredicts the attenuation by 8%.

A (dB/m}

I 1 Lol L T R B | 1 L

0 100 1000
Freguency (Hz)
Figure 5. Axial attenuation rate, 4, in a uniform slit of width 0-2 mm; ——, exact solution {Atienborough

{71, Stinson [13]}; A—4&, low frequency variational solution (equation (22a)}; O—Q, high frequency varia-
tional solution (equation (22b)).
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3.1.3. An equilateral triangular section tube

This is another simple geometry, intermediate between the circular tube and the parallel
slit. As previously mentioned, an exact solution for this case has been reported by Stinson
and Champoux [9, 10], and Craggs and Hildebrandt [11, 12] have given numerical results:
therefore comparison with the variational solution is appropriate for this shape too. In
Figure 6, the variation of A with frequency is shown for a tube with a cross-sectional
shape having a side of 0-2 mm. Only the isothermal results of Craggs and Hildebrandt are
shown here, and they are very close to the exact solution of Stinson and Champoux at
low frequencies, but give figures that are too low at higher frequencies, as in the case of
the circular tube. The low frequency variational solution gives results that are about 11%
too high over the whole frequency range, and the high frequency solution gives results
that are rather close to—but a little greater than—those of the low frequency solution.

T T T T T 171717 T T LR L] T LI

E
.
a
=
<]
3
<02 mm-> 1
10 1 o1 atal L L3l 1 [
%) 100 1000
Frequency (H2)
Figure 6. Axial attcnuation rate, A, in an equilateral triangular section tube of side 0-2 mm; ——, exact

solution (Stinson and Champoux [9,10]); A—A, low frequency variational solution (equation (12));
O—0, high frequency variational sclution {equation (19)); x — x, numerical solution (Craggs and Hildebrandt
i, 12]).

Clearly, the variational solutions give results that—while being accurate within a reason-
able margin—are inferior 10 those obtained in the cases of the circular tube and slit. This
is, of course, because of the relative closeness with which the assumed trial functions
icsemble the exact solutions. The low frequency trial functions for the circular tube and
slit have the same form as the solution for the velocity field in quasi-steady laminar flow
or for very low frequency temperature fluctuations (see, for example, the paper by Stinson
[13] for sample data on a circular tube), and therefore the corresponding variational
solutions will certainly agree with the exact solutions at vanishingly low frequencies. On
the other hand, the trial function for the triangular tube does not happen to coincide
precisely with the actual steady flow solution (although this solution could have been
extracted, if desired, from the acoustic solution of Stinson and Champoux [9, 10]). Conse-
quently, the accuracy of the solution in the case of the triangular tube is somewhat
degraded, and the only way in which it could be improved is for a more accurate trial
function to be chosen. In Figure 7, the computed velocity pattern (taken from the results
of Craggs and Hildebrandt [11]) in a tube having a right-angled isosceles triangular cross-
section is compared to the low frequency trial function (no computed data having been
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Vitr.
Figure 7. Comparison between the low frequency trial function, — —, and the computed axial particle velocity
contours of Craggs and Hildebrandt [I1],——, for an isosceles right-angled triangular section tube with

r{pe/u)' =001

given in reference [11] for an equilateral triangle). The frequency is low here, and a
frequency parameter equal to r,(pw/p)'’ has a value of 0-01 for these data; it is the real
part of the particle velocity that is shown (the imaginary part, out of phase with the
pressure, being five orders of magnitude less than the real part), and contours of relative
axial velocity are plotted; these are labelled with numerical values, 1-0 corresponding to
the velocity at ©O. It can immediately be seen that although the trial function is broadly
consistent with the computed velocity pattern the sharp corners of the assumed contours
do not appear in the computed curves, particularly towards the centre of the tube (near
the sides, the agreement is better). However, this disparity is not as severe as it might seem,
because it is more important for the trial function to be close to the actual velocity pattern
near the walls (where the transverse velocity gradient is greatest) than near the centre.
Nonetheless, differences of this sort do account for the discrepancies noted in Figure 6,
between the variational and exact solutions for the equilateral triangular tube. The slight
overprediction of attenuation, by the variational method, may be explained by the assump-
tion of a constant wall shear stress along each wall, whereas a fall-off towards the corners
is evident in the numerical solution.

3.1.4. A square section tube
The series solution of Roh et al. [8] for a rectangular tube yields the expression

F)=W@io/nb'n) § T (o] Bila) + fi+io/m]™ (23)
j=0k=0
(see the paper by Stinson [13]); here, b and / are the lengths of the sides of the cross-
section and

a;=(j+1/2yn/b,  Pp=(k+1/2}n/h. (24a, b)

In Figure 8 are shown results from equations (23) and (24), for A in a square tube of side
0-2 mm, plotted against the variational solutions for low and high frequencies and the
(isothermal} numerical solution of Craggs and Hildebrandt [11, 12]. The comparison is
qualitatively similar to that for the equilateral triangle, although the low frequency varia-
tional solution fares rather better in this case, where the internal angles of the polygonal
cross-section are greater. One can infer that the assumed trial function is rather closer to
reality for a square cross-section than for an equilateral triangle. The high frequency
variational solution gives predictions about 10% too great. As expected, the Craggs and
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Figure 8. Axial attenuation rate, A, in a square section tube of side 0.2 mm; —— exact selution (Roh er al.
[8]); A—A, low frequency variational solution (equation (12)); C—Q, high frequency variational solution
(equation (19)); ¥ — %, numerical solution (Craggs and Hildebrandt [11, 12]).

Hildebrandt figures virtually coincide with the exact solution at low frequencies, but give
resuits that are too low at high frequencies.

3.1.5. A rectangular section tube

Curves of A for a tube of rectangular cross-section, measuring 0-2 mm X 0-5 mm, are
plotted in Figare 9. Only the exact solution of Roh ef al. {8] and the low frequency and
high frequency variational solutions (taken from equations {I11) and (18b)) are shown.
The variational solutions give results that are rather close to the exact solutions in this
case, both at low and high frequencies. The exact solution for a slit 0-2 mm wide is also
plotted up to 200 Hz, for comparison, and it can be seen that, with this larger aspect ratio
{as compared to the square tube), the values of A for the rectangular tube begin to
approach those for the slit. Craggs and Hildebrandt [11] have carried out a somewhat
more detailed comparision for tubes of various aspect ratios and have reached similar
conclusions.

A (dB/m)

10 100 1000

Frequency (Hz)

Figure 9. Axial attenuation rate, A, in a rectangular section tube of cross-sectional dimensions
¢-2mmx Q-5 mm; , exact sotution {Robh et al. [8]); A—A, low frequency variational solution (equation
(11)); O—O, high frequency variational solution (equation (18b)); — —, exact solution for a slit of width
0-2 mm (Attenborough [7], Stinson [13]).
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3.1.6. A hexagonal section tube

The hexagon is a shape intermediate between the square and the circle, and Craggs and
Hildebrandt [11] have given numerical computations of effective density and resistivity
parameters which show that—as one would expect—these quantities, for a hexagonal
section tube, fall between the values for square and circular section tubes. No exact solution
for sound propagation in hexagonal tubes appears to have been reported, and the only
valid comparison that can be made here is between the low frequency variational solution
(equation (12)} and the data of Craggs and Hildebrandt with an isothermal effective
sound speed [11, 12]. Acordingly, these two predictions are plotted in Figure 10, over the
frequency range [ — 1000 Hz. One can note very good agreement between the two methods
up to 100 Hz, with small but increasing discrepancies from 300 Hz to I kHz. At higher
frequencies, these discrepancies can be expected to be greater still.
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Figure 10. Axial attenuation rate, A, in a hexagonal section tube of width 0-2mm; A—A, low frequency
variational solution (equation (12)); % — %, numerical solution (Craggs and Hildebrandt [11, 12]).

3.2, AN IRREGULAR GEOMETRY: THE SEMI-CIRCLE

It is instructive to examine one example of an irregular cross-sectional geometry, and
the semi-circle would seem to be an appropriate shape. An exhaustive analysis is not
presented here, but the discussion is restricted to the low frequency variational solution
and this is used as a vehicle to illustrate how one can construct an appropriate trial function
and formulate an expression for F(n).

In Figure 11, a fairly simple way of dividing the area into triangular sub-regions is
shown. The central point O is chosen 10 be mid-way along the axis of symmetry of the
area, and the cross-section is slit up into seven sub-regions, as shown, This is probably the
minimum number that would give acceptably accurate results. Taking a greater number
of triangular sub-regions would probably not be advantageous in view of the likely
limited resemblance between the trial function and the actual velocity and temperature
fields.

With the radius of the semi-circle denoted by a, then by graphical or geometrical methods
one can very simply determine the parameters R and §.dC/L (see equation (11)). For the
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e—g —>

Figure 11. Triangular sub-regions for a semi-circular section tube.

chosen method of subdivision of the area, one finds

R=1-49 &, § dC/L=9-07. (25a, b)
C

The expression for F{n) obtained from equation (11) is therefore
F(17) = (0-0822 iwa®/ 1) /(2 + 0- 11 iod’ /). (26a)

The hydraulic radius of the cross-section is equal to a/(t + 2/}, and use of equation (12)
would give

F(1)=(0-0933 iwa®/n)/(2+0-124 ind®/ ). (26b)

Equation {26b) is not really appropriate 1o an irregular cross-section such as this, but the
discrepancies between the numerical values in equations (26a, b) are not very great.

3.3. ANALYSIS OF RESULTS

In the case of tubes having a regular polygonal cross-section, the low frequency and
high frequency variational solutions—resulting from the assumed trial functions—give
particularly simple low frequency and high frequency formulae for F(n), viz., equations
(12) and (19), and these are both expressed in terms of the hydraulic radius of the cross-
section. This is, of course, a consequence of the assumed forms of the low frequency and
high frequency trial functions. For this reason too, the hydraulic radius ceases to be a
useful parameter for tubes that have cross-sections that are not regular polygons (as
explained in section 2.2.1) and the slit, and the rectangular tube with an aspect ratio
different from unity, would fall into this category; even so, very simple expressions exist
for F(n) at low and high frequencies in these other cases. It is worth noting that, in the
present method, there is no need for a ““shape factor” (as described by Attenborough {7]
and Stinson and Champoux [13], and defined in terms of the steady flow resistance per
unit length of the tube) that is used when circular tube results are applied to non-circular
geometries.

It is of interest to compare the low frequency variational solutions for the circle and slit
(the extremes of geometry) to the exact solutions. The circular tube solution for F(n) is
(see reference [13])

F(m)=1-2)[a(~iw/n)"*)/a(—ie /1) *Jla(—in/n)'?], 27
where Jo( - } and J,( - ) are Bessel functions of the first kind. Equations (21) and (27) may
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be expanded in a(e/7) ', and both give identical results up to the second term,

Fn)=iwd’/8n+o’d' /48> +- - -. (28)

The criterion expressed in equation (14) is equivalent to a(w/n)'/?<+/2, and therefore the
low frequency variational solution should be accurate at frequencies where this inequality
holds. The exact solution for the case of the slit (see, for example, reference {13]) is

F(m)=1—tanh [a(iw/4n) ] /a(iw /47)""* (29

(a being, in this case, the width of the slit). Equations (224) and (29) may be expanded in
a(w/41)"* and, as in the case of the circular tube, the results agree exactly up to the
second term,

F(m=iwd* /12n+e’a* /1207 +- - - . (30)

An accuracy criterion similar to that above will hold here, where the viscous or thermal
boundary-layer thickness (whichever is the smaller) is greater than or equal to the semi-
width of the slit. The good agreement between the variational and exact solutions, at low
frequencies, for the circle and the slit is obtained because (as previously mentioned) the
trial functions have the same forms as the very low frequency solutions to the velocity and
temperature fields. One would not see such close correspondence in the cases of equilateral
triangular or rectangular section tubes.

4. DISCUSSION

It has been shown here that a variational approach to the problem of sound propagation
in uniform tubes of arbitrary cross-section can provide a very simple method of approxi-
mate solution which gives results of acceptable accuracy in comparison with exact or
numerical solutions. One appealing feature of this type of method is that there is consider-
able scope for improvement in the results, by the choice of more versatile trial functions
that can more nearly approach the true solutions to the governing equations. This can,
for example, be done by the use of multiple-degree-of-freedom trial functions: that is, the
solution region can be split up into separate areas, each with its own trial function involving
unknown coefficients (in contrast to the foregoing, where—although the cross-section is
divided into sub-regions—there is only one unknown coefficient, and the trial functions
for the component areas all have the same form). The sub-regions between the vertices of
a polygonal region and the centre could, perhaps, be treated separately from the rest of
the region. Equating the variation of the functional (expressed, piecewise, as the sum of
integrals over the various sub-regions) to zero would then involve taking partial derivatives
of the functional, with respect to the unknown coefficients, and equating these derivatives
separately to zero, giving rise to a system of homogeneous linear equations. The resulting
determinantal equation would then be the disperson equation for the waves, and could be
solved analytically or numerically, depending on its complexity. Of course, there comes a
point, in this method of treatment, at which the number of sub-regions is sufficiently great
to render the method excessively cumbersome. In this case, a finite element treatment could
be used instead.

It was not considered appropriate, in the present investigation, to pursue this question
of more elaborate trial functions, although there may well be some point in doing so,
should the occasion demand. Rather, the object was to present an alternative to exact or
purely numerical solutions and to suggest a framework for possible further development,
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The simplicity of the approximate solutions above would, of course, be lost with increasing
refinement in the solution method.

The current understanding of sound propagation in uniform tubes of arbitrary cross-
section is probably sufficiently well developed that any future effort in this direction might
be better devoted to other aspects of porous media, such as investigation of the effects of
pore size distribution [17] and non-uniformity of pore cross-sectional area (Stinson and
Champoux [10] are evidently currently examining this problem). These comments apply
to porous media without any internal mean flow. The catalytic converters that are now
often fitted to automobile exhaust systems usually incorporate laminar mean flows in’
polygonal (often square) section tubes; even assuming a constant temperature, one would
almost certainly need to resort to numerical solution methods in order to model the
acoustics of such systems adequately, Of course, taking account of the inevitable tempera-
ture gradients would introduce further complications.
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