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The characteristic impedance and propagation constant of a cylindrical conduit are calculated on the 
basis of an equivalent electrical T-section. Numerical values of the results are plotted for air at 20øC, for a 
range of values of the independent variable which includes the region of transition from isothermal to 
adiabatic conditions. 

I. INTRODUCTION 

N a previous paper 1 the author calculated the 
acoustical impedance of three types of enclosures, 

the shapes of which permitted an exact solution. 
Mawardi 2 noticed that, if the results of the calculations 
are plotted against f•S/P (P being the perimeter and S 
the sectional area of a conduit), the curves are nearly 
independent of the shape of the conduit. It is therefore 
possible to choose an intermediate curve to represent a 
conduit of arbitrary shape, and Mawardi has used such 
a curve in calculating the characteristic impedance of a 
tube filled with a bundle of wires. The results obtained 

by this method are only approximate, but are probably 
sufficiently accurate for most practical applications. 
However, for the important particular case of a cylin- 
drical conduit, an exact solution for the characteristic 
impedance and propagation constant in terms of Bessel 
functions can be obtained. The present paper deals 
with this solution for the particular case of a conduit 
filled with air at 20øC. 

II. NOTATION 

The following symbols have been adopted, c.g.s. 
units being used throughout: 

o--density 
f--frequency 
to--2•rf 
t•--viscosity 
•r--(•p/2•)i=4.57ft for air at 20øC 
n--½pC•,/2K)•= 4.06f* for air at 20øC 

K--thermal conductivity 
C•--specific heat at constant pressure 

a--radius of conduit 

,---velocity of sound in conduit 
c--velocity of sound in free space. 
•ratio of specific heats. 

III. OUTLINE OF METHOD 

In the Helmholtz-Kirchhoff treatment of propagation 
through tubes, a the dynamical equations are modified 
to include the effects of viscosity and heat conduction 
and a solution of these equations is obtained in terms 
of Bessel functions. Limiting expressions which apply 
to narrow and wide tubes are obtained from series 

x Fred B. Daniels, J. Acous. Soc. Am. 19, 569 (1947). 
* Osman K. Mawardi, J. Acous. Soc. Am. 21, 482 (1949). 
a Lord Rayleigh, Theory of Sound (Dover Publications, New 

York, 1945), Vol. 2, pp. 319-328. 

expansions of the Bessel functions which are valid for 
small and large values of the independent variable, 
respectively. 

In this paper the conduit will be represented by an 
electrical transmission line and the effects of viscosity 
and heat conduction will be introduced separately by 
modifying the series and shunt elements of the equiva- 
lent T-section. Numerical results will be computed, 
using tabulated values of the Bessel functions. 

IV. EQUIVALENT T-SECTION 

The equivalent T-section of a short length of conduit 
is shown in Fig. 1 in which inertance and frictional 
resistance are represented by the series elements L and 
R and acoustical capacitance and loss due to heat 
conduction to the walls are represented by the shunt 
elements C' and G. For sufficiently large values of the 
variable aft, L approaches the inertance per unit length, 
C' approaches the adiabatic capacitance per unit length, 
and R and G approach zero. For the general case, L 
and R can be obtained from an expression for particle 
velocity given by Crandall, 4 and C • and G from the 
expression for the impedance of a cylindrical enclosure 
derived in the author's earlier paper. t In applying 
Crandall's result, the ratio of pressure to particle 

o o 

FIG. 1. Equivalent T-section of a short length of conduit. 

Fro. 2. Absolute value of the characteristic impedance. 

4 I. B. Crandall, Theory of Vibrating Systems and Sound (D. 
Van Nostrand Company, Inc., New York, 1927), p. 234. 
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Fro. 3. Phase angle of the characteristic impedance. 

Fro. 4. Absolute value of the propagation constant. Solid curve: 
Exact value. Curve I: Rayleigh, narrow tube. Curve II: Rayleigh, 
wide tube. 

velocity is divided by the cross-sectional area in order 
to express impedance in terms of volume velocity. It 
should be noted that the above derivations are based 

upon the assumption of uniform pressure across the 
tube, and that the final result will therefore be pred- 
icated upon this assumption. 

V. EVALUATION OF CHARACTERISTIC IMPEDANCE 
AND PROPAGATION CONSTANT 

The impedance and admittance of the series and 
shunt arms of the T-section are, respectively, 

Z--R+jcoL=•az(A•-kB2)-• expj½• (1) 
all 

Y=Gq-jcoC'= (Ca+DZ) « exp--j½, (2) 

where A = 1 q- (1/aa) (F q-G), B = (1/va) (G-- F), F = (VX 
-- UY)/(Ua+Va), a= (sx+vY)/(uz+v•), u= real 
part of JoI-aa(-2j);•, V= imaginary part of 
Jo[aa(-2j)•], X=real part of Jx[,a(-2j)•], Y=im- 
aginary part of JxI-aa(-2j)t-I, and •b=tan-M/B. 
C=A'(K-1)-g and D=B'(K--1) where A' and B' 
are calculated from the same equations as A and B, re- 
spectively, with •a replaced by na as the independent 
variable. ½= tan-•D/C. 

From electrical network theory, the characteristic 
impedance Z0 and propagation constant T are given by 

Zo= (Z/y)t and •--a+j•ff: (ZIQL 

FIG. 5. Phase angle of the propagation constant. 

Fro. 6. Ratio of the velocity in the conduit to the vdocity in 
free space. Solid curve: Exact value. Curve I: Rayleigh, narrow 
tube. Curve II: Rayleigh, wide tube. 

Substituting the values of Z and Y from (1) and (2), 

Zo= (pc/raø-)(C• + Da)-"(A2 + B-') -• exp/«(•+q•), (3) 
and 

•= (co/c)(CZ+Dø-)•(A•+B•) -: expj«(•-•), (4) 
whence 

/•= l?] sin«(•--q•), (6) 
and 

(7) 

From the above results, numerical values of Z0 and • 
have been computed as functions of all, assuming the 
conduit to be filled with air at 20øC. The absolute 
value and phase angle of Z0 and •' and the value of v/• 
are plotted in Figs. 2 to 6, inclusive, for a range of 
values of afl which includes the region of transition 
from isothermal to adiabatic conditions. For the purpose 
of comparison, values of c/•l• [ and v/c were computed 
from Rayleigh's limiting expressions. The results of 
these calculations are given by the dotted curves in 
Fig. 4 and Fig. 6. 
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