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The parallel between the classical theory of elasticity and the modern physical theory of the solid 
state is incomplete; the former has nothing analogous to the concept of the force acting on an 

imperfection (dislocation, foreign atom, etc.) in a stressed crystal lattice. To remedy this a general 
theory of the forces on singularities in a Hookean elastic continuum is developed. The singularity is 
taken to be any state of internal stress satisfying the equilibrium equations but not the compatibility 
conditions. The force on a singularity can be given as an integral over a surface enclosing it. The 
integral contains the elastic field quantities which would surround the singularity in an infinite 
medium, multiplied by the difference between these quantities and those actually present. The 
expression for the force is thus of essentially the same form whether the force is due to applied 
surface tractions, other singularities or the presence of the free surface of the body ('image force'). 
A region of inhomogeneity in the elastic constants modifies the stress field; if it is mobile one can 
define and calculate the force on it. The total force on the singularities and inhomogeneities inside 
a surface can be expressed in terms of the integral of a 'Maxwell tensor of elasticity' taken over the 
surface. Possible extensions to the dynamical case are discussed. 

1. INTRODUCTION 

Modern theories of the solid state make use of the idea of the forces acting on imperfections 
in a crystal lattice, such as, for example, dislocations, foreign atoms, vacant lattice points, 
grain boundaries. The stress in the material arises from the presence of the imperfections and 
from any externally applied surface and body forces. If the applied forces are held constant, 
the total energy of the system (internal energy of the body plus potential energy of the sources 
of external force) is a function of the set of parameters necessary to specify the configuration 
of the imperfections. The negative gradient of the total energy with respect to the position of 
an imperfection may conveniently be called the force on it. This force, in a sense 

fictitious, is introduced to give a picturesque description of energy changes, and must not 
be confused with the ordinary surface and body forces acting on the material. 

Even if there is only a single imperfection in the body and no externally produced stresses 
the force on it will not in general vanish. This 'image force' will depend on the shape of the 
boundary of the body and on the variation of the elastic constants from point to point in it. 
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The extra term which appears when there are also stresses due to applied forces and to other 
imperfections can be regarded as the force which these exert on the original imperfection. 

In the usual theory of the elastic continuum the analogue of an imperfection (or rather 
of the stress-field associated with it) is some state of internal stress not produced by surface 
or body forces, for example, a nucleus of strain (Love 1927). The elastic analogue of an 
interstitial atom is a centre of dilatation supplemented by point singularities of higher order. 
The dislocations of physical theory have, of course, their analogues in certain of the elastic 
dislocations of Volterra (1907). 

In many calculations it is possible to replace an imperfection by its elastic counterpart, 
allowing for the atomic structure and the departure from Hooke's law in an approximate 
fashion. The result may or may not be sensitive to the details of the approximation. The force 
on an interstitial atom or dislocation is of the insensitive type; its value when Hooke's law 
is assumed to be obeyed even for infinite strains does not differ significantly from the value 
with a reasonable approximation to the actual non-linear behaviour (Koehler I94I; Leib- 
fried 1949; Bilby 1950). This suggests that one ought to be able to introduce the concept of 
the force on a singularity quite generally into the classical theory of elasticity, so completing 
the parallel between elastic continuum and crystal lattice. The object of this paper is to show 
how this can be done and to devise a simple way of calculating the force on a given elastic 
singularity. 

We have first to allow that singularities can move through the medium, a possibility not 
envisaged in the classical theory but not inconsistent with it. To see the lines on which the 
theory must then be developed it is useful to make a comparison with electrostatics. The 
force on a point charge is usually taken as the starting point, and development of the theory 
leads to the concept of an energy density. The total energy of a point charge is found to be 
infinite, but this does not cause difficulty until the more sophisticated electrodynamic 

problems are reached. In the elastic case things are reversed-we know the reversed-we know the energy density 
and must infer the force. The problem of the infinite self-energy of point and line singularities 
must be faced from the outset. Alternatively, Poisson's equation can be taken as the starting 
point for electrostatics; point charges are then to be regarded as limiting cases in which the 
distribution of charge has the form of a delta-function. Similarly, we can develop the elastic 
theory for states of internal stress with finite total strain energy and regard point and line 
singularities as limiting cases. From this point of view the elastic analogue of the electric 
field produced by a continuous charge distribution is the general state of self-strain in which 
the stresses satisfy the equilibrium equations but (unlike stresses arising from body and surface 
forces) not theo cconditions. The elastic displacements cannot be defined every- 
where, but their place can be taken by the three stress functions of Maxwell or Morera. These 
provide the analogue of the electrostatic potential; the counterpart of the charge is the 
incompatibility tensor' formed of the six expressions which when equated to zero yield the 

compatibility conditions. We shall, however, work with the conventional representation in 
terms of stress, strain and displacement even though this leads to a certain amount of 
manoeuvring to circumvent the lack of a displacement function in regions where the 
incompatibility tensor is not zero. 

In what follows, the term 'singularity' is usually to be taken to mean an extended state of 
internal stress of the kind just discussed, rather than a singularity in the mathematical sense. 
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To make this idea more concrete we first describe (? 3) a general type of surface singularity 
with finite though discontinuous stresses and show how various point and line singularities 
can be derived as limiting forms of it. 

To be able to speak of the movement of a singularity one must decide precisely what is 
meant by saying that two states of internal stress in the same body represent the same 

singularity in different positions. This is discussed in ?4 and the result used (?5) to define 

provisionally and calculate the force which surface tractions exert on a singularity. The 

image force and the force which one singularity exerts on another are dealt with in ? 7 by 
a simple argument which also justifies the provisional definition of ? 5. These results apply 
only to homogeneous (but anisotropic) bodies. In ? 8 the force on an inhomogeneity in a body 
free of internal stress is defined and calculated. Section 9 ties up certain loose threads in the 

previous argument and extends the results to bodies containing both internal stresses and 

inhomogeneities, and acted on by body forces as well as surface tractions. Section 10 discusses 

possible extensions, in particular to the dynamical behaviour of singularities. 
Apart from recent work inspired by the needs of metal physics the present problem 

received some attention at the end of the last century, when elastic solids furnished models 
for the ether. Larmor (I897) discussed an elastic singularity formed by cutting a lens-shaped 
cavity in the material, giving a relative rotation to the faces, and cementing them together. 
He pointed out that a pair of these singularities would exert forces on each other. In a 
remarkable paper, Burton (I892) considered the equations of motion of 'strain figures', 
states of stress which are possible without applied forces in a medium with a non-linear 
stress-strain relation. Burton (as he himself realized) was inconsistent in assuming super- 
posability of stresses in his non-Hookean solid; his results can, however, be interpreted in 
terms of internal stresses in a Hookean medium. 

2. NOTATION AND INTEGRAL THEOREMS 

Rectangular Cartesian co-ordinates are denoted by xi (i 1, 2, 3). The elastic displacement 
vector has components ui. Suffixes following a comma represent differentiation, so that, for 

example, ui,j = dui/dxj, ui,jk d2ui/dxj dk. A repeated suffix is to be summed over the values 
1, 2, 3. The strain tensor ei and the stress tensor pj are defined by 

eij = eji = ?(ui,j +Uj,i), 

Pij : Pji Cijkl = k ll ijk,l 1 

The elastic modulus tensor ijkl (which may be a function of position) is unaltered by inter- 

changing i withj or k with I or the pair (ij) with the pair (kl). In an isotropic body 

Pij = Aekkij -+21 eij. (2) 

In equilibrium with no body forces the divergence of the stress-tensor vanishes: 

Pij,j - 0. (3) 
The traction on an element of area dS with normal nj is pijnj dS = pijdSj, where dSj is an 
abbreviation for njdS. For the eij to be derivable from a displacement according to (1) the 
six compatibility conditions Srs = 0 must be satisfied, where 

Srs(emn) - ers, ii eii,rs 
- 

ri,si- esi,ri- (eii, jj - eij, ij) ;rs2 (4) 
I2-2 

89 



J. D. ESHELBY ON THE 

Let (u, eij,pij) and (u, epj,pj) be two sets of quantities each related by (1) and satisfying 
(3). We have i ju (5) 

Pij 
e P P ij Pi ieij = Pij,j = Piui,j (5) 

by the symmetry properties of the c's. If we form the vector v with components 

vj = Pij i-pj i, 

it easily follows from (3) and (5) that div v = yv, = 0. Hence, by Gauss's theorem, 

f vjdSj 2f vjdSj or f vjdSj=0, (6) 

where S1 and E2 are two closed surfaces which can be deformed into one another without 
passing through singularities of v. If 1 is a closed surface containing no singularities of v, 

vj,dSj 0o. (7) 

Equation (6) is essentially Betti's reciprocal theorem (Love 1927). We have assumed that 
v is single-valued. If it has to be made single-valued by a cut the two integrals in (6) differ 

by vj dSj taken over both sides of the part of the cut surface intercepted between El and 

52 (Colonnetti I915). 
If uip, are corresponding displacement and stress, so are uz l,p z as long as the body is 

homogeneous, and so by (6) 

f| 
2 
(Piji t,-Pp j ui)dSj = 0 if Cijkl -0. (8) 

Again, if we have a continuous series of elastic states specified by a parameter 6 then 

du7Id6, dp'ijjd are corresponding displacement and stress if uj,pj.j are, provided the c's are 
independent of 6; then (6) gives 

fr p(pij du/dg- uidpj/ld) dSj = 0 if dc,jk/d6 0. (9) 
i-E2 

The following result will also be useful: 

f (w, -wi j) dS = -f ej w dxj, (10) 

where 2 is a surface bounded by the curve a, and wi is single-valued and continuous. eij is the 
completely antisymmetric tensor which is zero if two suffixes are equal and otherwise is 
+1 or -1 according as lij is an even or odd permutation of 123. Equation (10) is easily 
proved by applying Stokes's theorem to the tensor elj w% or by integrating wi, over the volume 
generated by E during a small displacement parallel to the x,-axis and then using Gauss's 
theorem. If wi is multiple-valued on S but can be made single-valued by a cut C, we shall 
in general expect the integrand to have singularities at the ends of the cut. We can define 
the surface integral over S to be the limit of the integral over the region of S outside o 
(figure 1 a) as the latter shrinks on to C. Then (assuming E is closed apart from the cut) 

J( I-wi i) dSj =w-ij Awi dxj (11) 

90 



FORCE ON AN ELASTIC SINGULARITY 

provided the circles A, B make no contribution in the limit. (We shall usually be concerned 
with the case where C is a closed curve, or two-dimensional problems where C becomes 
a point on a plane curve.) Awi is the jump in wi on crossing C, the sign being chosen so that if 

Aw = lim{wi(a) - w(b)} 
a->b 

the vectors ab, dxi and the outward-drawn normal form a right-handed system. 

C ~ V~(b) c d 

(a) ax, 

FIGURE 1 

If we form a tensor tl = w,l- i, i. (12) 
from any vector wi, then for any closed surface X on which tj, is single-valued 

f 
tjdS - 0, 

even if there are singularities of tjl inside S. This is to be contrasted with (7); in fact, tj,j 
vanishes identically whilst vj,j does so only in virtue of the equation p, j = 0. 

3. TYPES OF SINGULARITY 

A large range of singularities can be regarded as particular cases of a type of surface 
singularity considered by Somigliana (I914) (cf. also Gebbia I9o2; Mann 1949; Bogdanoff 
I950). Following Nemenyi (193I) we shall call this singularity a Somigliana dislocation. 
It can be generated in the following way. Make a cut over a surface s (open or closed) in an 
unstrained body and give the faces of the cut a small relative displacement, removing 
material where there would be interpenetration (figure 1 b). Fill in the remaining gaps and 
weld together. We are left with a system of internal strain which is completely characterized 
by giving as a function of position on S the vector d which specifies the final separation of 
points originally adjacent on opposite sides of the cut. The stress pj nj (nj is the normal to s) 
is continuous across s, but the individual components ofpij, ei are in general discontinuous; 
these discontinuities can be calculated when d is known over S. If d is a reasonably smooth 
function pi, and eij will be finite everywhere except possibly near the edge of an open surface. 
(The condition for the displacement to be finite near the edge has been derived for the 
isotropic case by Gebbia.) Somigliana dislocations for which d = b r x c with constant 
vectors b and c are the Weingarten dislocations discussed by Volterra. Dislocations for 
which c = 0 are of particular interest; we shall call them physical dislocations. A number 
of physical dislocation loops lying in a surface (for example, near one of Frank & Read's 
(I950) dislocation sources) can be regarded as a general Somigliana dislocation for which 
d is a stepped function of position; at distances large compared with the spacing of the 
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individual dislocations the stress is equivalent to that of a Somigliana dislocation with 
a continuously distributed d. 

Near the boundary of a physical dislocation the stresses tend to infinity unless we remove 
the material in this region, as Volterra did. Alternatively, we can replace the physical 
dislocation by a Somigliana dislocation with d equal to b over most of S but suitably tapered 
off near the boundary. Consider, for example, an infinite edge dislocation line along the 

x3 axis with d = (b, 0, 0). For the tapered Somigliana dislocation we may, for example, take 

(figure 1c) 
dl = b(am-xl)nlamn (x1>O) 

=b (x< 0) 

with the half-plane x2 = 0, x, <a for S. From a known relation between stress and the dis- 

continuity in displacement (Nabarro I947; Eshelby I949b) the shear stress pI2 in the 

plane x2 = 0 can be shown to be proportional to xm-l(am--xm)n-la-mnlog 1-a/xl 1, plus 
a polynomial in xl. Hence by choosing m and n large enough we can make p12 and as many 
of its derivatives as we like continuous on the plane x2 0 . Further calculation shows that 
the same is true for all components ofp/j both on and off this plane. It is clear that a physical 
dislocation bounded by an arbitrary curve can be similarly regarded as the limit as a - 0 of 
a suitable Somigliana dislocation dependent on a parameter a specifying the taper near 
the edge. 

To derive point and line singularities from the general Somigliana dislocation we take 
a sphere or tube of radius r for s and a suitable distribution of d. We then let r decrease to 

zero, at the same time increasing d in such a way that the displacement at a fixed point of 
observation remains finite. For example, if S is a sphere and d is normal to S and of magnitude 
d - const. r-2 we obtain a centre of dilatation. 

Thus physical dislocations and point and line singularities with infinite self-energy can 
all be regarded as limiting cases of Somigliana dislocations of finite self-energy. 

As already explained, we may also have a volume distribution of internal stress in which 

(3) is satisfied, but the eij derived from the pij with the aid of Hooke's law do not satisfy 

Sij = 0 everywhere. The regions in which Sij + O are to be regarded as the actual seat of the 

singularity. This is discussed more fully in ? 9. 

4. THE STRESS-FIELD OF A SINGULARITY IN A FINITE BODY 

We need first to decide what is meant by a particular type of singularity in a body of given 
shape and size. A point singularity will naturally be defined as a solution of the elastic 

equations with vanishingpij nj at the surface of the solid and becoming infinite in a prescribed 
way at a certain point. In the general case it will be more convenient to regard each type 
of singularity as defined by giving its stress field in an infinite body and then prescribing 
a process for finding the stress field of the same singularity in a given finite body. 

Draw a closed surface So in an infinite homogeneous elastic medium. We shall say that 
there is a singularity inside No if the stresses in it could not be produced by body forces 
outside Eo. We shall suppose that, when the region within a certain closed surface Es has 
been excluded, pij and ui,j are continuous and single-valued and ui is continuous but not 

necessarily single-valued in the rest of the interior of So. 
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For a point or line-singularity ES can be taken as a small sphere or narrow tube surrounding 
the point or line on which the' stress and displacement become infinite. If ui or Pi become 
infinite on or discontinuous across a surface we have a surface singularity, and for Es we may 
take a jacket closely enveloping the singular surface. The conditions imposed on ui and 

u,j have been chosen so that physical dislocations can be regarded as line singularities 
rather than surface singularities. (If the physical dislocation is replaced by a tapered 
Somigliana dislocation, as described in ?3, Is must enclose the whole of the tapered part.) 
For a volume singularity Es must enclose the region in which Sr =0. We shall assume 
that the surface tractions over any surface within o and surrounding Es are in rigid-body 
equilibrium. A distribution of body force inside Is with zero resultant and moment therefore 
qualifies as a singularity according to our definition, though it is not usually what we have 
in mind. 

Let the displacement and stress of a certain singularity in the infinite medium be 
u (x) ,pj (x). Then we define u (x -E), p (x -) to be the corresponding quantities for the 

singularity after it has been moved distances 5, 2,63 parallel to the x-,x2- and x3-axes. 
For a point singularity it is natural to take for the 6i the co-ordinates of the mathematical 

singular point. In general, though nothing more is implied than that variation of E translates 
the stress-system rigidly, it is still convenient to speak of the point E as the position of the 

singularity. 
Starting from the case of an infinite medium we define the same singularity in a finite 

body in the following way. Remove the material outside Eo without allowing the surface 
forces P? nj on lo to relax, so that the displacements and strains remain unaltered within 
So. Next reduce these surface forces to zero. We are left with a singularity in a body whose 
surface No is stress-free. The displacement and stress are 

u - u= (x- )+ u(x,), (13) 
pS. = p? (X- ) +pI (X, 4), 

where uJ and pf. (which we may call the image displacement and stress) have no singularities 
within So and are such that nj = 0 on S0, i.e. 

Pi3 nj -p?yn on Zo. (14) 
We have uO --du?o /al, p,l=- -dp?i6. (15) 
There are no corresponding relations for uI) pi since they depend on x, E not merely through 
the differences (x -E). However, from (14) and (13) 

(dpti/do) nj - (dp/d,) nj = p?,tnj on So. (16) 

5. THE FORCE EXERTED ON A SINGULARITY BY SURFACE TRACTIONS 

Now apply surface tractions pA nj to So, producing displacement and stress u4p,.P in the 

body in addition to the u8fip already present. Let the singularity undergo a translation 
8X parallel to the x,-axis. The work done by the surface tractions is 

sw =eo dSj + 0 (s+2). 
We tentae due 

We tentatively define F, = lim - = f dSI (17) 
6-> ?&0 j so ad6 
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as the force which the surface tractions exert on the singularity. Because p, nj = 0 on No 
we can write d 

mF - 'iJ --ig di,) dSj 

taken over the surface SE N o. By (9) this integral can equally well be taken over any 
surface E in the body into which No can be deformed without entering Es. By (13) 

FA = (pA _ dU ) +(A -j d' dSj 1 ~h\p^j ^ l 
^U 3ddSj +f(P3 .) 

The second term vanishes by (9) and (7). Using (15) we have simply 

F- = Up p IA U ) dS,, (17') 

a form in which we do not need to know u4,pIyj. This can be further transformed by (11). 
Since the only multiple-valued quantity which we allow is the displacement of a physical 
dislocation for which Aus = AXu = const. we have 

FtA == f1 ( -pij) dSj+Au X lijpfikdxj. (18) 
The further form 

f - fl {(p kUA, jlP ) + (.ku l- l)}dS (19) Jg z , IpJit?2iU, kd 

is easily verified; it holds whether u? is single-valued or not. 

6. THE CENTRE OF DILATATION: DISLOCATIONS 

The simplest singularity is a centre of dilatation in an isotropic body (Love 1927). If 
it is at the origin 

u? = xi/r3 with r2 = x2 +x2 x, (20) 

where S is a constant. To find the force on it we use (18), taking for E a small sphere of radius 
r about the origin. Expanding the applied stress and displacement in a Taylor series we have 

Ff -Pitf ?dS,+pf, lm 3mU dSj - uA p,s dSj-Ulim p Xm Pj` dSj+..., 

where the A quantities are to be given their value at the origin. We have 

fu dSj =- r-4 fxixjdS = -4i 1(x2 +x2 +x) dS 3 -1 88j. 

In a similar way we find, using (1) and (2), 

JxmP( dS= - ( 16/3) PM3^,3. 

The term in {pi dSj vanishes since the singularity is in equilibrium. The remaining terms are 

of order r. Since FA is independent of the choice of r they can make no contribution whether 
we let r tend to zero or not. Thus 

F = 4tS(pA,1+ 4#U,il) = 4T{(1 - )/(I + o)}ts, 
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where a =/1/2(A+1 +) is Poisson's ratio. In general 

F - - 121r3{(1 -()/(1 + )}gradpA, (21) 

where pA - (p11 +P22 +PS3) 

is the applied hydrostatic pressure at the position of the singularity. 
The following model of an interstitial atom has been used by Bilby (I950). An elastic 

sphere of radius (1 +c)ro is forced into a spherical hole of radius ro in an infinite block of the 
same material. It can easily be shown (Mott & Nabarro I940) that for r> ro the displacement 
is given by (20) with S =rar(l1+r)/3(1- r), whilst for r<ro the material is uniformly 
compressed. 

If we regard this as a volume singularity we may take for Z any sphere of radius r>r0. The 
force must then be given by (21), since this expression did not depend on the size of the 
surface over which we integrated. Alternatively, we may regard it as a Somigliana dis- 
location with a discontinuity axr in the radial displacement across the sphere r r= 0. must 
now be supplemented by a closed surface within the sphere r - r in order that it may 
completely embrace the singular surface. Since this new surface can be contracted to a point 
it makes no contribution and the force is still given by (21). This is an exact result; Fjl is 

proportional to the value of gradpA at the centre of the sphere r r= o, and there are no 
terms of order r0 to be added. 

For the two-dimensional problem of an infinite straight dislocation line along the x3-axis 

with pA, uO independent of X3 we may use (18) to calculate Fj, the force per unit length, 
taking for E a cylinder of radius r and unit length with its axis along x3. C is then unit length 
of a generator of this cylinder. 

We could use explicit expressions for u?O,p?,p but this would be tiresome in the anisotropic 
case. It is more interesting to see what is the least information we need about the dislocation 
in order to find Fl'. The fundamental property is 

ui,jdxj bi (22) 

for any closed circuit embracing the dislocation line. This, however, does not completely 
define the singularity. Without altering (22) we could add single-valued line singularities 

(e.g. a line of dilatation) coincident with the dislocation line. They may be excluded by 

requiring that lim ru - 0, (23) 
rO--> 

where r is the distance of the point xi from the singular line. 
If we put Au? = bi and expand the A quantities about the origin (18) becomes 

Ff = I f p dSj + pik3pA b + O(r). 

The first term vanishes since the dislocation is in equilibrium. Hence 

FA - bi, F -pibbi. (24) 

For a pure screw dislocation with b = (0, 0, b) 

FA -P A b, FA -p3 b, VOL 2423 . A.13 

95 

VOL. 244. A. I3 



J. D. ESHELBY ON THE 

and for a pure edge dislocation with b = (b, 0, 0) 

FiA =P12, F2 =-p 1b. (24') 

In place of (24') Koehler (I941) originally found in the isotropic case 

FA 2 A +#P b 
IT A+2#12 

His method is equivalent to evaluating (17') over a square surrounding the dislocation and 
omitting the first term in the integrand. 

We can similarly show that for a loop of physical dislocation of arbitrary form 

FA = lim f upa idS +0 (rl)} + bickljj p dxj, (25) 
r->O d rr 

where E is a narrow tube of radius r and total length I embracing the singular line o-. The 

first term in (25) will vanish if we require that not only is JpJ dSj zero when taken over E but 

also when it is taken over any part of E intercepted between two planes perpendicular to the 
dislocation line (cf. Burgers I939). Actually there is no harm in including in the surface of 
integration the two cross-sections of the tube, since according to (23) pi? ultimately behaves 
like r-l. An equivalent condition for the vanishing of the surface integral in (25) is thus that 
any element of volume is in static equilibrium whether it is traversed by the singular line or 
not. If this is admitted, 

F/ -b, pj dxj, IX=belJ 0kl-j 

This is consistent with a force elj bi pA Sj per unit length on a dislocation line at a point where 
its unit tangent vector has components si (Peach & Koehler 1950; Nabarro 1951). We 
cannot prove this by the present method, which only considers translations of the loop 
without change of form. 

For the general Somigliana dislocation 

F=S dipA,ldSj, 
with the s and d of ?3. 

7. THE IMAGE FORCE AND THE FORCES BETWEEN SINGULARITIES 

Consider a body containing a singularity S whose energy-density 7//= , siu is every- 
where finite. The internal elastic energy of the body, 

Wint. = Jfdv, 
is a function of the parameters i defining the position of the singularity. We may regard 

Ffl= --0w nt/0 

which measures the rate of decrease of W,,n. when the singularity is displaced in the x, direction, 
as the force acting on it in the absence of applied forces or other singularities. Since F[ 
depends on the existence of the free surface it will be called the image force. 
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If there is a second singularity T whose energy-density is likewise finite everywhere we 
shall now have #= (pfs+pTj) (iuj+U,j) and if S is moved whilst T remains fixed, 
- dWJint./d will have a value differing from Ff. If 

- dWintM / = Fi+FIT, (26) 
we can regard FJT as the force which T exerts on S. Similarly, if there are in addition constant 

externally applied stresses we shall find, say, 
-9 Wintd6lF =+ F I+F+ FA. 

If Wext. is the potential energy of the source of the applied stress, - dWxt. /l is FA as defined 
in ? 5. The total force on the singularity S can then be defined as 

F - d(Wint. + Wext.) / 6 F[I + FT +FA +F', 

and F, &S is the decrease in energy of the whole system when S is displaced from i. to i + 8i 8. 

Consequently our previous definition of Fi is reasonable only if we can show that Ff' vanishes. 
To calculate F1 and FT in a simple way for a homogeneous medium we use this known result: 

An elastic body reacts to appliedforces in the same way whether it is self-stressed or not. (27) 

(See, for example, Southwell (I936) and the discussion and references in Nemenyi (I93I). 
Gebbia (I902) stated (27) for the case of Somigliana dislocations.) 

The following discussion is valid for singularities with finite self-energy. To apply the 
results to singularities with infinite self-energy we must make the following explicit 
assumption: 

Singularities with infinite self-energy can be regarded as limiting cases of singularities with 
finite self-energy, and when we make the passage to the limit the expression for the force is 
still valid. 

Alternatively we can simply lay down these two axioms: 
(i) The statement (27) is true also for singularities with infinite self-energy. 
(ii) The plausible subtraction of infinities implicit in equation (28) below is allowable. 
As in ? 4 we take the singularity in an infinite medium, describe a surface No around it 

and cut out the body bounded by No without allowing the surface forces to relax. In this way 
we get a body with the singularity in the position specified by the parameters ~. If we had 
translated Eo a distance - s parallel to the x-axis before cutting it, we should have got 
a body equivalent to the first but with the singularity in the position specified by the para- 
meters 6 + j 6. The difference of energy in these two cases before the surface tractions are 
relaxed is (figure 2a) 

p| PetkdS6 +0O(62). (28) 

(It is here that any necessary 'subtraction of infinities' occurs; energy in the shaded 

region of figure 2a makes no contribution.) When the surface tractions are relaxed in the 
first case the elastic energy is reduced by an amount 

2 |:o 

(Here we invoke (27).) The corresponding quantity in the second case is 

-(l 1 +d ) 1 p u[dSj + 0 (42). 

13-2 
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Consequently, after relaxing the surface tractions the energy for the first case less that for the 
second is 

2{Pi eik j-d(P u) /d} dSj + 0 (2) . 
o 

This must be equal to F[S6+ 0(862). Rearranging and using (11) and (15) we have 

,d So f J~ So i ~s" o 

The second term vanishes by (7) and (9). According to (8) the last term is unchanged if 

Lo is deformed in any way as long as it still encloses the singularity. Hence this term is 
a constant characteristic of the singularity in an infinite medium and entirely independent 
of the size and shape of the body containing it. When we let No tend to infinity the term 
vanishes if uO behaves like r-1 or logr at large distances in a three-dimensional or two- 
dimensional problem. For isotropy the theory of biharmonic functions shows that these 
conditions are fulfilled if the stresses do in fact fall off at all with r, as they must do if there is 
not to be a singularity at infinity. It is fairly obvious that the same will be true for anisotropy. 
We return to this point in ?9 and meanwhile assume that the three quantities 

Fl = t kj -uijo U (A') dSj (29) 

vanish for any surface E surrounding the singularity. Manipulating the surviving integral 
in Ff as we did (17), we have, for example, 

FIl f(ui,py-pb ) dSj. 

4 s 
dv=vSdSX 

(a) b) c 

FIGURE 2 

The case where there is a fixed singularity T can be treated by a slightly more elaborate 
set of imaginary operations. (We shall not trouble to insert terms of order s82.) Draw a 
surface 2 in So surrounding Sbut not T, thus dividing the body into parts I and II (figure 2 b). 
(The final result is the same with the scheme of figure 2c, where it is easier to imagine 
separating I from II, but the argument becomes more prolix if E and No are not separate.) 
Let ui be the total displacement and put uj = ui-u = uI+ uf and similarly for pi and pj. 
Carry out the following steps: 

(i) Move S from 6 to +i -- ij and record the new surface tractions 

{Pi, {+ (dpjld9d6}nj (30) 
across S. Move S back to i. 
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(ii) Cut the surface Z and remove I without allowing the tractions on the surface of I and 
the surface of the cavity in II to relax. Alter the surface tractions on I from pij nj to p?i nj. The 
energy entering I in this process is 

2 (Pij t-Pij) (U -Ui) dSj 
- 

-(Pii +-Pzj) u dSj. 

(iii) Change the position of S from ̂  to 6+8l8&6 and adjust the surface tractions in I to 
{pAZ + G9(dp/d)} nj. The increase of energy in I is obviously given by (28) with S in place 
of Zo. 

(iv) Alter the surface traction on I to (30). The energy entering I is 

(1 +ag/ag,) S (.p + p) u dSj. 

(v) Alter the surface traction on the cavity in II to (30). The energy entering II is 

-- {Pij (dui/dgl) dSj. 

The minus sign is correct if the normal is directed from the cavity into II. 
(vi) The stress and displacement are now equal at corresponding points of the surface of 

I and the cavity in II. Replace I in the cavity and rejoin the surface S. There is no energy 
change in I or II. 

Adding the different energy changes and using (29) we have 

dW L du?o dp?du' d 
--L hi. 2~iu;T pit _ pl))ds. (31) dW L { (6prqI +p) 't--i (u +_uI) dSj3- (p :ju 

pj 
) (31) 

and this must equal FT+FI. The second integral vanishes by the usual argument, and from 
(15) and (26) we have 

FIT = (Pi?U uT-pjT'uooI ) dS,. 

Finally, let us repeat the previous argument for the case where there are also applied 
surface tractions pi nj on No. The only differences are first that the primed quantities must 
be interpreted as t= =I pT A ' +A, Ui = i +i + ) Pij-ij +Pij +Pij, 

and secondly that in stage (v) the displacement on O alters from ui to ui + -6(duil/d) and the 
surface forces do work. The following terms must thus be added to (31): 

(A a - iu dSj d-f pA d dSj 

But the first term is simply FA as defined in ? 5, and the second is -Fj since 

aui/d, = d(u?+ + u)/dg, = duf/d, 

uT and u0 remaining constant. Consequently the presence of an externally-applied stress 
makes no difference at all to the change of internal energy when the singularity is displaced. 
Thus FA' vanishes as we required above. 

Let 1i(A, oo) denote one of the expressions for F1A in ?5 or the explicit expression for 
a particular singularity. Then clearly F1I == (I, oo), with an obvious notation. Thus if surface 
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tractions equal and opposite to pzI nj are applied there is no total force on the singularity: 
Fl' +Fi - 0. This can be described picturesquely by saying that since the total stress and 

displacement are Pi7 and u? the singularity thinks that it is in neutral equilibrium in an 
infinite medium with no applied stress. Similarly, FIT = 0( T, oo), with the proviso that when 

01(T, oo) takes the form of a surface integral the surface of integration E shall separate 
S from T. 

The expression for the total force is 

F, = Fp +FI +F[ fP dS,, (32) 

where Pjl = 
-pij ui, I + -Pik eik (jl. 

This easily follows by taking 01 in the form (19), adding Fc and noting that by (3) and (11) 

fi{P'i u7 k--p ek S 4 ) dSj - 0, 

with u- =uA +uf +uuT etc. Since we have reintroduced Fl" the truth of (32) does not depend 
on its vanishing. S and T can of course each be a group of singularities. Consequently (32) 
gives the force on all the singularities within E exerted by 

(i) their image stresses, 
(ii) externally applied stresses, 
(iii) all the singularities outside S. 

By analogy with electrostatics we may call Pjl the Maxwell tensor of elasticity. Note that 
Pj is not symmetric; I specifies the component of the force and j is used to form an inner 

product with the surface element. In an infinite medium free from applied stresses the force 
which one group of singularities exerts on a second group is equal and opposite to the force 
which the second exerts on the first. More generally action and reaction are equal and 

opposite in the following sense: the total force on the singularities in I (figure 2c) plus the 
total force on the singularities in II is equal to the total force on all the singularities within No, 
the integrals over the partition E cancelling. 

The force which one infinite straight dislocation exerts on another parallel to it can be 
found from (24) with bi equal to the Burgers vector of one dislocation and pA equal to the 
stress produced by the other. For a pair of edge dislocations the results agree with those of 
Leibfried (I949) and Bilby (I950) but not with the original calculations of Koehler (I94 ). 
If Koehler's calculation is repeated in bipolar co-ordinates the result agrees with Leibfried, 
Bilby and the present paper. The error appears to arise from the fact that Koehler had to split 
the total energy into self-energy and interaction terms which are difficult to evaluate over 
the same area. It is easy, for example, to evaluate the former over a circle and the latter over 
a rectangle. When we let these two areas of integration tend to infinity the result obtained 

depends on their relative size and shape. Instead of neglecting the energy within small 
cylinders surrounding the dislocation lines we may cut out these cylinders leaving stress-free 
holes at the centres of the dislocations, in the manner of Volterra. This problem can be solved 
rigorously by an extension of the analysis of Dean & Wilson (I947). The result differs from 
that obtained from (24) by terms which vanish with vanishing radius of the stress-free 
cylinders. The additional terms represent the image force on one dislocation due to the hole 
at the other. 
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It should be noted that singularities with single-valued displacements cannot have their 
centres excluded by stress-free surfaces in this way. For example, we can only annul the 
traction over a sphere surrounding a centre of dilatation by superimposing a hydrostatic 
pressure (giving the wrong behaviour at infinity) or an equal centre of compression at the 
same point, in which case the stress is zero everywhere. 

The force exerted on a centre of dilatation by a dislocation, obtained by replacing pA in 

(21) by the hydrostatic pressure of the dislocation, agrees with Bilby's result. It may be noted 
that Cottrell's (1949) process of creating one singularity in the stress field of another also 

gives the correct result. To create Bilby's model of an interstitial atom we have to make 
a spherical cut of radius ro and blow it up into a spherical annulus of thickness ar0 (in the 
notation of? 6) against the applied stress. This leads at once to an interaction energy of which 

(21) is the gradient. We defer discussing Leibfried's result for this case to ? 9 since it involves 
elastic inhomogeneities. 

Even when FjA is known for a certain singularity the determination of F1 still requires the 
solution of a boundary-value problem to findpi. In some two-dimensional isotropic problems 
we can use existing solutions of related problems. 

For a screw dislocation at the origin in a cylinder whose cross-section is bounded by the 
curve Eo we must find a harmonic function u3 for which du3/dn vanishes on So (no surface 

traction) and behaving like tan-' (x2/x1) near the origin. The logarithmic potential, 0, of 
a charge at the origin inside a curve 20 at constant potential is harmonic, satisfies dl/ds 0= on 

So and behaves like log r near the origin. Clearly u3 is the harmonic function conjugate to q. 
The conjugate function need not actually be constructed if only the stresses are required, 
since p23/j =u 3, 2 = , and P31/l 

= 
U3, 1 =- , 2' The case of a screw dislocation in a rec- 

tangular prism can be dealt with by the analysis of Courant & Hilbert (I93I, p. 333; see 
also Leibfried & Dietze 1949). As a simpler case we see that the image stress for a screw 
dislocation distant r from the centre of a cylinder of radius R is given by an image dislocation 
of opposite sign distant R2/r from the centre and on the same radius. The image force is 

(,ub^2/27) r/(R2-r2), directed radially outwards. More generally the force on a screw dis- 
location is the same (in suitable units) as that on the line-charge in the associated electrostatic 
problem. 

Again, the deflexion w of a plate and the Airy stress function X of a plane-strain problem 
both satisfy the biharmonic equation with the boundary conditions w = 0, dw/dn = 0 and 

d(dXl/dx)/ds= 0, Od(d/dx2)/s = 0 at a clamped edge and free surface respectively. The 

boundary conditions can be made to coincide if the plate is given a small rotation, or a linear 
expression in xl, x2 is added to x which does not alter the stresses. Near a concentrated load 
at g, w behaves like (x- )21og (x-g)2. For X this singularity represents a Weingarten 
dislocation made by inserting a narrow wedge with its apex at g. For an edge dislocation at 
the same point with Burgers's vector b, X behaves like b'. (x-g) log (x-^)2 with b' per- 
pendicular to b. Hence if w is the deflexion for a plate clamped around the curve S0 and 
loaded at (61, 2), then Xw = const. w and 

XE const. bi --b2 w 

are the respective stress functions for a Weingarten dislocation or an edge dislocation with 
b (b1, b2) at (6, 62) in a cylinder with So as stress-free boundary. The results of Michell for 
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a disk (Love I927, p. 491) can be used to discuss an edge dislocation in a circular cylinder. 
Koehler (I941) has treated the case where the slip plane is a diameter of the cylinder. 

As a three-dimensional example consider the image force urging a centre of dilatation 
towards the surface of a semi-infinite solid. The shear stress over the plane x3 = due to 
a centre of dilatation at (0, 0, Z) in an infinite medium can be removed by putting an equal 
centre of dilatation at (0, 0, -Z). This does not contribute to the image force since it produces 
a pure shear. The effect of annulling the remaining normal pressure on the plane x3 = 0 can 
be found by integration from the expression (Love I 927, p. 191) for the effect of a concentrated 
load on the surface of a semi-infinite body. We find 

dai _ 3u(1 + cr) S 
t9X3j-= 2Z4 

so that by (21) FI = 6r#f(1 -( ) 2Z-4 

directed towards the free surface. For the Bilby singularity of ? 6 

c Ero ir 
4 

Fl I 
7Ta.a2Er2 Ir + 

where E is Young's modulus and Z is the distance of the centre of the sphere below the free 
surface. This force can be regarded as derived from a potential 

U=--7T_O2Er_ ) _ -1_ .3 

If we apply these results to an interstitial atom or lattice vacancy we see that in thermal 

equilibrium the concentration of these defects should be greater near the surface than in the 

body of the material. However, even with a fairly generous choice of the misfit constant 

a, U is of the order of k T at room temperature only when Z is of the order of ro. At this 

point the approximation of an elastic continuum breaks down. When we reach a depth at 
which the continuum approximation is reasonable the concentration will have reached 

substantially its bulk value. 
Two centres of dilatation in an infinite medium do not interact with one another (so long 

as linear isotropic elastic theory is valid), since each produces a pure shear stress. On the 
other hand, in the neighbourhood of a free surface each of them is acted on by its own and 
the other's image stress. It is clear that each one of a group of n centres of dilatation close 

together in comparison with their distance from the surface will be acted on by n times the 
force it would experience in isolation. However, if one centre is kept fixed at (0, 0, Z) and the 

image force on it due to a second centre at (xI, X2, x3) is averaged for all xl, x2 the result is zero, 
and so there is no long-range multiplicative effect. 

8. THE FORCE ON AN INHOMOGENEITY 

Suppose that thae elastic constants of an inhomogeneous body free from internal stress 

depend on three parameters 6 according to the relation 

Cijkm -Cijkm (Xn -n). 

102 

(33) 



FORCE ON AN ELASTIC SINGULARITY 

The i might, for example, be the co-ordinates of a foreign inclusion in an otherwise uniform 

body. If fixed surface tractions are applied to the surface (so that d(p,ijnj)/a = 0 on O) 
and one of the parameters is changed, we have with the notation of ? 7 

dW ext. du d d Wint. -dJ _ A P 1dSj = dr- Jieij dv = 2d- ' 
d6l ' - 6 d j6 A - 2 i- 

so that of the work done by the external forces in a small change of 1 half disappears and half 
remains as an increase of the internal energy of the body. Consequently we can define 

F1 = + dJW4t4./d/ 

as the force which the applied surface tractions exert on the inhomogeneity. 
We have 

e ht. - JiJkm ekmedv. (34) 

This can be seen as follows. The difference of energy between two bodies of the same size and 

shape (distinguished by unprimed and primed quantities) with different inhomogeneous 
elastic constants and acted on by the same surface tractions is 

W=| J( Pi{j ei --Pij eij) dv. 

But (Pij -. P'j) eij dv = (Pi-p'j) uidS 0, 
J J So 

since pj nj = p,' nj at the surface. Hence we can replace pij e, by pj eij in 8W and similarly 
p' ej by pij ej. Hence 

W-2 ( CiJkm- C jkm) e ekm dv, 

from which (34) follows. From (33) and (11) 

FEl- 
2c ijkm,lUi,jUk,mdV 

2= J (ijkmUi,jUk, m),l -2Cijkm Ui, jUk, m} d 

| (PkmUk, m lj-PjkUk, ) dS 

so that F, is given by the 'Maxwell tensor'. If the body is homogeneous except in a limited 

region, No can be replaced by a surface Z enclosing that region. 
The stress and displacement can be written as 

Pijpi +Pij u,i =_A uS, 

where uA is the displacement which the given surface tractions would produce in the body 
if it were homogeneous throughout, and us can be regarded as the disturbance produced by 
the inhomogeneity. The stresses pi could only occur in the actual body if there were body 
forces of density f - (cijkm u, m), j present. Consequently, the displacement and stress are 
the same as would be produced by body forces -jf in the inhomogeneous body. jf vanishes 
where the body is homogeneous and the volume integral off is zero. We may say that the 
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surface forces 'induce' in the inhomogeneity a singularity specified by uS,pjs and then exert 
a force on it. We can write us == u? + uf as for a real singularity, and similarly forpSj; u, is the 

displacement which the body forces -f would produce if the body were continued to infinity, 
the additional material being homogeneous. F? (equation (29)) clearly vanishes, and so we 
can write wri F=: (A, oo) + (I, oo), 

just as for a real singularity. 
As a simple example consider a body with shear and bulk moduli ,i and K containing 

a spherical inclusion of radius rQ and bulk modulus K'. It is easy to show that, under a uniform 

hydrostatic pressure p, uS is given by (20) with 

r_ 3(K' -K) 
4#p 4# +3K' 

if the body is infinite. If p is not constant F1 will be given approximately by (21) with this 
value of . This is inaccurate because the variation ofp will induce higher order singularities 
and the result must be multiplied by 1 + 0 (ro I gradp I/p). We have also neglected the image 
terms, which will be small if the inhomogeneity is far from the surface of the solid. For a 

spherical cavity (K' = 0) the approximate result is 

F=3ti 1 grad(p)2. 

Such a cavity could migrate by evaporation and condensation or surface migration of 
molecules in the cavity or by diffusion of defects in the body of the solid. Similarly, for an 

incompressible inclusion (K' oo) 

F = --aT grad (A)2. (35) 

9. THE GENERAL CASE 

It would be tedious to treat the general case, where there are both singularities and 

inhomogeneities, by the methods of ? 7, 8. We shall therefore definitely adopt the point of 
view that singularities can be regarded as limiting cases of extended states of internal stress. 
We can then carry out volume integration without scruple; the only difficulty is the 

impossibility of defining a displacement function everywhere. 
In order to make clear the nature of these internal stresses we consider a process (Timo- 

shenko I934) which would actually produce them. Reissner (I93I) gives a more formal 
account. 

Cut an unstrained body into infinitesimal cubes and give each one a permanent strain 

e*, for example by plastic deformation or by adding and removing material on its faces. 

Apply stresses -cijk e* to them; they become cubes again and can be welded together in the 
same relative position to give the original body. Since the surface stresses thus built in are 
not generally equal and opposite on the adjacent faces of neighbouring cubes, we are left 
with a distribution of body force of amount (cikl, e*),j per unit volume. If we superimpose 
a distribution of body force 

(36) 
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we are left with a body free of body forces but in a state of self-stress pfS given by 

iS = -p_ +-pi, 
where p*= c ke and p is a solution of p* j + (cjk e)= 0 chosen so that p1s satisfies the 

prescribed boundary conditions. Such a state of self-stress satisfies the equilibrium equations 
pisj =j 0, but the strains derived from it by Hooke's law do not satisfy the compatibility 
conditions since according to (4) Si (es) -- S(ek) 0, the e!j being arbitrary functions. In 

regions where e* == 0 and hence p* = 0 the state of the medium is indistinguishable from 
that produced by body forces (36) and a displacement function can be defined. Where 

Sij + 0 the stresses cannot be imitated by body forces. Suppose that Sj is known as a function 
of position. Then if we use Hooke's law to replace the e's by p's in (4) we get the Michell- 
Beltrami compatibility equation modified by the presence of the term Si. This inhomogeneous 
equation together with the equilibrium equations and the boundary conditions determines 
the stress uniquely, just as in the homogeneous case. 

To the first order in the ei*, Rp,r = eiprejstS is the Riemann tensor derived from the metric 

gj - s+ij 2e*. Formally, this means that our set of deformed cubes could be fitted together 
without stress in the non-Euclidean space defined by the gj. This is quite intelligible in the 
two-dimensional case. Let a thin lamina be cut into small squares each of which is given 
apermanent strain e*l e*2 e2.* The pieces could be fitted together without stress as a mosaic 

on a surface with Gaussian curvature K = 2 e* -el 22- e2,1 at each point. Conversely, 
a self-stressed lamina can relieve its stress by buckling into a suitable surface. 

When e:j is known the displacement corresponding to pX in a homogeneous medium is 

clearly 
Um( c) =CijklfJmi(x X) *l () dv, 

where Umi(x) is the displacement at x produced by a unit concentrated force in the xi direction 
at the origin. umi can be found from the six equilibrium equations Cijkl Ukn, = in (X) by taking 
their Fourier transforms and solving the resulting algebraic equations. The result is 

00 

Ukn(x) = (2ir)-fJKnk exp (-ikixi) dk1 dk2 dk,, 
--00 

where Kik is the matrix reciprocal to cjklkjkl. By changing to the dimensionless integration 
variables i, = kir, where r is the distance from 0 to x, it is easy to show that ukn is the product 
ofr-1 and a function of direction. Since ui is in fact the actual displacement ulin regions where 

Si = 0, this verifies the vanishing of Fl assumed in ?7. 
For the type of internal stress we are considering the assumption (27) follows immediately. 

The energy of a body subject to external and self-stresses pA and ps differs from the sum of 

the energies it would have if pA or p1s were present separately by the interaction term 

j(pis e.4 +Pij ) edv. The first term can be written as , J(P6 uA) j dv = - p{s uA dSj = 0, since 

ps nj = 0 on the surface. The second interaction term cannot be treated in the same way, 
since eis cannot be derived from a displacement everywhere. However, by (5) it is equal to 
the first term. Hence the interaction term is zero. The behaviour of the body towards applied 
forces is determined by the way its energy depends on p/ nj and (27) follows. 
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Similarly, we can express the interaction energy between two singularities as an integral 
over a surface separating them. In figure 2 b, us exists in II and uT in I but not vice versa. We 
can, however, express the interaction energy in I in terms of uf and in terms of u in II. By 
applying Gauss's theorem we find the interaction energy in the form 

EsT (pSuT -PUS ) dS . 

We are now in a position to deal with the general case where internal stresses and 

inhomogeneities exist in the same body. The aggregate of inhomogeneities and sources of 
internal stress within a surface l are to be regarded as a complex singularity within it. The 
state of internal stress (so far as it does not arise from sources outside E) is to be defined in 
terms of the stress, strain or (where it can be defined) displacement in an infinite body with 
the same inhomogeneous elastic constants ijkl within E but homogeneous (with Cijkl = Cikl) 

outside E. In the actual body we shall have as before pS = p_ i-ps, etc. The generalized 
image quantities thus defined arise from the presence of the boundary and also from the 
inhomogeneities lying between E and the surface of the body No. They can be found in 

principle as follows. Impose the strains eij on the body. The equations of equilibrium can 
only be satisfied if body forces - (cijkl e) ,j are present. Hence the image quantities are those 
which would be produced by body forces 

fi - 
(cijklek),, (37) 

and surface tractions -p" nj acting on the body. TheJf are zero within E sincep" j 0 there, 
the singularity being assumed as before to be in equilibrium in the infinite medium. 

The force on the singularity in region II due to sources of stress in I and surface tractions 
will be -Wt+ext.) (38) 

where the internal stress and elastic constants depend on E in the following way: 

e) = ei (x-E) inside and outside E, 

Cijkm 
= 

Cijkm (X- -) inside E, 

ijkm is independent of outside E. 
For simplicity we shall assume that within a narrow shell containing E there are no sources 

of internal stress and cijkm = cOkm. This ensures that a displacement exists on E and that 
a small translation 86 does not engender discontinuities of ijkm across S. 

In I we can write e = e- (x, g) +e (x, g) in terms of its value for some fixed value g? of 
E and a variable part expressing the dependence on 1. Then although e'j cannot everywhere 
be derived from a displacement, ei' can. The contribution to (38) from the region I is 

- t =2Jy (Pig eiJ) dv f | 8ed dv 

Af(Pij dl)j dv =fr_ idl (39) 

since p, j = 0 and u' is independent of g. 
The contribution from the surface tractions is 

d -| A- -fdS.(40) d61 za t j 
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In region II we put ei = e- + ej. Then 

dWint. 
I 

J1 
d 

(P - e +pi +Pi e +pp + eJ ) dv. 

Since ej can be derived from a displacement the first and third terms can be converted into 
surface integrals by writing, for example, pj e% as (p,j u),j and using Gauss's theorem. So can 
the second, since although e,j cannot be derived from a displacement we have 

d(pA e=)/le - - (po e),l. 
The fourth term is equal to the third. In this way we find 

t 
II--J (P i z ui Pij u i UZ -Psji j . II u* ) - (Pik eik) lj (41 ) 

Adding (39), (40) and (41) we find after rearranging and using (11) that F1 differs from the 

right-hand side of (32) by the terms 

f (pej ej-pij eiy) dS1 (42) 2iJ^ ^-J&y^W (42) 

and f ([p, (- + ) ui -i (+ )PidSj (42t) 

The expression (42) vanishes since pm e\j = pj ej on S. The divergence of the integrand of 

(42') can be shown to vanish by expressing it entirely in terms of displacements and noting 
that d(cijkm)/9 = Cijkm , inside S. Consequently (42') is zero. (The conditions for us to 

apply (8) and (9) to the terms in /ddxt and d/d9 separately are not satisfied.) 
A more careful analysis shows that the requirement that Cijkm shall be constant on E and 

in its neighbourhood is unnecessary. The choice of the constant COgkm clearly makes no 
difference to the values of uIf,pI calculated from (37) nor to the values of u? and paI on Z and 
hence cannot affect Fl. The modifications when body forcesfJ are present in I are easily made. 
As externally applied forces they are to be treated on the same footing as the surface tractions. 
We thus have to add a term 

-\fSdv fJiu dv 

to (40). But since now pj = -fi an identical term must be subtracted from (41) and the rest 
of the calculation remains the same. If we wish to split Fz into FA, FI, etc., we have to show 
that (29) continues to hold even though the hypothetical infinite solid used to define p?i is 

inhomogeneous within 2. It is easy to see that the stresses and displacements outside E are 

just those that would be produced by a system of body forces -c?km ekm, j within E if the interior 
of Z were homogeneous, and (29) follows as before. Again, as noted in ? 3, there is no reason 

why pj should not be produced in whole or part by an equilibrating system of body forces 

fS=/S(x -) within II. If they are present pi,j= f/s and a term 

daJf,S i u% dv 

has to be added to the right-hand side of (41). F, is then still given by the Maxwell tensor 
if WJ II is redefined as the sum of the elastic energy within II plus the potential energy of 
the sources offS. 

I4-3 

107 



J. D. ESHELBY ON THE 

It is thus clear that F, St with 

FEl= fldSj= jS ( --PijUi,+pl + i ik ) 
Pi, k dSj F, = jl* S ? Sj ui, I Sj 

represents quite generally the decrease of the total potential energy of the system (namely, 
the elastic energy of the material and the potential energy of applied forces) when all sources 
of internal stress and inhomogeneity within I are given a small displacement &6. The energy 
F,1 8 is available for conversion into kinetic energy or dissipation by some process not 
considered in the elastic theory. 

It will be seen from the foregoing that a singularity with a prescribed pij on and outside 
E can be regarded as arising from either (i) a suitable distribution of Si within Z or (ii) a dis- 
tribution of body forcesfS within E. Thefs are equal to the fictitious forces (36) associated 
with Sij. F1 is the same for (i) and (ii). The representation (ii) fits into normal elastic theory 
where surface and body forces are regarded as the sources of the stress field. On the other 
hand (i) is a more natural representation of the singularities of physical theory, since they 
do not in fact arise from body forces. 

The requirement of ? 5 that surface tractions should be applied to a free surface of the body 
is rather unrealistic. It is certainly not satisfied, for example, when the body containing the 

singularity is a specimen in a tensile testing machine. We can, however, regard the specimen 
plus testing machine as a single body to which the results of this section may be applied. 
(Mechanical details can be accommodated to this picture, e.g. a bearing surface is a region 
where the shear modulus but not the bulk modulus vanishes.) Stresses are applied to the 

singularity by a weight rigidly connected to the machine (body forces), by tightening 
a screw (internal stress) or through a knife-edge (applied stresses according with the 

requirements of ? 5). 
It should be noted that there will be an image force (in the generalized sense) on a 

singularity even in a body of uniform composition if the orientation of Cijkm varies with position, 
as it does on crossing a grain or twin boundary. There will thus be a force on a singularity 
near such a boundary quite apart from the effect of the array of dislocations into which the 
boundary can be decomposed. 

Where there is a sudden discontinuity ACijkm in the elastic constants across a surface 
Zd there will be a term Acijkm ek dH(v)/dxj in the force (37) from which the image quantities 
are derived. Here v is the distance measured from and normal to Ed and H is Heaviside's 
unit step function. Since dH(v) /dxj = S(v) dv/dxj - 8(v) nj, this term represents a surface 
distribution of force Acijkm ek nj per unit area of Ed. When the c's vanish on one side of the 
surface we clearly get the surface traction -p nj of ?4. In other words, we need not dis- 
tinguish those image effects due to inhomogeneities from those due to the free surface; 
a finite body can be regarded as an infinite one for which the c's vanish outside No. Similarly, 
by letting the c's approach infinity on one side of E2d we can treat the image effect of a rigid 
wall, though the limiting process requires care. 

Leibfried's (I949) expression for the interaction energy between a foreign atom and an 
edge dislocation does not agree with our result that the force between two singularities can 
be found by integrating Pjl over a surface separating them. Leibfried's model of the foreign 
atom is similar to Bilby's (cf. ? 6), but the inner sphere is incompressible. According to our 
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results the force on the foreign atom is given by the sum of (21) and (35) withpA equal to the 

hydrostatic pressure produced by the dislocation, i.e. the force on a point centre of dilatation 
which produces the same stress field for r> ro plus a term quadratic in the dislocation stresses 

representing the force on the rigid sphere regarded as an inhomogeneity. With reversed sign 
the sum of these two terms is also the force which the foreign atom exerts on the dislocation, 
the inhomogeneity term becoming the force on the dislocation due to its image in the rigid 
sphere. If the interaction energy is to give the force correctly we must calculate it starting 
from an initial state independent of the relative position of the two singularities. A suitable 
initial state is furnished by the dislocation in an infinite homogeneous medium. First create 
a singularity ofBilby's type with its strength adjusted to equal Leibfried's. The work required 
for this is given by Leibfried's equation (18). Now cut out the centre of the Bilby singularity 
and insert the rigid sphere. The energy in the sphere cut out can be used to repay some of the 

energy expended. The interaction term in the energy of the sphere is found to be equal to 
Leibfried's (19 b). Hence the required interaction energy is the difference between Leibfried's 

(18) and (19 b), i.e. his equation (19 a). As an alternative starting point we may take the rigid 
inclusion with its stress field in the absence of the dislocation. Then, provided the elastic 
medium is attached to the surface of the inclusion, the interaction energy necessary to create 
the dislocation is again given (apart from image terms) by Leibfried's equation (19a), in 

agreement with our results. 

10. THE DYNAMIC CASE 

The equations of motion of an elastic mediumpij,j-piii = 0 (p is the density) are the Euler 

equations arising from a variational principle with the Lagrangian density function 

P = U2iU2iC 
- 

klUi,j Uk, 

(Love 1927, p. 166). Associated with such a variational problem there is a 'canonical 

energy-momentum tensor' 

- =ci Ui~ - jl (j,I = 1,2, 3, 4; x4 = t) 

(cf. Wenzel I949). This gives 
Tji Pj -2P i i (j, 1= 1,2,3). 

The components Tj4 = -Pij form the vector giving the flux of energy (Love I927, p. 177) 
and 744 is the energy density. The three components T41 pziiu should represent a 
momentum density, but their interpretation is not immediate. It is natural to suggest that 
Tj is the necessary generalization of Pj for dynamical problems, though we can hardly hope 
to justify this by the simple kind of argument which served to find Pjl. 

Linear elastic theory alone is insufficient to determine the motion of a singularity without 
some additional assumption. (Compare the problem of the equation of motion of a classical 

electron.) Consider, for example, a point singularity. We can write down a solution of 
the elastic equations which has a singular point moving in a prescribed manner. When the 

velocity of the singular point is not uniform there is a net radiation of energy from it. On the 
other hand, a singularity moving in an applied stress field absorbs energy from the latter in 
virtue of the force FjA. The physical counterpart of the elastic singularity has a finite energy 
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density near the centre and cannot act as an unlimited source or sink of energy. A reasonable 
condition to impose on the elastic singularity is thus the following: the energy flux through 
a small sphere of radius ro about the singular point and moving with it is zero. This is 
sufficient to determine the equation of motion if the position of the singularity can be specified 
by a single parameter; in the general case we should have to try to interpret the momentum 
flux and apply a similar argument to it. For a centre of dilatation moving slowly in a straight 
line the motion is the same as that of a particle of mass 87Tnp2/r acted on by the force (21) 
(cf. also Burton I892). It would, of course, be absurd to apply this result to the motion of an 
interstitial atom, whose motion is clearly not controlled merely by inertial forces. Frenkel 
& Kontorowa's (I938) caterpillar, in which it is the state of being interstitial rather than 
a particular atom which moves, is a closer analogue of a moving centre of dilatation, but 
even here dissipative effects are probably dominant. 

A dislocation is a more hopeful example of an elastic singularity the motion of whose 

physical counterpart may perhaps be controlled chiefly by inertial forces. Consider a screw 
dislocation of infinite length parallel to the x3-axis with its centre moving along the xl-axis. 
The first step in finding its equation of motion is to calculate the displacement field 

surrounding it when it moves in a prescribed (supernatural) way. Suppose that the material 
is isotropic and that the dislocation is oscillating so that the position of its centre is x1 = (t), 
x2 = 0 with le. (43) 

The displacement at the point of observation (xl, x2) at time t is 

U3 =- 4ibklH2)(kr) eiwtsin 0 (43') 

plus a term independent of t (Eshelby I949a), where 

k = wo/c, c2 = #/p, r2 = x + -x2, tan = x2/x. 

Apply to the left-hand sides of (43) and (43') the operator (Lapwood 1949) 

27ric to) ' 

where C is the real w-axis indented below the origin. Equation (43) becomes 

: IH(t), (44) 

representing a sudden jump of the dislocation through a distance 1. The corresponding 
displacement, found by using the relations 

d(t)=- I ei&tdow, Hd 2)(z) = -2 e-izc cosh v dv 

bl ct 
is 3 =--2rsin 0 8 t ) H(ct-r). U3 2mgr JV(c2t2 - r2)- 

A general motion 5 = 6(t) can be regarded as a succession of jumps of amount I = S(t) dt in 
time dt executed at the instantaneous position of the dislocation. Hence 

b = C(t-T) (T)r (45) 
u3--X 1J`_-[~~-SB)J1'" 27r]2 C2(t-7>2 - [X -[I6 2)]2 -X 

2 2,ff - co I 2 2 
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where r0 is the value less than t for which the square root vanishes; it is unique if 4(r) is less 
than c for all r less than t. Apart from its rather precarious derivation (45) has the required 
properties-it satisfies the elastic wave equation and has a discontinuity b across the line 

joining (- oo, 0) to the instantaneous position of the singular point. 
It will be seen that the displacement and stress field depend on the whole previous motion. 

This is, of course, because following the jump (44) the effects arising from segments of the 
dislocation line with successively larger values of x3 continue to arrive at a point in the plane 
x3 = 0 ever afterwards. We may try to find the equation of motion by the energy argument 
used for the point singularity or by tapering the dislocation in the manner of figure 1 c and 

requiring that the external and self-forces should balance. Owing to the way in which the 
dislocation is haunted by its past we obtain an integral equation of motion, or equivalently 
a differential equation of infinite order. 

The problem is even more intractable in the case of an arbitrary dislocation loop. The 

integral now extends only over a finite time interval but has a more involved spatial 
dependence and is complicated by the existence (in the isotropic case) of two velocities of 
wave propagation. Moreover, the problem is not simply one of translation of the loop; we 
have to find its change of form as a function of time. It is perhaps not worth while pursuing 
this problem until it is decided whether the motion of a dislocation is in fact governed by 
inertia (Frank I949) or by quasi-viscous forces (Leibfried I950). 
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