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The acoustic properties of an infinite, fluid-filled pipe have been investigated. The relation
between radiated sound power and the system power distribution for a single mode is
analyzed. Energy flow is examined. Coupling effects on acoustic properties are compared.
Whether coupling with fluid will increase or decrease pipe response, and hence noise power,
is largely dependent on the frequency range and on the method of excitation.

l. INTRODUCTION

During recent years, great attention has been paid to coupled fluid—pipe systems. Fuller
and Fahy [1] performed a thorough analysis of dispersion relations and energy distri-
butions for a single mode travelling in a fluid-filled elastic pipe. Pavic investigated
vibrational energy flow in straight pipes for two cases, in vacuo and fluid-filled [2, 3]. Pavic
also described the intereference of different travelling modes with the same circumferential
distributions. The pipe response to an external force exciting the pipe wall was analyzed
by Fuller [4]. In this reference the “‘power ratio” is in fact at the source plane, which is
usually the minimum of the ratio. In references [3, 6], Fuller described the fluctuation of
radiated sound along the axial distance for symmetric modes, introducing the concept of
“surface power”, which constitutes an axial energy flow but never contributes to the
radiated far field.

This paper is concerned with the relations between the structure and the resulting
acoustic fields, and the coupling influence on the acoustic properties of the system. A
method similar to that of references [1, 4] is used to determine the qualities of a straight,
infinite elastic pipe filled with fluid. Damping is not included. An internal fluid — external
vacuum model is employed to calculate dispersion curves, power distributions and pipe
responses to applied external forces. The displacements obtained are then utilized to
calculate the radiated acoustic fields, providing a good approximation for a pipe filled with
a heavy fluid, vibrating in air, but not applicable if surrounded by a dense fluid. Simple
harmonic wave motion is considered throughout the paper. The factor exp(jwt) is omitted
in all of expressions shown. In calculations of pipe responses and acoustic fields, only
travelling waves are taken into account.

2. GENERAL PROPERTIES

The co-ordinate system is shown in Figure 1. The motion of a thin walled cylindrical
shell can be described by the simplified Fliigge equations [7]
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Figure 1. The co-ordinate system.

W8, O LN A0 v (fHp) 10w
+4 (“ 2 “opion  atopl)”

1 dw 1 3 1—v o 1+v 0% Sy I d%

G- tl Az At S5 gt 1T ip2

a’de a’do 2 &z 2a dpdz phet clét

viw 1+4+v 8% 3 11—y @? £ 1 8%

P Ty il (TS Ry aiep-§ Lt e S s

a iz 2a dpdz \Dz 2a° do p.fc:  cldt
In these equations, g is the pipe mean radius, v is the Poisson ratio, ¢, = /E /(1 — v)p,
is the plate extensional wave speed, E is Young’s modulus, p, is the density of the pipe
material,  is the angular frequency, 4 is the pipe thickness, 82 = h%/1247, p is the acoustic
pressure in the fluid, w, v, # and f,, f,,, f. are displacements and external forces (unit area,
dimension [ML~' §~7) applied to the pipe in the r, ¢, and z directions, respectively. (A
list of symbols is given in Appendix B).

The solutions of equation (1), in discrete form, can be expressed as

a’dp tam p.hc? ctae?’

(1)

w(g, z) o | Wa(z)cos (ng} o w | Wam COS ()}
e, 2) {= X { v.@)sin(ne) =Y Y | v, sin(ng) e, >0, (2)
w(@,2) | """ Litn(z)cos (19) | """ Lt cOs (n90)

where k,, is the axial wavenumber of the mode (n, m). It is assumed that the excitation
is symmetric about ¢ =0.

The wave motion in the fluid is described by a linear acoustic equation, solved by a
combination of cosine and Bessel functions. These two solutions are matched together by
setting the radical particle velocities in the two media 1o be the same at the wall, leading
to the characteristic equation as

an::(xn)Ll (yn) = WQZJn(xn)LZ(yH)y (3)

where the subscript » refers to the circumferential distribution cos (n@), 2 = wa/e, is the
normalized frequency, J, is the Bessel function of order n, y, = k,a is the normalized axial
wavenumber, and x, = \/ [R%c,/c,)* — y2}is the normalized radial wavenumber in the fluid.
The subscript f denotes “fluid”, a prime denotes differentiation with respect to the
argument, and

Li{y,)= 1_;‘»:(] —vi— Qi l:g——_v)‘%lﬁw—_ﬂz)'_'_ (1 ~v)n?— v2:| Q2
+(Qz—l;—v"2)(1 +n? = Q)Q + P’ + y2PLy(3,), )

L(y)=(+n"— Q%) (I—;‘i(yﬁnl)—ﬂz). (5)
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The coupling parameter # in equation (3) is

_ pya _unit length fluid mass

ph 7 unit length shell mass )

The physical meaning of equation (3) is very clear: the pipe vibrating in vacuo
(Li(y,)=10) and the acoustic wave in a rigid walled duct (x,J;(x,) =0) are coupled
together via a variable coupling coefficient Q?J,(x,)L,{(y,), the magnitude of which
depends on the particular wave mode concerned. There is no coupling when 5 equals zero.

Fuller has demonstrated [8] that there is a flow of energy backward and forward between
the pipe and fluid as the wave field propagates down the fluid—pipe system. He concluded
that this is due to the cross terms of the non-orthogonal modes. If the analogies of y, to
w and z to ¢ are taken, the form of equation (3) is the same as that of the equation of
coupled oscillators. From the properties of coupled oscillators [9], this phenomenon of
energy transfer along the z-axis can immediately be expected. The density of the fluid
(represented by the coupling parameter ) only changes the strength of the energy transfer,
but does not determine whether or not the phenomenon will occur.

3. POWER RATIO FOR A SINGLE MODE

The term “power ratio™ here means the ratio of sound power radiated by a unit length
of the pipe divided by vibrational energy flow through a cross section.

The time averaged axial energy flow of a unit width of a thin walled cylindrical shell
can be written as [10]

p:= _{WQ2+UN:¢+MN.:+(16_W_E)M::p'i_a_wMz}! (7)
adp a oz
where an overdot implies differentiation with respect to time and an overbar denotes time
averaging. Q,, N, N_,, M_, and M, are the transverse shear force, axial force, torsional
shear force, shear moment and bending moment respectively.
The acoustic intensity for harmonic wave motion in the axial direction is given by

E=3Re(pul), (8)

where the superscript f denotes “fluid” and the asterisk denotes the complex conjugate.

Energy flow through any cross-section of the wall is the integral of expression (7) over
the circumference, and acoustic energy flow is the integral of expression (8) over the
cross-section. The total energy flow is the sum of these two. By using simplified Fligge
equations [7], for the mode (n, m) it is obtained as (see Appendix A)

Ik 1 1—
Tzrrm = T;nm + szrnm = %{(}’nmRﬁ + VRu + %HR“RI. + —vynmR12>

2a 2
+ B2, (20% + 2y%, 4+ nR,)
Q 2y n?
— " {1 == J2 2

where ¢,=2if n =0and =1 if n #£0. R, and R, are displacement ratios, defined as

Uy Vs |l —v vl —v)
R = Yo _ 2_ 2 12|, 10
=, Lz(y,,,,,)( 7T T Im Y (10)
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v n 1—v 1—v?
R‘=ﬂ=___ Qz_ 2 2 _ 2 . “
e Lz(ym)( 3 (n° + Vom) 2 ynm) (1)

Note that R.=0 when »n =0, since the torsional mode is decoupled for axisymmetric
motion.

The radiated sound power can be approximated by using the radial displacement
obtained from the previous model when the pipe is surrounded by air. It is easy to prove
that (see equations (17)—(23) in the later part of the paper, with K, = 1), for the mode
(n, m), the sound power radiated by a unit length (length @) of a vibrating pipe is

T%:Mwim (]2)

where subscript and superscript a denotes air, and ¢,, is the radiation efficiency of
mode (n,m) as defined in reference [11]. Radiation efficiencies for different modes
have been examined in reference [12], where it was found that the discrepancies
between different modes with the same circumferential distribution are usually less than
0-5 dB, and between different circumferential distributions show the same properties as in
reference [11].

The relation between radiated noise power and different parts of structure energy flow
is examined. In order to do this, five different types of power ratios are calculated. Their
definitions are as follows:

sound power radiated per unit length
energy flow type ¢

I"q=1010g » qu;sibae) L (13)

Here the subscript f denotes “fluid” (terms with »), s “shell” (terms without #), &
“bending” (terms with §7), ¢ “extension” (terms without 2 and n) and ¢ “total energy
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Figure 2. Power ratios for single travelling mode, Water/steel pipe system, #/a = 0-05. (a) (0, 1) mode: (hY (0 ™
mode; (¢) (1, [) mode.
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TaBLE 1
Geometrical and material parameters

Poisson ratio, Density, Free wave speed,
Material v p (kgim?) ¢ (m/s)
Steel 03 7800 5200
Water — 1000 1500

Thickness ratio kfa =0-05.

flow™. Among them, I, is the measure of how much structural power is needed to radiate
a certain amount of noise power. Similarly, other partial power ratios, i.e., I';, I',, I', and
I',, are relations between radiated sound power and the several specific types of structure
power. The ratios also show the power distribution in the system.

Various power ratios of the (0, 1), (0, 2) and (1, 1) modes are shown in Figure 2, with
material parameters in Table 1. The ratios for any {(n, 1) mode with # > 1 are similar to
those of the (i, 1) mode, and become more and more like each other with increasing
circumferential number [12). It is seen from the figure that the (0, 1) mode is the main
radiation mode for axisymmetric motion, since the total power ratio I', of the mode is much
higher than that of the (0, 2} mode at all frequencies. Although vibrational energies of all
principal radiation modes ((n, 1) modes) for any circumferential distribution cos (n¢) with
n >0 are mainly propagating in the pipe, the situation for n =0 is opposite: the main
power of the (0, 1) mode is in the fluid when Q < 1, but it radiates much more noise than
the (0,2) mode, which is a shell mode, at the same frequencies. There seems to be no
definite relation between radiated sound power and the energy distribution in the system.
This result is not surprising, since the sound field is related only to the pipe radial velocity,
but the energy flow in the shell contains three-dimensional vibration energy. A further
examination of Figure 2 shows that there is even no definite relation between shell bending
energy and the radiated noise power.

The negative of I';, which corresponds to the ratio of fluid power to radiated sound
power, is defined as transmission loss in reference [5]. This quantity is very dependent
on what modes are excited. As shown in Figure 2, the transmission loss of the (1, 1) mode
(or any other non-axisymmetric mode) is at least 30 dB smaller than those of the breathing
modes at low frequencies. The total transmission loss will drop dramatically if any
non-axisymmeltric mode is excited, as expected [5]. A difference from reference [3],
however, is that the pipe and fluid are strongly coupled here. The fluid power varies
appreciably with the axial distance if the frequency is high enough, as mentioned in the
last section. In the author’s opinion, it is more physically meaningful to use the total
power ratio I', rather than the transmission loss if the medium inside the pipe is a
heavy fluid such as water. The comparison of the total power ratios I', of several modes
is shown in Figure 3. The ratio of mode (0, 2) is always lower than that of any of the others
by at least 10dB except close to 2 =08 when the mode (0,3) cuts on. As at low
frequencies, this is a shell extensional mode, and at high frequencies this is a fluid
plane wave mode. The shell radial displacement is very small in both cascs. Hence
this mode can always be neglected in practical noise control problems. The n = 1 mode
is the most important only when @ < 0-08. After that, the power ratios of n =2, n =3,
n =4, etc., surpass that of n = 1. At these frequencies, there is no reason to describe any
particular mode as being most important unless the excitation is known. When the
frequency is increased further, all of the different circumferential distributions have the
same importance.
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Figure 3. A comparison of the modal total power ratio I',. Water/steel pipe system, Aja = 0-05. 1, (0, 2) mode:
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4. FLUCTUATION ALONG THE AXIAL DIRECTION

Only external force excitation is considered here. Fluid excitation of the pipe may be
approximated by an external force with a certain distribution, as viscosity is not included
and the fluid excitation is only in the radial direction. As mentioned in the introduction,
only travelling waves, ie., the real roots of equation (3), will be taken into account.

4.1, VELOCITY DISTRIBUTION

Suppose that the external force applied to the pipe is uniformly distributed around the
origin and is of the form

_ JFo/(ag, B), lz| < B/2, |o|< @2
ACE {O, otherwise ’ (14)

where F; is the magnitude of the total applied force, B is the axial length of the distributed
force and ¢, is the angle of arc of the distribution. Except in the discussion of the coupling
effects (section 3), point force excitation, i.e., the case in which B = 0 and ¢, =0, is applied
to all of the calculations shown below.

By using the same approach as in reference [4], the radial velocity for each circumfer-
ential distribution cos (#¢p), at the angle ¢ =0, can be obtained as

Ko i —J(2/a} e
w,,(f) __QF 5 sin (y,,, B/2a) . L;(¥um) e 3B (15
aj pemrahe, nsy VanBl2a (L) = FL - Ly(y,0))

where the prime denotes the derivative with respect to the argument, K, is the total number
of travelling waves with circumferential distribution cos (n@), y,, is the normalized
wavenumber of the mode (n, m), and FL = Q% (x_ )% (X} is the so-called “fluid
loading term”. The total velocity of the shell is then expressed as

wo,zla) = 5 0P 1) cos (ng). (16)
r=10 i

The pipe radial velocity distribution along the z-axis is shown in Figure 4, plotted in
a non-dimensional way as g, ¢, nahe,|w,(z/a)|/F,. Due to the interference between modes
with same circumferential distributions but different axial wavelengths, the magnitude of

the radial velocity Auctuates with distance.
When the non-dimensional frequency @ is less than 0:6, the magnitude of the transfer
mobility of any mode # is basically independent of distance, since there is only one



FLUID-FILLED PIPES 405
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Figure 4. The shell radial velocity distribution along the axial distance, #/a = 0-05. Expressed in a normalized
way as pyc nahe, |w (z/a)l/Fy. ———, Water-filled pipe, n =0, & =05 ——, water-filled pipe, n=0, 2 =1-5;
----- , pipe in vacuo, n =1, @ =12

travelling wave for any » # 0 mode. For the n = mode, there are two travelling waves
(the purely torsional wave is not included since it is uncoupled from other modes), but the
response of the fluid mode to radial excitation is much higher than that of the shell mode
[12] and the total response is dominated by that of the fluid mode. At higher frequencies,
the magnitude of the total response of any mode » varies periodically with axial distance,
since there are two or more different travelling waves with the same circumferential
distributions and comparable responses. The magnitude of the fluctuation depends on the
differences between the magnitudes, and the period of the fluctuation depends on the
differences between the axial wavenumbers, Even the pipe vibrating in vacue shows the
same interference pattern when there are two or more travelling waves with the same
circumferential distributions (the dotted line in Figure 4). Note that there is no interference
between different modes # if circumferential averaging is taken.

4.2, SOUND POWER

The sound power radiated by a unit length of the pipe also varies with the axial distance,
due to the distribution of the pipe radial velocity. The pipe concerned is assumed to be
in air, the density of which is much smaller than that of the shell and of the fluid inside.
By using the shelil radial velocity obtained previously, the sound pressure can be expressed
as
@ HY @)

Pl 9. z)= —~jp,w Y, cosng) 3

_ W e‘jknm B (17)
3y
n=0 m=la:mHL)(aima) " |

where the subscript and superscript a denotes “‘air”, H? is the Hankel function of the
second kind (order #) and «%, is the radial wavenumber of the mode (n, m) in air.

The sound power radiated by a unit length of the pipe is the integral of the »-direction
sound intensity on the pipe surface over the circumferential direction:

pid
TEJ 3Re (P90, 2, do. (18)
0

Upon using the orthogonality of the sinusoidal functions and applying the relation

—HPCORY () = = = 3,(36) + Y, () Y500, (19)
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the integral can be evaluated as

T'=% Ti=3 (T + T+ Th). (20)
n=0 n=10
In this expression,
o EaTdP,C, <& )
nl =T Z Gnm{wnmlz (21)

m=1

is the axially averaged sound power radiated by a unit length of the pipe and g,, is the
radiation efficiency of mode (n, m). The interference terms are

= res “mzz ,Z. (@ + ) W |1V €08 [k — )2 + s (22)

and
= e mZ mZ e = &) W |19 S [ — Ko)2 + W], (23)

with

g = 0, N D) + Yo ) ValeEn) o

where i, is the phase difference of mode (n, 71) and (n, [) at point z = 0.

T4 is the sum of the contributions of all modes when each of them exists individually,
and T9% is the fluctuation of sound power due to structural wave interference within the
shell, The axial distribution of the sum of T4, and T4, is the same as that of the pipe radial
displacement. 79, is the result of acoustic wave interference due to the non-uniform
distribution of the pipe displacement. Calculations [12] show that 7'} is much smaller than
T4 and can be neglected, as one expected. If averaged over a long distance, both T2, and
T4, tend to zero.

When two travelling waves with the same distribution cos (ng) satisfy the condition
(k,, — k.2)z + yr;; = km at the point z, the second term of sound power reaches its maximum
while the third vanishes, since the fluctuation of the shell displacement reaches its
maximum and the vibrational pattern is symmetrical about this point. Conversely, when
(k,y — k2)z + W = (2k + 1)m, the second term vanishes and the third maximizes, since the
fluctuation of the shell displacement is zero and the vibration surface is asymmetrical about
this point.

By using the real part of the non-dimensional input mobility,
RM, = Re (W,,p,c,rahe,/Fy), the averaged sound power under a point force excitation
can be expressed as

[+
Tf=ZTﬁ,=p""“(

e’ 2na

) 51 z 6. RMZ,. 25)

If 2 wide-band force is applied instead of a harmonic one, the only change in equation
(25) is to use Ti(w) and Sg{w) to replace T{ and F§/2, where Sg(w} is the power spectral
density of the applied force.

In Figure 5, is shown the relative fluctuation of the sound power, (T35 + T4)/T5, 0
the » =1 mode. The observation point is assumed to be at z = 100a. Fluctuations at
certain frequencies can be very high, even up to 80 per cent. If averaged axially over a
distance of five radii, the fluctuation becomes small (the solid line in Figure 5), but is still
detectable in certain frequency regions.

psch
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Figure 5. The relative fluctvation of the sound power (7% + T4,)/T5, . Water-filled pipe, #/a =005, n =1
mode. - - , At z = 100a; ——, axially averaged over five radii of the pipe.

Fuller [5] also observed that radiated sound power, excited by a monopole in the air
inside the pipe, is characterized by a harmonic oscillation with axial distance when the
source location is r,/a = 0. He interpreted the phenomenon by using the “surface power”
concept. In reference [5], the calculation is at very low frequency (Q = 0:05), and hence
the fluctuation of sound power can be observed only for axisymmetric excitation, since
there is only one travelling wave for each higher order n mode, If the frequency is increased,
say = 1-5, the fluctuation of the sound power along the axial distance will be observed
for any source distribution.

From the discussion of this section it can be scen that the mechanism of the sound power
fluctuation is the interference of structural and acoustic waves, mainly of the structural
waves. To interpret this phenomenon, it is better to use directly the concept of structural
wave interference.

5. COUPLING EFFECTS

Influences of the coupling parameter n on the system response have been analyzed by
varying the density ratio p,/p, and the thickness ratio k/a separately [12]. In Figure 6 are
shown the responses of the first five circumferential distributions of the water-filled pipe
compared with the corresponding in vacuo results. (Note that there might be more than
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Figure 6. A comparison of the responses of the water-filled pipe with in vacuo results; hfg =0-05. ---,. n =0,

——n=l —-—,n=2 =¥ —— n=4
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Figure 7. The influence of the density ratio on the shell radial response, distributed force excitation, plotted
in p.c,mahw (0, 0)/F,. Fluid-filled pipe, i/a = 0-05, force distribution angle ¢, =0-9. - - - - - s P, =00128; -,
Prlp, =0064; ——, pfp,=0-128; —-—_ pfp = 0-256.

one axial mode for each circumferential distribution.) For any distributions with n > 2,
coupling with the fluid reduces responses for all frequencies. When the normalized
frequency € is higher than I, the coupling also reduces responses for then =1 and n =0
modes. However, when 2 is less than 1, the coupling increases the response of the n =0
mode, since the main responding mode is a fluid mode in that frequency region. The
smaller the density ratio, the more concentrated and the more sharp is the axisymmetric
response. For the n = | mode, the coupled system has a lower response when the frequency
is below about Q2 =0-3. Then, in the frequency region of about  =0-3 to 2 =07, the
situation is reversed. After that, the system with stronger coupling again has a lower
response. By a comparison with Figure 2(c) it can be seen that just in the frequency region
of about 2 = 0-3 to Q =07, the main responding mode for the » =1 (i.e., (1, 1)) mode,
1s a fluid mode.

Comparisons of the system responses to distributed force excitations are shown in
Figure 7. The force is assumed to have the form of equation (14) with tangential
distribution angle ¢, = 0-9 and axial distribution length B = 0. The summation of equation
(16) is truncated at # = 7: that is, only the terms satisfying the condition # < 2x /¢, are
considered. The low frequency (2 < 0-4) responses are complicated, since the total
response of the system is dominated by a series of cut-on resonant peaks. The effects of
coupling on the radial response are very dependent on the frequency concerned. However,
in general, the averaged response is reduced when coupled with a dense fluid. At high
frequencies (£2 > 0-7), coupling with a dense fluid suppresses the radial response. For
middle frequencies, there is no significant response reduction. Instead, there is even a small
increase at £2 ~ 0-55 when coupled with a dense fluid. This is because, in this frequency
region, the responses of both # =0 and » = 1 modes are increased for a coupled system,
and there is no significant reduction for the n = 2 mode. In this frequency region, it cannot
be determined if coupling increases or decreases the response before the excitation is
assessed.

Frequency characteristics of four different combinations of parameters, shown in
Table 2, are compared. The radial responses of the » = 1 mode are shown in Figure 8(a).
The situations for all other modes are similar. At low frequencies (2 < 0-4), the frequency
dependences are almost exactly the same if different groups have the same coupling
parameter n. The only differences are the cut-on frequencies of high »-modes, which
increase with thickness ratio A/a. At high frequencies, the frequency dependences of modal
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TABLE 2

Different combinations of parameters

Thickness Density Coupling
Group ratio, h/a ratio, p;/p, parameter, & nihja)
A 01 1/7-8 1-28 1-28E -2
B 0-05 0:5/7-8 1-28 32E-3
C 0025 1/7-8 512 32E-3
D 005 2/7-8 5-12 1-28E -2

responses are similar if the systems have the same 5 (#/a ¥, but the positions of the resonant
peaks depend only on the coupling parameter #.

This phenomenon can be interpreted as follows. At low frequencies, the principle wave
motions are axial and tangential. The main part of response is the term without the factor
B? = h*/12a* The factor which determines these terms is the coupling parameter . At high
frequencies, bending waves dominate; the terms with §2 are the main parts of response.
Hence systems with the same n8? display roughly the same responses. Resonant peaks at
high frequencies usually correspond to the cut-on of fluid modes, which depends to a great
extent on the coupling parameter . Systems with the same coupling parameter # have the
same cut-on frequencies of fluid modes, and have the same positions of the resonant peaks.
However, the first mode of each circumferential distribution = > 1 is always a shell mode,
and its cut-on frequency also depends, on the thickness ratio. Comparisons have been
made only for a certain range of thickness and density ratios. With an extremely thin or
thick wall, the situation may be different.

10

Normalized input mobility

Normalized sound power (dB)
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Figure 8. A comparison of different combinations of thickness ratio and density ratio. (a) Single mode response
poc,mahe, w, (0)/Fy; (b) sound power 2na{p, c hiF)¥p,c, T8 — A; --- B, ———, C;---- , D.

1
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The total responses of the same systems to a distributed force excitation have also been
examined. The force applied is the same as that for Figure 7. Unlike that of an individual
mode, the frequency dependencies of total responses are different at low frequencies for
systems with the same coupling parameter but different thickness ratios, due to a series
of cut-on resonances, as explained previously. However, the frequency dependence of the
total noise power (see Figure 8(b)} again shows the same frequency characteristics as those
for individual modes. This is because that when a mode is newly cutting on, o%,a is much
smaller than the circumferential number n. The “wavelength” in the circumferential
direction is much smaller than the wavelength in air. The radiation efficiency is very low
for such a mode, even though it is a supersonic wave [11]. Thus all cut-on resonances are
suppressed to a certain extent. Note that in Figure 8 only the frequency properties of the
systems are compared. A normalization factor, which includes pipe radius and thickness,
is omitted. If this factor is taken into account, the absolute value of the noise power is
different for systems with different pipe thickness.

A pipe with a thinner wall usually has a higher radial response for the same excitation.
However, this is not always true for noise, where power radiated by a very thin wall is
sometimes smaller than that by a thicker one; see Figure 9. For the purpose of examining
the influence of thickness on the absolute value of noise power, Figure 9 is normalized
differently from other parts of the paper: i.e., 2rna’(p,c,/F,Yip,.c, T3 is plotted. This means
that the comparisons are for pipes with the same diameter but different thicknesses. In the
frequency region Q (062, 1-66), there is a sharp drop in the sound power when
hja = (-01, although the shell radial velocity is still the highest among those compared.
The reason is that both (0, 1) and (1, 1} modes are subsonic in this frequency region, since
all of the other important acoustic modes are subsonic already. Thus a very thin wall does
not always radiate more noise than a thicker wall at middle and high frequencies for a
fluid-filled pipe. Obviously, this behavior is independent of the excitation, since the
mechanism is that all acoustically important modes are subsonic. This is a new phenom-
engn, for a pipe coupled with interior fluid. Such a sitveation never arises for a pipe
vibrating in air.

5.1. INFLUENCES OF FORCE DISTRIBUTION

The influences of the force distribution on radiated sound power are illustrated in
Figure 10. The force applied is expressed by equation (14) and the results are plotted in

80—

Normalized sound power

-20
oo 02 04 06 08 10 12 14 14 18 20

Normalized frequency

Figure 9. The influence of the thickness ratio on the radiated sound power; water-filled pipe, density ratio
prip, =0 128 Jhja=01; --- hla =005 -, hja =0-025; ———, kfa =0-01, The sound power is plotted
as 2na*(p,c /Ry Vip,c.Th.
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Figure 10. The infiuence of the force distribution: thickness ratio h/a = 0-05, density ratio pyjp, = 1/7-8. (a)
Axial distribution, the distribution length equals the radius; (b) circumferential distribution.
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a normalized way. The total force applied is the same for all cases. In Figure 10(a) are
shown the noise powers of individual #n modes when the force axial distribution length B
equals zero or equals the pipe radius, respectively. It is clear that the influence of the force
axial distribution is mainly at middle and high frequencies, when the wavelength of the
main radiation mode is close to, or shorter than, the lengih of the force distribution. If
the non-dimensional frequency € is greater than 0-7, an axial force distribution over a
fength of the pipe radius could reduce the noise power by 10-20 dB. Hence, to have force
distributed over a long distance in the axial direction is always helpful in noise control
problems.

The effect of the distribution in the tangential direction is similar, but not signifi-
cantly. In Figure 10(b) are shown the sound powers radiated by a unit length of the
pipe when the force has different circumferential distributed angles ¢,. In this case the
axial distribution length is equal to zero. At very low frequencies (@ < 0-2), the force
distribution has almost no effect on radiated sound power, as in the case of an axial
force distribution. At high frequencies (€ > 0-8), the power is doubled when the angle of
the force distribution is halved. The force distribution in the ¢ direction shows radical
noise reduction only at middle frequencies (2 e(0-2,0-8)), where a wide distnbution
suppresses the high order n modes, which are the most important modes in this frequency
region. Hence for the purpose of noise control, the force applied should be distributed in
the ¢ direction if the noise is mainly at middle frequencies, and in the axial direction if
the noise is at high frequencies.
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6. CONCLUSIONS

There is no simple relationship between the radiated sound power and the power
distribution within the coupled system. However, the power distribution is affected if the
coupling increases or decreases the pipe response to external radial force excitation, and
noise power. If the power in the coupled system is propagating mainly in the fluid, coupling
will increase the pipe response. Otherwise, coupling will reduce the response. Both pipe
radial displacement and the radiated sound power fluctuate with the axial distance if the
frequency is high enough. This is due to the interference of travelling waves with the same
circumferential distribution but different axial wavenumbers. This phenomenon happens
even if there is no coupling with the interior fluid.

Coupling with the fluid usually reduces the pipe radial response and the radiated noise
power at low and high frequencies. In a certain region of the middle frequencies, coupling
may increase the radial response, and hence the noise power, if the # = 1 mode dominates.
Otherwise, the opposite applies. Distributing the force over a large area is helpful in noise
and vibration control.
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APPENDIX A: STRUCTURE POWER FOR A SINGLE TRAVELLING MODE

The force and moments in equation (6) are of the forms

k12 k2 A2
Q.= 7., (1 + x/a) dx, N.,,,=J. Ty, (1 + x/a) dx, N;=J o.(l + x/a)dx,

—hf2 . —hj2 —hi2

(A1-A3)

k2 k2
M = _[ 7., x(1 + x/a) dx, M.= a.x(l + x/a) dx. (Ad, A5)

@
—hy2 -2
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After integrating, and neglecting some least important terms for a thin shell, the
simplified Fliigge relations, expressed in terms of the middle surface displacement, are
obtained as

10M,, oM, D(l —v) &w &3w v & w

I o= s o Nk Ll 4 _p[ZE Ty A6
&=-0%, & £ Tpo: \oy digd (A)

B(1-v){1du v du vév v Dl —v) &*w
LT ) ':B A -y - 1 Nz = - ]

N: 2 (a do +6z) N: (62 +a6q9 a” v a Opéz

O'w v dtw
M:zD(EZ-E"P;ja_(‘p—j)s (A7-A10)
where

B=En/(l—v), D =Ek12(1—v) (A1, A12)

are the membrane stiffness and bending stiffness, respectively. By using these expressions
and equalion (6), the final expression (8) is obtained after averaging over time and
integrating over the ¢ direction. Note that the simplified Fliigge equations are used here
instead of the exact ones, since they are consistent with the governing equation (ihe
simplified Fligge equation).

Lo

APPENDIX B: LIST OF SYMBOLS

radius of the middle surface of pipe;
superseript for “air”

acoustic free wave speed in air
acoustic free wave speed in fluid
plate extensional wave speed
Young's modulus

subscript and superscript for “fluid”
external forces

fluid loading term

acoustic interference factor

thickness of pipe wall

Hankel function of the second kind, of
order n

Bessel function of order n

axial wave number of mode (n, m)
polynomials; see equations (4) and (5)
axial mode index

bending moment

shear moment

circumferential mode index

axial force in pipe

torsional shear force in pipe

acoustic pressure

unit width shell energy flow
transverse shear force in pipe

radial co-ordinate

Re ()
RM

T
w, 0, u

x!’!m

N
E

IR LR R E R

—
+*
—

take real part of the expression

real part of non-dimensional input
mobility

energy flow; sound power
displacements in r, @ and z direction
=u,,4, non-dimensional radial wave-
number of mode (n, m)

=k,,.a, non-dimensional axial wave-
number of mode (n, m)

axial co-ordinate

radial wavenumber

thickness factor

=2i1fn=0, =1ifn>0

coupling parameter

density of air

density of fuid inside the pipe
density of the pipe material

power ratio

Poisson ratio

circular frequency

=wa/c,, normalized frequency
differentiation with respect to time
differentiation with respect to non-
dimensional parameter

complex conjugate



