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The dispersion behaviour and energy distributions of free waves in thin walled cylin- 
drical elastic shells filled with fluid are investigated. Dispersion curves are presented for 
a range of parameters and the behaviour of individual branches is explained. A non- 
dimensional equation which determines the distribution of vibrational energy between 
the shell wall and the contained fluid is derived and its variation with frequency and 
material parameters is studied. 

1. INTRODUCTION 

The problems of elastic wave propagation in thin walled shells in uucuo and in fluid 
contained in rigid cylindrical ducts have separately received a great deal of attention. 
When the two fields are coupled together, by allowing the duct wall to be elastic, the 
resulting wave behaviour is far more complex and consequently there is less literature 
available on this topic. In particular, little physical explanation of the behaviour of waves 
in terms of propagation and energy distribution through the shell system has been 
attempted. 

Nearly a century ago, Lamb [l] produced a comprehensive analysis of the influence 
of wall compliance on wave propagation in tubes, but he dismissed flexural waves as 
being of little importance. Much previous work [2-41 has been concerned solely with 
propagating waves of an axisymmetric nature. Various approximations such as a restric- 
tion to low frequencies or ignoring the Poisson’s coupling of the shell have been made 
in these analyses. Thomson [5] introduced the effects of Poisson’s ratio and included 
flexural and axial wave motion and evaluated the phase velocities of the first three 
axisymmetric “fluid” waves. Lin and Morgan [6] have studied the propagation of axisym- 
metric waves through fluid contained in an elastic cylindrical shell. In their analysis they 
treated the dependence of phase velocity on various physical parameters of the system 
without the approximations introduced by previous authors: however, their results are 
limited to real wave numbers and to circumferential modes of zero order. 

More recently Kumar [7] has investigated the dispersion of waves in fluid-filled shells 
by using exact elastic equations valid for shells of any wall thickness. Results were 
presented for the real, imaginary and complex parts of the wavenumber domain but are 
restricted to axisymmetric waves and relatively thick shells. One reviewer has drawn our 
attention to the fact that Kumar’s analysis is in error in suggesting that the quasi-plane 
mode in thin shells displays the cut-off phenomenon at the ring resonance, an error 
which results from neglect of higher order terms, including the flexural rigidity term, in 
a power series expansion in thickness-radius ratio. The problem of excitation of normal 
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modes by a point source located in the fluid contained in an elastic cylindrical shell has 
been considered by Merkulov et al. [8]. Dispersion curves, limited to the real and 
imaginary planes and a relatively thick shell, were presented for modes of circumferential 
order, n = 0, 1 and 2. 

The purpose of the present paper is to investigate more completely the dispersion and 
energy distributions of waves in fluid-filled shells of cylindrical cross-section. Dispersion 
curves for waves of circumferential order n = 0 and n = 1 are derived and branches in 
the real, imaginary and complex planes are found. Variation of shell wall thickness and 
material is considered and the results discussed with the aim of attaching some physical 
significance to the wave behaviour in terms of the various system parameters. 

Finally, a non-dimensional equation is derived which determines the distribution of 
vibrational energy between the fluid and the shell wall for a particular mode, and the 
variation of the energy ratio with frequency and system parameters is discussed. Previous 
studies on energy sharing in fluid-filled cylindrical shells include approximate analyses 
by Fay et al. [2], Jacobi [3] and more recently White [9]. All these analyses are limited 
to axisymmetric modes and only radial motion of the she11 with no Poisson’s coupling 
is considered. This approximation introduces a large error, as for certain waves or 
frequency regions a high amount of energy may be carried by axial or tangential extension 
of the she11 wall. White’s analysis is extended to higher frequencies by using a statistical 
energy approach which obscures some important characteristics of the energy distribution 
behaviour. 

Thomson [5] included Poisson effects and axial motion and evaluated the ratios of 
energy flux in the she11 and fluid; however he considered only radial velocity and shear 
and apparently ignored the contributions of bending moment and axial force. 

The study presented in this paper was carried out as a preliminary stage in an analysis 
of wave transmission and reflection at discontinuities in fluid-filled pipes which will be 
presented in a companion paper. 

2. EQUATIONS OF MOTION OF THE COUPLED SYSTEM 

The co-ordinate system and circumferential mode shapes used in this analysis are 
shown in Figure 1. The free, simple harmonic motion of a thin-walled cylindrical shell 
containing an acoustic field can be most conveniently described by the Donnell-Mushtari 
she11 equations [lo]. These equations are valid for thin walled shells and exclude the 
effects of rotary kinetic energy and transverse shear. The normal mode shapes assumed 
for the displacements of the she11 wall, associated with an axial wavenumber k,,, are 

u = 5 : V,,, cos (no) exp [iwt - ik,,x + ir/2], (la) 
s =o II =o 

u = ? t V,, sin (nf3) exp [iot -ik”.,x], 
E=(l ,*=o 

(lb) 

w = F f W,, cos (no) exp [iwt -ik,,x]. 
\=o ,*=o 

IlC) 

The assumed form of the pressure field in the contained fluid which satisfies the acoustic 
wave equation in cylindrical co-ordinates is 

p = f f P,,, cos (nB)J,(k:r) exp [iwt - ik,,x]. 
s-0 ,,=o 

(2) 

Substitution of these forms into the shell equations results in the equations of motion 
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Figure 1, Co-ordinate system and modal shapes. 

of the coupled system in terms of the amplitudes of the three displacements and the 
acoustic pressure. In equations (1) and (2), n is the circumferential modal order. k,, and 
k: are the axial and radial wave numbers respectively, and subscript s denotes a particular 
branch of the dispersion curves. (A list of symbols is given in the Appendix.) 

The motion of the system can thus be represented in matrix form. However before 
this is done it is convenient to apply the boundary condition at the shell wall. To ensure 
that the fluid remains in contact with the shell wall the radial fluid vibrational velocity 
and the shell radial velocity must be equal. Thus for a particular mode (n, S) the radial 
velocity of the fluid at the shell wall, given by the momentum equation, is 

ap/ar = - 
k:J:(k:a) 

ipfw 
P,, cos (~9) exp [iwt - ik,.,x], (3,3) 

where Pf is the density of the fluid, a is the radius of the shell, and a prime denotes 
differentiation with respect to the argument kir. Equating z’~ (r = a) to the shell radial 
velocity derived from equation (lc) enables the fluid pressure amplitude to be written 
in terms of the shell radial displacement amplitude as 

P,, = b*~~/k:Jl(k:~W’n,. (5) 
The free vibrations of the coupled system can now be represented in matrix form as 

E;; E, z] [$I = [;]. ih) 

2 L11 = -n2+(k,,a)2+$(1 -v)n , LIZ = $( 1 + v)n (k&z 1, LOX = v(k,,a), (7a-c’l 

L21 = Ll2, L22=-02+~(1-v)(k,,a)2+n2, L23 = fl, 17d-f) 

L31 = L13, L32 = L23, L33=-~2+1+~2[(k,,a)2+n2]2-FL. (7g-i) 
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In equations (7), 0 is the non-dimensional frequency, Q = wa/cL, cL is the extensional 
phase speed of the shell material, v is the Poisson’s ratio of the shell material and /? is 
the shell thickness parameter given by p* = h2/12a2. FL is the fluid loading term due 
to the presence of the tluid acoustic field. 

The equations governing the motion of the coupled system are seen to differ from 
those governing the motion of a shell vibrating in uacm [lo] by the presence of a fluid 
loading term in the element L33 of the diagonal of the matrix in equation (6). This fluid 
loading term is given by 

F” = fl*(p~/p.~)(hla) ‘(k:a)~‘[J,(k:a)lJh(k:a)l, (8) 
where pS is the volume density of the shell material and h is the thickness of the shell. 

The radial fluid wavenumber k:a is related to the axial wavenumber knsa by the usual 
vector relation, written in terms of the shell non-dimensional frequency R as 

k:a = *[12*(cJcf)* - (k,,ya )2]“2, 

where cf is the free wave speed in the fluid. 

(9) 

Equation (8) provides immediate insight into the effect of the contained fluid on the 
shell response. Variation of the fluid loading term can be seen to directly influence the 
behaviour of the system. At very low frequencies (0 + 0) the fluid loading term is small 
for shell waves and thus one would expect the fluid-filled shell response to be close to 
that of an in uaczm shell. Similarly when Jl(kLa) = 0, the boundary condition for a rigid 
walled duct mode, the fluid loading term is large and the system behaviour will approach 
that of an acoustic wave in a rigid walled tube. The variation of FL with radial wavenum- 
ber, in a steel shell of thickness h/a = 0.05 filled with water for Q = 1, shown in Figure 
2 for n = 0 and n = 1 illustrates this behaviour. The fluid loading term is either extremely 
large or relatively small implying that the behaviour of the coupled system will be close 
to duct modes in some regions of the wavenumber domain and close to in zxzcuo shell 
modes in others. Equation (8) also predicts that increasing the shell thickness or decreasing 
the density ratio, pf/p,, decreases the effect of the contained fluid on the shell response 
and leads to a decrease in the coupling of the shell and fluid behaviour. It is interesting 

r 

Rodul wovenumber, k:o 

Figure 2. Variation of the fluid loading term with radial wavenumber in a water-filled steel shell, h/a = 0.05. 
R=l;-,n=O;---,n=l.N.B.signreversedforn=O. 
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to note that Figure 2 also represents the general variation in reactive wall impedance, 
Z = -ipfwJ,(k:r)/k:J~(k:r), with radial wavenumber. Thus when Z is large, as at the 
particular values of k:a shown in Figure 2, the shell wall will appear as a rigid tube to 
the fluid. 

3. SOLUTION OF THE DISPERSION EQUATION 

For a free motion solution to exist the determinant of the amplitude coefficients given 
by equation (6) must be equal to zero. Expansion of the determinant provides the system 
characteristic equation. In the case of the in uucuo shell the characteristic equation can 
be written in polynomial form and thus readily solved [ 111. With the inclusion of fluid 
loading, the characteristic equation of the coupled system is “non-linear” due to the 
presence of the desired eigenroots in the argument of the Bessel functions of the fluid 
loading term and numerical methods have to be used to find the roots of the equation. 

The roots of the characteristic equation were found, once approximately located, by 
using a complex root searching technique based on Newton’s rule [12], adapted for use 
on an ICL 2900 computer. For the cases of purely real or imaginary values of axial 
wavenumber the approximate locations were readily found by using a simple stepping 
procedure to locate a change in sign of the characteristic equation. Singularities of the 
characteristic function were eliminated by noting that where these occurred, the fluid 
loading term changed sign. 

Due to the four dimensional nature of the complex domain, the complex roots are far 
more difficult to find. A contour integration technique, as used by Kumar and Stephens 
[ 131, provides an elegant method of finding the approximate location of the root; however 
this method requires a large amount of computing time. A simpler and quicker method 
suitable for cylindrical shells was developed by using the in zxzcuo shell dispersion results 
at low frequencies. Use of the in uucuo bending near field [ll], as an approximate initial 
value in the search for complex roots in relatively thick shells (h/a bO*Ol), was found 
to lead to quick location of the roots. For relatively thin shells (h/u < 0.01) the in z:acuo 
bending near field was used as an initial value at low frequencies (0 cO.4). Above this 
frequency the root obtained at the previous frequency of interest was taken as the initial 
value. 

TABLE 1 

Material properties 

Material 

Steel 
Hard rubber 
Water 

Young’s modulus 
(N/m*) 

19.2 x 10’” 
0.19 x 10”’ 

Poisson’s 
ratio 

0.30 
0.4 

- 

Density Free wave speed 
(kg/m? (m/s) 

7800 5200 
1100 1450 
1000 1500 

Dispersion curves were obtained for different shells made from steel or hard rubber 
filled with water, the properties of which are given in Table 1. Results are presented for 
circumferential modes of n = 0 and n = 1; together these modes exhibit all the general 
characteristics of waves propagating in fluid-filled shells. In Figures 3-8 the complex 
branches are represented by plotting the real and imaginary parts separately in the real 
and imaginary planes as dashed lines. For the branch s = 6 the real part is negative in value. 
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4. RESULTS 

4.1. STEEL SHELL OF THICKNESS h/a = 0.05 VIBRATING IN THE BREATHING MODE 

(n = 0) 

Figure 3 shows the dispersion curves of axial wavenumber versus non-dimensional 
frequency obtained for waves of circumferential order n = 0, or the breathing mode, for 
free waves in a water filled steel shell of thickness h/a = 0.05. Various cylindrical duct 
modes with either a pressure release or a rigid boundary are also plotted for comparison. 
The II = 0 torsional shell mode has been omitted from Figure 3 as it is uncoupled from 
all other motions. 

Non-dlmenslonol frequency, fi 

Figure 3. Dispersion curves for a water-filled steel shell of thickness h/a = 0.05, n = 0; -, purely real 
and imaginary k,,a ; - - -, real and imaginary parts of complex knsn ; - - -, pressure release duct solution; 
---- , rigid walled duct solution. 

The real branches will be discussed first. As found by previous workers [6-81, two 
branches exist at low frequencies. The first branch, s = 1, is close to a fluid wave in a 
rigid walled tube. The shell appears very rigid at low frequencies due to its inability to 
undergo radial motion of long axial wavelength. The second branch, s = 2, is close to 
the in uucuo shell wave at low frequencies. Previous work [ll] has shown this wave to 
have very small radial amplitude of vibration, and it is thus largely unaffected by the 
presence of the fluid. As the frequency is increased the shell resonates as a ring (0 = 0.8) 
and the shell and fluid motions become strongly coupled. The first branch approaches 
the in zmcuo flexural solution. The second branch, s = 2, approaches the first pressure 
release duct mode. This behaviour is due to a rapid increase in radial vibration of the 
shell and a corresponding increase in coupling with the fluid. 

A third branch, s = 3, can be seen, from Figure 3, to cut on at R = 0.85. Initially this 
branch closely follows that of the corresponding extensional in oucuo shell wave until 
at n = 1.3 it turns sharply to approach the second rigid walled acoustic mode. Near this 
frequency a fourth branch, s = 4, cuts on as a fluid wave in a tube with compliant walls 
and then turns into a plateau to change its behaviour to that of an extensional shell wave 
largely uncoupled from the fluid. Similarly all higher branches cut on as fluid waves and 
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then quickly change their behaviour to that of shell waves while the previous shell type 
branch converts to a fluid wave: at higher frequencies cut-on occurs near rigid walled 
duct cut-on frequencies. Under no conditions do branches cross in the real plane. 

This complex behaviour can be explained by considering the coincidence of an 
extensional shell wave and a fluid wave in a duct with slightly compliant walls. At the 
point where one branch enters a plateau and the other branch leaves it, free motion can 
exist independently both in the fluid and the shell wall. The shell vibrates largely as in 
U~CUO due to the extensional nature of the motion and correspondingly the tube appears 
very rigid to the fluid. However due to the Poisson’s effect there is some slight coupling 
between the shell and fluid motion. As the frequency is increased along a plateau to the 
position of coincidence of free shell and fluid waves the “forced” pressure field sub- 
sequently encounters a fluid free propagation region and the system behaviour changes 
to a fluid type wave. Similarly the “forced” shell wave for the next branch encounters 
a shell free propagation region at the same coincidence point and its behaviour changes 
to that of a shell wave. 

A consideration of group velocity (proportional to the inverse slope of the dispersion 
curve) demonstrates why branches cannot cross. If the branches did cross at coincidence 
then the fluid and shell motions, although having an equal energy of vibration (see later), 
would have different rates of propagation of energy, a situation that clearly could not 
exist. It is interesting to note that even in air-filled steel shells the branches will have 
plateaux and will not cross. However in this case the corners will be so sharp as to be 
indiscernible. 

In the purely imaginary plane of Figure 3 the wavenumber solutions at low frequencies 
are almost identical to rigid walled duct modes below cut-off due to the rigidity of the 
shell wall at low frequencies. Hence there will be an infinite number of branches 
corresponding to modes with an increasing number of radial nodes. As the frequency is 
increased the shell becomes less stiff in the radial direction and the branches fall between 
the rigid walled and pressure release solutions for a cylindrical duct. The purely imaginary 
branches for the system under discussion, with a relatively thick wall, can be seen from 
Figure 3 to be characterized by “meanders” which appear in the branch above the rmg 
frequency.’ At first inspection it appears that at these “meanders” a branch may be 
multi-valued for a single frequency as shown in the results of Merkulov et al. [Xl. This 
condition would contravene the assumed Fourier solution of individual modes with 
separable co-ordinates. However with the inclusion of the complex wavenumber sol- 
utions, each branch below cut-off can be correctly identified and shown to obey the 
assumed form of solution. 

The complex branches, plotted in Figure 3 as broken lines, at low frequencies, are 
very close to those obtained for an in oacuo shell for reasons discussed previously in 
section 2. At zero frequency the two branches, s = 4 and 6, have non-zero complex 
values of the same absolute magnitude, with the real parts of opposite sign which reduce 
with increasing frequency to meet the imaginary plane at the same point. No complex 
branches occur for duct type waves at low frequencies. As discussed in reference [I l] 
complex branches occur in combinations of rt($ f id),, and the pair that represent wave 
motion in the positive x direction are (*$ - i+),,$ which together form an attenuated 
standing wave in the axial direction along the shell wall. Similarly the radial wavenumbers, 
related to the axial wavenumbers by equation (9), will exist in corresponding (to the 
axial wavenumber) pairs of (/3 f iv),, for the positive direction of propagation. Now, a 
Bessel function of complex argument has no zeros, and thus individually the complex 
branches would represent evanescent motion with no radial nodes in the fluid field. 
When the two radial wavenumbers are considered together they represent two waves of 
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equal magnitude whose phase varies in an opposite sense with an increase in radial 
position and which thus combine together to form an interference pattern with radial 
nodes across a cross section of the contained fluid. The interference pattern amplitude 
decays inwardly from the shell wall and is zero at r = 0. 

At high frequencies the complex branches are seen from the results of Figure 3 to 
provide branch links which leave the imaginary plane (with opposite sign of the real 
part) at the peak of a “meander” and re-enter the imaginary plane at the rear of the 
next “meander”. Thus, typically a fluid-type branch is imaginary at low frequencies, 
near the occurrence of a “meander” becomes complex over a small frequency range, 
becomes purely imaginary near the next “meander”, and eventually cuts on. Likewise 
a branch which is close to the in uucuo bending near field shell branch is complex at 
low frequencies and progresses with increasing frequency as shown in Figure 3 (branch 
s = 6) as a series of complex and imaginary sections. If the shell wall thickness is increased 
or the density of contained fluid decreased, the “meanders” become sharper, the real 
part of the complex solutions are reduced in magnitude, and the branch, s = 6, approaches 
the corresponding in uacm bending near field discussed in reference [ll]. At the same 
time the fluid-type parts of the other branches approach rigid walled duct modes below 
cut-off. The paired complex branches, for example s = 7 and 6, would thus appear in 
the light of the results to correspond to near field coincidence behaviour between shell 
and duct waves below cut-off. 

4.2. STEEL SHELL OF THICKNESS h/a = 0.05 VIBRATING IN THE BEAM MODE (n = 1) 

Dispersion curves for a cylindrical fluid-filled shell with identical material parameters 
to those in section 4.1, vibrating in the circumferential mode of order n = 1, or the beam 
mode, are presented in Figure 4. The dispersion curves exhibit behaviour similar to that 
discussed for the breathing mode, apart from a few major differences. There exists at 
low frequencies (for the n = 1 mode) only one branch, s = 1, which corresponds to the 
beam type shell motion [ 111. This wave is acoustically “slow”: that is, its radial wavenum- 

Non-dimensional frequency, fi 

Figure 4. Dispersion curves for a water-filled steel shell of thickness h/a = 0.05, ,I = 1; -, purely real 
and imaginary knsa ; - - -, real and imaginary parts of c 3mplex kn,a ; - - - -, rigid walled duct solution. 
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ber is imaginary and hence the “forced” acoustic motion in the contained fluid consists 
of a decaying pressure field which closely hugs the shell wall. At the LI = 0.56 the next 
branch s = 2 cuts on, and this branch corresponds to the first rigid walled duct mode 
with circumferential variation it = 1. Due to the slight compliance of the she11 wall its 
phase velocity lies between that of a rigid walled and a pressure release mode. 

At R = 0.7 a third branch, s = 3, with predominantly torsional shell motion cuts on. 
This branch continues to behave in a torsional manner until it encounters branch s = 4 
where its characteristics change to a fluid-type wave. Thus for higher circumferential 
modes (n > 1) there are two series of plateaux arising from coincidence of torsional and 
extensional shell waves with duct type waves. 

As well as the complex branches already demonstrated in the case of the n = 0 mode, 
there appears, in the case of the II = 1 mode, a pair of complex branches near 0 = 0.5 
which link together the branches P = 2 and s = 3 in the evanescent region, and further 
illustrate coincidence behaviour of waves below cut-off. As the slope of the dispersion 
curves are not vastly different for the branches s = 2 and s = 3, coincidence behaviour 
occurs over a wider frequency range than for propagating waves. 

Waves with higher circumferential modal number (n > 1) exhibit dispersion characteris- 
tics similar to those of the beam mode except that the fundamental shell type wave has 
a non-zero cut-on frequency and the points of coincidence are shifted to higher 
frequencies. 

4.3. STEEL SHELL OF THICKNESS h/a = 0.005 
The shell system discussed in this section has the same parameters as in the previous 

section except that the shell wall thickness is assumed to be much smaller in order to 
illustrate the dependence of the shape of the dispersion curves on wall thickness. The 
main effect of a reduction in shell thickness is a decrease in stiffness of the shell structure 
and a corresponding change in branch shape from behaviour like rigid walled duct modes 
to approaching pressure release behaviour. 

lo’- s=5 (k u/2) s=6, (-k,,a/2) ,___L_Y__&__ 

Non-dimensional frequency, 52 

Figure 5. Dispersion curves for a water-filled steel shell of thickness h/n = 0,005, n = 0; -, purely real 

and imaginary k,,a ; - - -, real and imaginary parts of complex k,,a : - - -, pressure release duct solution. 
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The breathing mode (n = 0) response of the system is plotted in Figure 5. In the real 
plane the s = 2 branch has the same form as in the thicker shell shown in Figure 3. The 
s = 1 branch illustrates a marked change. At very low frequencies it is similar to a rigid 
walled duct mode; however it quickly changes to a shell-type motion with a very small 
phase speed and low group velocity. This branch represents motion that is acoustically 
“slow” and is thus mainly uncoupled from the fluid. Thus for shells with very thin walls 
vibrating in the breathing mode at low frequencies (0 < 0*7), the energy propagated will 
be concentrated in the shell wall and mainly carried by the s = 2 branch: i.e., in extensional 
motion. With a further decrease in wall thickness the s = 1 branch is found to swing 
away counter-clockwise to the origin until when h/a = 0 it would completely disappear 
and the remaining dispersion curves would represent acoustic waves propagating in a 
duct with free boundaries combined with the membrane behaviour of the shell. 

The purely imaginary branches in Figure 5 are close to rigid walled duct modes at 
very low frequencies, but quickly approach the evanescent pressure release duct behaviour 
with increasing frequency. The branches are seen from Figure 5 to transform from rigid 
walled to pressure release duct solutions near the intersection with the imaginary part 
of the bending near field branch. It is close to this frequency that the shell becomes 
more flexible in the radial direction. For very thin shells there are no hooks in the 
imaginary branches due to the decrease in influence of bending stiffness of the shell wall 
relative to the fluid motion. Likewise the complex branches s = 5 and 6, which are very 
close to in uucuo shell branches at very low frequencies, do not intersect the imaginary 
plane (in the frequency range of this analysis). Hence the near field coincidence behaviour 
observed for the thicker shell (h/a = 0.05) does not occur for the thinner shell discussed 
here. With decreasing wall thickness, the complex branches are found to increase in 
absolute magnitude, and swing clockwise relative to the origin, until, when h/a = 0, they 
disappear. 

Dispersion branches for the II = 1 beam mode for the same shell are presented in 
Figure 6. As in the case of the n = 0 mode, the reduction in wall thickness results in a 

El- 

6- 

4- 

6- 

6-7 
__----_ 

Non-dimenslonol frequency, fi 

Figure 6. Dispersion curves for a water-filled steel shell of thickness h/a = 0.005, n = 1; -, purely real 
and imaginary knEa ; - - -, real and imaginary parts of complex knsa ; - - -, pressure release duct solution. 
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general change towards pressure release duct behaviour. In the real plane the s = 1 
branch is close to the in Z~UCUO beam branch at low frequencies, but its phase and group 
velocities decrease sharply with increasing frequency and it correspondingly becomes 
increasingly decoupled from the fluid field. Below cut-on the next branch, s = 2, is, for 
the thinner shell, a torsional type motion which changes to a pressure release wave at 
higher frequencies. The s = 3 branch represents the first fluid-type duct wave to cut on; 
however, soon after its inception it transfers into a torsional type motion in the manner 
discussed previously, and then, at higher frequencies, approaches the second pressure 
release solution. 

The imaginary and complex branches of the beam mode exhibit the same general 
changes in behaviour with reduction in wall thickness as seen for the breathing mode. 
In particular, the complex root linking the s = 2 and s = 3 branches near cut-on has 
disappeared. Very thin fluid-filled shells can thus be seen from Figure 6 generally to 
support no wave motion (in terms of propagation of energy) in the IE = 1 mode until the 
inception of the first stretching type of shell wave, the torsional mode. Very thin shells 
also exhibit no evanescent coincidence behaviour as shown in the behaviour of thicker 
shells. 

4.4. HARD RUBBER SHELL OF THICKNESS h/U = 0.05 

For this example the cylindrical shell was assumed to be constructed of hard rubber 
of wall thickness h/a = O-05, with material properties given in Table 1. As rubber has 
a much lower extensional free wave speed than steel, the acoustic modes for a hard 
rubber shell filled with water will not cut on until a much higher value of non-dimensional 
frequency R is reached (see equation (9)) than for a water-filled steel shell of the same 
dimensions. Consequently the behaviour of the dispersion of waves in rubber shells filled 
with water is significantly different from the behaviour discussed in the previous sections. 

Curves obtained for the II = 0 circumferential mode are presented in Figure 7. At very 
low frequencies there again occur two branches s = 1 and s = 2 in the real plane which 

O- 

8- 

4-3 
5,6 6____---_-----_-__ -_ - 

. . 8- . . 5 
._.__~~.__ -2 .-- / 

0.5 I.0 

Non-dwnenslonol frequency, fi 

Figure 7. Dispersion curves for a water-filled hard rubber shell of thickness h/a = 0.05, n = 0; -, purely 
real and imaginary knsa ; - - -, real and imaginary parts of complex knsa ; - - -, pressure release duct solution. 
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respectively behave as a rigid walled acoustic plane wave and an extensional shell wave 
largely decoupled from the fluid. As the frequency is increased, the s = 1 branch quickly 
changes its characteristics to those of a shell-type wave which is acoustically “slow”. The 
s = 2 branch, contrary to steel shell behaviour, remains purely extensional throughout 
the frequency range. In the example discussed here, the fluid resonances (or cut-on) do 
not occur until a much higher frequency. Thus for Q =G 2.5 the fluid appears to have a 
high impedance relative to the shell wall and constrains the motion of the shell wall to 
vibrations in the axial plane. Similarly the high impedance of the acoustic field in the 
contained fluid suppresses the cut-on of the n = 0 extensional shell type wave near 
0 = 1.0. This mode, in the case of an in racuo shell, has purely radial amplitude at 
cut-on, and is thus prevented from propagating. 

At 0 = 2.48 a third branch, s = 3, occurs which initially behaves like a duct wave in 
a slightly compliant tube, and then quickly approaches the first pressure release type 
mode. With increasing frequency more waves cut on as pressure release waves. Due to 
the fact that the extensional wave speed of free motion in the rubber is slower than for 
free acoustic waves, the fluid type branches of Figure 7 do not intersect any shell type 
branches and the plateaux observed in the case of steel shells in Figures 3-6 are absent 
from Figure 7. Thus for fluid-filled shells with a phase speed ratio such that CJC~ < 1, 
coincidence between shell and fluid response will not occur. This result has important 
implications in terms of sound radiation and transmission losses of cylindrical shells. 

Figure 8. Dispersion curves for a water-filled hard rubber shell of thickness h/a = 0.05, II = I : -, purely 
real and imaginary knsa ; - - -, real and imaginary parts of complex knsa ; - - -, pressure release duct solution. 

Dispersion curves for the n = 1 mode, plotted in Figure 8, demonstrate effects similar 
to those of the n = 0 mode for a change in wall material, except for the s = 2 branch, 
which is largely unaffected by the fluid. The s = 2 branch cuts on as a torsional type 
wave and remains purely torsional throughout the frequency range. The torsional shell 
wave has a large axial amplitude at cut-on, which changes to a large torsional amplitude 
at high frequencies; its behaviour is thus unchanged by the presence of the fluid. The 
s = 3 branch cuts on as an extensional shell type wave. All higher modes behave like 
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pressure release duct modes (f2 >> l), and like the II = 0 mode there are no coincidence 
points, or plateaux, in the dispersion branches. 

5. ENERGY DISTRIBUTIONS IN FLUID-FILLED SHELLS 

When waves propagate through fluid-filled piping systems there will be a distribution 
of energy of vibration between the pipe wall and the contained fluid. The degree to 
which the energy is concentrated in the fluid or the shell wall will depend upon the type 
of excitation of the piping system and the physical parameters of the shell and the 
contained fluid. In the interests of effecting noise control and vibration reduction, it is 
of prime importance to be able to predict the distribution of energy in vibrating shells. 
Thus, in this section, an exact equation is developed which gives the ratio of the energy 
fluxes in the shell and fluid for a particular mode travelling in a fluid-filled shell. In a 
practical situation there will be many modes excited by the driving source: however, the 
following analysis provides a first step to a detailed understanding of energy distributions 
in forced vibration of piping systems. 

5.1. POWER FLOW IN THE FLUID FIELD 

The fluid field is assumed to obey the acoustic wave equation for small vibrations and 
it can thus be described by the usual pressure solution in cylindrical co-ordinates for a 
particular mode (n, s), 

p = P,, cos (&)J, (kir) exp [iot - ik,,x]. (10) 

The axial acoustic particle velocity can be obtained from the momentum relation, 

U, = -(l/&w) ap/ax (11) 
and thus the axial velocity is, 

u, = (k,s/p~w)Pn,y cos (n0)J, (k:r) exp [iwt - ik,,x]. (12) 

Acoustic power flux density, or intensity, in the axial direction is given by 

I(& r, t) = i Real (p&), (13) 

where C is the complex conjugate of ZI. Thus axial intensity is 

I(& r, f) = (P:~/~)&,,/P& cos2 (nNJ:(k?), (14) 

where P,,, is assumed to be a real amplitude. 
The total power is obtained by integrating the intensity given by equation (14) flowing 

through an element of area dS = r d0 dr over the cross-sectional area of the fluid field. 
Thus total power Pf is 

,2q ,.a .-25-r *u n2 I_ 
Pf = 

J J 
I(& r, t) dS = 

0 0 J 0 

Ji(kir)r dr 

5.2. POWER FLOW IN THE SHELL WALL 

The total axial power flow in the shell 
derived previously [l l] and due to the 

J rn 
- K,, cos2 (nt?)Ji(k:r)r de dr 

0 2 PfW 
(15,16) 

for n = 0 (17) 

for n > 0. (18) 

wall for a particular radial amplitude has been 
Poisson’s coupling effect is the sum of three 
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individual powers, 
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P,=P,+P,+P,, (19) 

where the subscripts refer to the type of shell motion: i.e., in flexure, extension or torsion. 
Pb consists of two parts contributed by rotation and flexure of the shell element. In 
equation (19) the individual powers are given by 

where M,, 8,, N, and NXe are the bending moment in the x direction, transverse shear 
force, axial force and torsional shear force respectively and an overdot implies differenti- 
ation with respect to time. 

Using the simplified Fliigge equations and the displacement distributions assumed in 
equations (l), one arrives at the total shell power flow for a particular mode (n, s) as [ 111, 

P, = [7rE(h/a)3/6(1 - v2)]waW&[(kosa)3+R,(kosa)2] 

+[mThla)l(l- v2)lwaW&[(kosa& + deal, n =o, (23) 

P,=[?rE(h/a)3/12(1-v2)]waWf,[(k,,a)3+~~2(k,,a)+R,(k,,a)2+nR,(k,,a)] 

+[~E(h/a)wa/2(1-v2)]WZ,,[(k,,a)R2,+n~R,R,+vR,] 

+(~/4)[E(hla)wa(l-v)l(l-v2)1W~s[nR,R,+(k,,a)R:l, n >O, (24) 

where in equations (23) and (24) E is the Young’s modulus of the shell material and R, 
and R, are the ratios of axial and torsional to radial amplitudes of vibration obtained by 
re-substituting the derived axial wavenumbers, knsar back in the matrix of system 
equations (5). 

5.3. POWER FLOW IN THE COUPLED SYSTEM 

As shown in section 2, by application of the boundary condition at the shell wall of 
continuity of radial fluid and shell velocity, the fluid power can be written in terms of 
the shell radial amplitude of vibration, W,,,. Substituting equation (4) into equations (17) 
and (18) gives 

I 

a 
Pf = m3kospf[k:Jb(k:a)]-* W& Jz(k:r)r dr, n =O, (25) 

0 

Pf = (~/2)W3knspr[k:Jl(k:a)]-2 Wf, 
I 

a 

Ji(k:r)r dr, n >o. (26) 
0 

The ratio of power flow or (as group velocity is the same for both media) energy 
distribution between the fluid and shell vibrational field is thus given by 

E, = Pf/Ps = w’k,&k~J,(k~a)]-* Ia Ji(kir)r dr/[E/(l - v2)]waSf, (27,28) 
0 

where the shell factor S, is 

S, = [(hla)3/61[(knsa)3+ m’(ka) +Ra(knsa)* + &Vw)l 

+(hla)[(k,,a)R~ +n~R,R,+vR,l+[(hla)/21(1 -v)[nR,R,+(k,,a)Rfl. (29) 
The integral in equation (28) takes the form of Lommel’s integral, the solution of which 
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can be written as [14] 

jo= r J:(k:r) dr =;{ [J#c;Lz)]~+( 1 -&)J:(k:a)]. 

Substituting equation (30) into equation (28) gives the energy ratio as 
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(30) 

(31) 

where Ff is the fluid factor given by 

Ff =~{[J~(k~u)]2+[1-~z2/(k:u)2]J2,(k:u)}. (32) 

Equation (31) can be further simplified by the substitution of ci =E/[p,(l- v*)] and 
L! = WU/Q,, to give the final non-dimensional relationship for energy distribution, 

~5 = ~2(~,/p,)(~,s~)[~~~J~(~:~)l-2(Frls,). (33) 

The energy ratio given by equation (33) can be evaluated by substituting in the appropriate 
values of axial and radial wavenumbers obtained previously. Figures 9(a) and (b) show 
typical energy ratios for normal propagating modes in a steel shell of thickness of 
h/a = 0.05 filled with water for the n = 0 and n = 1 modes respectively. 

w 
20 L- i 

-501 I / A I I~111 I 
0.1 0.5 I. 0 2.0 3.0 4.0 

Nan-dimensional frequency, a 

Figure 9. Distribution of vibrational energy in a water-filled steel shell of thickness h/a = 0.05. <a) n = 0; 
(b) n == 1. 



516 C. R. FULLER AND F. J. FAHY 

Inspection of equation (33), with reference to Figures 9(a) and (b), gives immediate 
insight into the distribution of vibrational energy in fluid-filled shells. At low frequencies 
(n < 1-O) for the n = 0 mode the majority of energy can be seen to be either in the shell 
or the fluid depending upon whether the excitation is structural or located in the fluid. 
As intuitively expected, decreasing the ratio pf/ps, or increasing the ratio h/a, decreases 
the proportion of energy contained in the fluid for shell type waves. On the other hand, 
similar parameter changes will cause an increase in energy content in the fluid for fluid 
type waves, due to the fact that Jj,(k’,a) approaches zero (the fluid waves approach 
rigid-walled modes). Thus for n = 0 modes, when the shell wall is relatively thick 
(h/a >O.Ol), or relatively dense (pr/p,$ << l), the energy will be carried predominantly 
either in the fluid, or in the shell wall, depending upon the form of excitation. When 
the shell wall is relatively thin (h/a s 0.01) or less dense (pf/ps b 1) at low frequencies 
the energy will nearly all be present in the shell wall. 

At high frequencies when higher order fluid-type waves cut on, the energy may be 
distributed to a varying degree between the shell and fluid. Figure 9(a) illustrates the 
change in behaviour of the branch s = 2 (see Figure 3) which is close to a shell wave at 
low frequencies, and like a fluid wave at high frequencies. In Figure 4(a) the energy 
ratio for the s = 2 branch can be seen to change sharply near R = 0.8, where the shell 
resonates as a ring. Similarly the fluid branch, s = 1, changes into a shell-type wave at 
the same frequency. At 0 = 0.8 the ratio of energy flux in both branches is close to 
unity, and as both the fluid and shell fields resonate in the radial direction there is an 
equal distribution of energy in the media. Thomson’s analysis [5], which predicts the 
s = 1 but not the s = 2 branch, and neglects certain shell energy flux terms, also indicates 
a shift of energy from the fluid to the shell at frequencies in the range Q = 1 to 4 (note 
in reference [5] 0 = wa/cf). The energy ratios of the higher modes are interesting because 
they demonstrate the plateau behaviour observed in the dispersion curves. As the higher 
modes cut on, the energy is predominantly in the fluid, shifts to the shell wall in a plateau 
region, and then reverts to the fluid. At the coincidence points discussed previously, the 
energy ratios of the two branches are both equal and close to unity; hence there is 
uniform distribution of energy between the shell and the fluid at coincidence. The energy 
ratios of Figure 4(a) also reveal that the s = 1 and s = 2 branches exhibit coincidence 
behaviour at 0 x0.82, a result not observable in the corresponding dispersion curve 
shown in Figure 3. 

The energy ratios for modes in fluid-filled shells vibrating in the n = 1 or beam mode 
are given in Figure 9(b). At low frequencies (0 less than the first cut-on frequency of 
the fluid-type waves) the energy of vibration is nearly all in the shell wall carried by the 
wave corresponding to the s = 1 branch of Figure 4. With increasing frequency the energy 
ratio of the s = 1 branch increases until at R = 0.6 there is more energy in the fluid than 
the shell wall. This result is surprising since the radial wavenumber of the s = 1 branch 
is imaginary and the fluid motion consists of a “forced” pressure field near the shell 
wall. However, at 0 = 0.6 the radial amplitude of motion of the shell wall is substantially 
greater than the corresponding motion of the shell in uacuo, and as this frequency is 
close to the cut-on frequency of the first fluid wave, the “forced” pressure amplitude in 
the fluid is very high. Thus, although the s = 1 branch is essentially a beam mode, for 
the frequency range 0.5 < 0 < 0.7 there will be more energy in the “forced” fluid motion. 
Contrary to the behaviour for other waves with a greater concentration of energy in the 
fluid, a reduction in shell vibration will have a marked effect on the fluid response due 
to its “forced” nature. At higher frequencies the energy shifts back to the shell wall for 
the s = 1 branch due to a reduction in “forced” pressure amplitude. 

For all other branches occurring at higher frequencies the energy may be predominantly 
in the shell wall or in the fluid, depending upon the branch and thus on the nature of 
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the excitation. The curves for the n = 1 mode exhibit the double plateau response shown 
in the dispersion curves, i.e., the energy shifts from the fluid to the shell in two frequency 
regions, and thus there are two coincidence points for a branch where coupling occurs 
between torsional or axial shell waves and fluid waves. 

On the whole, the energy curves demonstrate that fluid-filled cylindrical shells will 
vibrate in dominantly fluid or shell-type motion except at a number of discrete coincidence 
frequencies where the vibrational energy is shared equally. 

6. CONCLUSIONS 

The dispersion and energy distributions of free waves in fluid-filled cylindrical shells 
has been examined. The behaviour of individual branches has been explained for a 
variation in parameters. The behaviour of free waves is found to depend strongly upon 
the thickness of the shell wall, and on the ratio of the density of the shell material to 
the density of the contained fluid. Coincidence behaviour for propagating and evanescent 
waves has been identified and explained. An exact equation which predicts energy 
distribution in fluid-filled shells has been developed and its parametric variation studied. 
Generally, at low frequencies most of the energy is concentrated in the shell wall for 
structural excitation. For acoustical excitation at low frequencies the energy is pre- 
dominantly in the fluid. At higher frequencies the energy may be in the fluid field or in 
the shell wall. 
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APPENDIX: LIST OF SYMBOLS 

thin shell mean radius 
fluid acoustic free wave speed 
shell extension phase speed 
Young’s modulus 
energy ratio 
fluid factor 
fluid loading term 
shell wall thickness 
inmsity 
:-1 
Bessel function of order n 
axial wavenumber 
radial wavenumber 
bending moment in the x direction around tangential axis 
axial force 
torsional shear force 
pressure 
power flow in fluid 
power flow in shell 
pressure amplitude 
transverse shear force 
cylindrical co-ordinate 
ratio of axial to radial amplitude of shell motion 
ratio of torsional to radial amplitude of shell motion 
branch number 
area 
shell factor 
shell displacements 
shell displacement amplitudes 
cylindrical co-ordinate 
acoustic axial particle velocity 
acoustic radial particle velocity 
wall impedance 
thickness factor 
cylindrical co-ordinate 
density of fluid 
density of shell 
Poisson’s ratio 
circular frequency 
non-dimensional frequency 
complex conjugate 
differentiation with respect to time 
differentiation with respect to k:r 
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