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UNIFORMLY HIGH-ORDER ACCURATE NONOSCILLATORY SCHEMES. I*

AMI HARTENf AND STANLEY OSHERt

Abstract. We begin the construction and the analysis of nonoscillatory shock capturing methods for
the approximation of hyperbolic conservation laws. These schemes share many desirable properties with
total variation diminishing schemes, but TVD schemes have at most first-order accuracy, in the sense of
truncation error, at extrema of the solution. In this paper we construct a uniformly second-order approxima-
tion, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing
in time. This is achieved via a nonoscillatory piecewise-linear reconstruction of the solution from its cell
averages, time evolution through an approximate solution of the resulting initial value problem and an
average of this approximate solution over each cell.
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1. Introduction. In this paper we consider numerical approximations to weak
solutions of the scalar initial value problem (IVP)

(1.1a) ut +f(u), ut + a(U)Ux =0,

(1.1b) u(x,O)-uo(x).
The initial data Uo(X) are assumed to be piecewise-smooth functions that are either

periodic or of compact, support.
Let v Vh(Xs, t,), XS =jh, t, nz, denote a numerical approximation in conserva-

tion form

(1.2a) /,;+ /j --/ (fj+l/2--fj--1/2) (Eh" 1 )j,
Here Eh is the numerical solution operator, A -/h, and fs+l/, the numerical flux

is a function of 2k variables

(1.2b) fj+l/2:(1,j_k+l, 1,,’j+k)
which is consistent with (1.1a) in the sense that

(1.2c) ](u, u,""", u)=f(u).
We consider the numerical approximation Vh(X, t) in (1.2) to be a piecewise-

constant function

(1.3) Ph(X,t)=Pj, Xj_I/2<X<Xj+I/2, nz<t<--_(n+l)z.

Accordingly we define its total variation in x to be

(1.4) TV(v")= TV(vn(., t,))=Y Iv,"+1 v;[.
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If the total variation of the numerical solution is uniformly bounded in h for
0<t<T

(1.5) TV(,h(’, t))_-<C TV(uo)
then any refinement sequence h -> 0, - O(h) has a subsequence hj -> 0 so that

L
(1.6) ’h U

where u is a weak solution of (1.1).
If all limit solutions (1.6) of the numerical solution (1.2) satisfy an entropy

condition that implies uniqueness of the IVP (1.1), then the numerical scheme is
convergent (see e.g. [3], [12]).

Recently we have introduced the notion of total variation diminishing (TVD)
schemes (see [3]), where the approximate solution operator is required to diminish
the total variation (1.4) of the numerical solution at each time-step

(1.7) TV(u+) -< TV(u");
these schemes trivially satisfy (1.5) with C 1. It follows from (1.7) that in the numerical
solution of a TVD scheme the value of an isolated local maximum may only decrease
in time, while that of a local minimum may only increase. Some early work along these
lines was done by van Leer in [15].

We were able to construct TVD schemes that in the sense of local truncation error
are high-order accurate everywhere except at local extrema where they necessarily
degenerate into first-order accuracy (see [4], [13], [10], [11], [14]). The perpetual
damping of local extrema determines the cumulative global error of the "high-order
TVD schemes" to be O(h) in the Lo norm, O(h3/2) in the L2 norm and O(h2) in the
L1 norm (see [17]).

In this paper we introduce a new class of nonoscillatory schemes, in which the
solution operator is only required to diminish the number of local extrema in the
numerical solution (as is customary we use "diminishing" loosely as short for "nonin-
creasing," throughout this paper). This property is satisfied by all the essentially 3-pt
TVD schemes that can be described as an average of monotone Riemann solvers; most
ofthe computationally interesting TVD schemes (with a more restrictive CFL condition)
are of this type (see [12]). Unlike TVD schemes, nonoscillatory schemes are not
required to damp the values of each local extremum at every single time-step, but are
allowed to occasionally accentuate a local extremum.

In a sequence of papers, of which the present paper is the first, we show how to
construct nonoscillatory schemes that are uniformly high-order accurate (in the sense
of global error for smooth solutions of (1.1)). In this first paper we describe a
second-order accurate scheme of this type.

The fact that the number of local extrema in the numerical solution may only
diminish in time is sufficient by itself to guarantee that the application of the scheme
to monotone data results in a monotone function. Thus nonoscillatory schemes, like
TVD schemes, are monotonicity preserving. In particular, when applied to a step-
function, they do not generate spurious oscillations.

We note that since the number of local extrema in the solution of nonoscillatory
schemes is bounded by that ofthe initial data, uniform boundedness of its total variation
(1.5) follows immediately ifthe maximum norm ofthe solution is shown to be uniformly
bounded.

2. Design principle and overview. In this section we describe how to construct a
nonoscillatory scheme that is uniformly second-order accurate.



ACCURATE NONOSCILLATORY SCHEMES. 281

Integrating the partial differential equation (1.1a) over the computational cell
(xs_l/2, xs+l/2) x (t,, t,+l) we get

(2.1a) ’+ =/; ,. [jj+I/2(U)--Jj_I/2(U)]
where

(2.1b) fj+l/2(1,/) 1 f’"+ f(u(xs+l/2, t)) dr,
T .itn

and

1 f j+l/2
-"= u(x, t,) dx.(2.1c) us -We observe that although (2.1a) is a relation between the cell-averages as" and

a]/1, the evaluation of the fluxes fs+/2(u) in (2.1b) requires knowledge of the solution
itself and not its cell-averages.

As in Godunov’s scheme and its second-order extension by van Leer [16] and
Colella and Woodward [2], we derive our scheme as a direct approximation to (2.1).
We denote by v] the numerical approximation to the cell-averages as" of the exact
solution in (2.1c), and set vs. to be the cell-averages of the initial data. Given v
we compute v"+l as follows.

First we reconstruct u(x, t,) out of its approximate cell-averages {j*} to the
appropriate accuracy and denote the result by L(x; "). Next we solve the IVP

(2.2) v, +f( V)x O, v(x, O) L(x; v"),
and denote its solution by v(x, t). Finally we obtain v’+1 by taking cell-averages of
,,(x, -)

1 fx+,/2 v(x, z) dx.(2.3) V;+I--’
x,-,,2

The averaging operator in (2.3) is nonoscillatory, therefore the number of local
extrema in v"+1 (interpreted as a mesh-function or the piecewise-constant function
(1.3)) does not exceed that of v(x, z). Assuming v(x, t) to be the exact solution of
(2.2) implies (since the exact solution operator is TVD) that the number of local
extrema in v(x, z) is less than or equal to that of v(x, 0)= L(x; v"). Therefore if the
number of local extrema in L(x; v") does not exceed that of v", then the resulting
scheme is nonoscillatory.

We conclude that the design of nonoscillatory high-order accurate schemes essen-
tially boils down to a problem on the level of approximation of functions: Given
cell-averages as of a piecewise-smooth function u(x), reconstruct u(x) to a desired
accuracy. Prior to studying this problem we tackle another related question in approxi-
mation of functions, that of constructing a nonoscillatory high-order accurate interpola-
tion of piecewise-smooth functions.

In 3 we construct a nonoscillatory piecewise-parabolic function Q(x; u) that
interpolates a piecewise-smooth function u(x) at the mesh points

(2.4a) Q(xs; u)= u(xs)
and satisfies, wherever u(x) is smooth,

(2.4b) Q(x; u)= u(x)+ O(h3),
d d

(2.4c) xx Q(x+O; u)=-xU(X)+O(h2).
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In 4 we make use of this nonoscillatory piecewise-parabolic interpolant to design
a nonoscillatory reconstruction of a piecewise-smooth function from its cell-averages.
As in [16], [2], [5] and [9] we take L(x; ) to be the following piecewise-linear function:

h
(2.5a) L(x" ) j + Sj(x xj)/ h for Ix xj] <-2"

Unlike the above references that present "second-order accurate" TVD schemes,
we compute the slopes S/h from Q(x; t) by

(2.5b) S/h=m( d d
-xQ(Xj-0; t),-dxQ(X +0; )

Here m(x, y) is the min mod function

Is. min (Ixl, lYl) if sgn (x)= sgn (y)= s,
(2.6) Y)

otherwise.

We show in 4 that L(x; ) is a proper reconstruction of u(x) in the sense that
whenever u (X) is smooth

(2.7a) L(x; fi) u(x) / O(hE)
and

(2.7b) /S(x; t)= (x)+O(h3).
Here

fh/2 fh/2a(x) h -1 u(x / y) dy and /S(x; a)= h -1 L(x + y; ) dy;
d -hi2 d -hi2

like Q(x; fi), the latter is also a nonoscillatory piecewise-parabolic interpolant of iT(x),

(2.7c) L(x; )= fi(x).
We remark that the "second-order accurate" TVD schemes described in the

above-mentioned references use a slope S/h in (2.5a) that approximates (d/dx)u(xj)
to O(h), and their loss of second-order accuracy at local extrema points is due to lack
of smoothness of the coefficient in the O(h) term at these points. This problem is
circumvented in the present scheme by taking S/h to be (2.5b) which is an O(h2)
approximation to (d/dx)u(x). Unfortunately there is a price tO pay for this extra
accuracy, namely the loss of the TVD property. As in TVD schemes

(2.8) TV(,"*1) _-< TV(L(.; "));

however, here

TV(L(. ,’))_-> TV(,)

and indeed the scheme may occasionally increase the variation of the numerical
solution. Although we prove that the scheme is nonoscillatory, we have not been able
as yet to complete a proof of uniform boundedness of the total variation of the
numerical solution; this is due to lack of techniques to verify uniform boundedness
of the maximum norm of the numerical solution.

We repeat that the results of[8] and 11 imply that TVD schemes, no matter how they are constructed,
must have this loss of accuracy at local extrema.
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In 5 we study the proposed scheme in the constant coefficient case. We verify
that it is uniformly second-order accurate, examine its behavior at local extrema points
and get estimates for the possible increase in total variation per time-step.

In this paper where we consider numerical schemes of the form (1.2) that are
derived from approximating the relation (2.1), it is only natural to consider truncation
error in the sense of cell-averages. That is, we say that the scheme (1.2) is second-order
accurate if

(2.9) an+ Eh an .. O(h3)
where a" is the cell-average (2.1c) of the exact solution. Since

(2.10) fi(x) u(x)+ O(h2)
whenever u(x) is smooth, (2.9) holds also for pointwise values ofthe solution. However,
in the context of third and higher order accurate schemes, this difference in definitions
of truncation error will be not only conceptual but of practical importance as well.

Up to this point we have assumed that v(x, -) in (2.3) is the exact solution to
(2.2). The resulting scheme

n+l(2.1 la) us vs . [+l/2(v) -f-l/Z(V)],
where f+/2(v) is (2.1b) applied to v(x, t),

(2.11b) .+1/2(u) =1 f(v(x, t)) dt,

is certainly second-order accurate in the sense of (2.9). Starting with the exact cell-
averages v a in (2.11) we get from (2.7a) that

(2.12a) v(x, t)=u(x, t+tn)+O(h2) for0_<-t_<-r,

and consequently,

(2.12b) +,/_(v) =+,/2(u) + O(h),
which implies (2.9) due to the sufficient smoothness of the coefficient in the O(h2)
term in (2.12b).

In 6 we replace the exact solution v(x, t) in (2.3) by an approximate one, which
we denote by v,(x, t). This approximate solution is conservative, TVD, and second-
order accurate in the sense of (2.12a). Thus replacing v(x, t) in (2.3) by this approximate
solution results in a conservative scheme that is nonoscillatory and uniformly second-
order accurate.

We remark that an alternative approach to the above is to approximate +l/(v)
in (2.1 lb) by using a midpoint rule (or trapezoidal rule) for the integral and by replacing
v(x, t) with a nonoscillating second-order accurate approximate one v,(x, t) (see [16]
and [2]). The resulting scheme

(2 13a) v+ /)j --/, (4+1/2--4--1/2))
(2.13b) +/2=f(v,(xj+/2, r/2)),
is certainly second-order accurate, and it is nonoscillatory in the constant coefficient
case. Since we have not used the cell-averaging (2.3) to derive this scheme, we cannot
ascertain in general that the resulting scheme is nonoscillatory. Nevertheless, our
numerical experiments as well as many other experiments in the context of TVD
schemes (see e.g. [1], [2]) demonstrate that the numerical results are nonoscillatory
in many (if not all) applications.
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In 7 we present some numerical experiments that compare the present scheme
with a typical "second-order accurate" TVD scheme.

3. Nonoscillatory interpolation. The oscillatory nature of second-order accurate
Lax-Wendrott type schemes results from a Gibbs phenomenon associated with high-
order interpolation across discontinuities. In this section, as a preparatory step towards
designing a nonoscillatory approximation to (1.1), we construct a nonoscillatory
piecewise-parabolic interpolant Q(x; u) to a piecewise-smooth function u(x) such that

(3.13) Q(xi; u)= u(xi),

(3.1b) Q(x; u) - qi+/2(x; u), xi x xi+,

where q+/2 is a quadratic polynomial, and

d d
2)(3.1c) Q(x; u)-u(x) O(h3), xx Q(x+0; u)--xU(X)= O(h

wherever u (x) is smooth.
Q(x; u) is nonoscillatory in the sense that the number of its local extrema does

not exceed that of u(x).
Since

qi+l/2(Xi; tl) Ui, qi+l/2(Xi+l; U) Ui+I,

it can be written in the form

(3.2a) qi+l/E(X; u) ui + di+l/EU" (x x,)/h +1/2Di+l/EU" (x xi)(x xi+l)/hE

where

(3.2b) di+l/2U ui+ u

and Di+l/EU is yet to be determined.

Oi+l/Egl t qi+l/2(X, tl), X X Xi/

We consider as candidates for q+1/2 the two quadratic polynomials i and t+l,
interpolating u(x) at (xi-1, xi, X/+l) and (x, x+l, x+2), respectively, and choose q+/2
to be the one that is least oscillatory in [x, Xi+l]. Both t, j and j i+ 1, can be
written as (3.2a) with D+l/2U Du where

(3.2c) Djtl dj+l/2,/- dj_l/2/,/--/,/j+i 2Uj -k glj_

Since the least oscillatory of t and t+l can be characterized as the one that deviates
the least from the line connecting (x, ui) with (xi+l, U+l) we choose D+l/EU in (3.2a)
to be

(3.2d) Di+l/EU m(Du, D+lu),

where m(x, y) is the min mod function

s. min  lxl, lyl) if sgn (x)= sgn (y)= s,
(3.3) m(x, y)

0 otherwise.

If u(x) is smooth in [xj-1, Xj+l], then as a quadratic interpolant of u satisfies

d d
(3.4) (x)-u(x)=O(h3),-x(X)--xU(X)=O(h2), Xj_l-X-Xj+l.
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If Diu" Di+lU >-0 then q+l/2 is either t] or t+l. Otherwise we set Di+l/2tt --0, but then
smoothness of u implies that Dju O(h3) and consequently qi+l/2- O(h3) forj i,
i+ 1. Thus (3.1c) follows from (3.4).

We turn now to prove that Q(x; u) is a nonoscillatory interpolant of u, i.e., that
the number of its local extrema does not exceed that of u. We do so by showing a
one-to-one correspondence between local extrema of Q to those of the mesh function
{uj}, the number of which certainly does not exceed that of u(x).

Q may have a local extremum in either the interior of some interval (x, xi/l) or
at a mesh point x. The first case, which will be referred to as interior-extremum, occurs
when there is a point x*, x < x*< x+l, such that

d d
dxQ(X* u)=0 but xq’+/20"

From (3.2a) it follows that Q has an interior-extremum in (xi, xi+) if and only if

(3.5) 21d,+ /=ul.
q*+i/: q/l/2(x*), the value of the interior-extremum is then

1 di+l/2U(3.6) q*//2 u -- D,/l/EU
D/EU

if Oi+l/EU 0 it is a local maximum; if Di+l/EUO it is a local minimum. Since

D/EU m(Du, DlU), (3.5) holds if and only if

(3.7a) Diu DilU O,

(3.7b) ]Du] 2]d,/u], j i, i+ 1.

This implies that qi+/2 has a local extremum in (x, x) if and only if both and

1 also have a local extremum in (x, Xl) and of the same kind. Since a parabola
has at most one local extremum, it follows then that does not have a local extremum
in (x_, x) and does not have one in (x, x2). Consequently Q is monotone
in both (x_, x) and (x, Xl2), but in an opposite sense, i.e., di_l/EU.di+3/EU
the latter implies that u has a local extremum in [x, Xl] and that either u or Ul is
a local extremum of the mesh function {u) (for obvious reasons the case u u is
counted as a single-extremum). The above analysis also shows that interior-extrema
are isolated, i.e., if Q has an interior-extremum in (x, Xl), then itis the only local
extremum of Q in (xi_, xi2).

We turn now to examine the case that Q has a local extremum at a mesh point
x; this will be referred to as a mesh-extremum. The above obseation that interior-
extrema are isolated excludes the possibility that Q has an interior-extremum in either
(x_, x) or (x, x) and consequently Q is monotone in these intervals. This implies
that di_i/2u" di+l/EU 0 and therefore u is a local extremum of the mesh function
This concludes the proof that Q(x; u) is a nonoscillatory interpolant of u.

We next express the nonoscillatory nature of Q in terms of total variation. If
then (2.5) implies that Q is monotone in Ix2, x2]. Thus

(3.8a) ]O  l/EU] 21d   / ul
If ]Dl/EU] 2]d/u] then Q has a local extremum in (x, Xl) and

TVx.xj+,l(Q) ,jlq*+ 1/2 u.il + lu+ q+,/=l.
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(3.8c)

Using (2.6) we get

(3.8b)

We conclude that

j mM

1

4 mM

dj+1/2/g

Dj+l/21g

dm+l/2U
Dm+l/2U

The sum in the RHS of (3.8c) is taken over the set of indices M of intervals
(Xm, Xm+l) in which i.e., where Q has interior-extrema.

Next we show that if u(x) is a piecewise-smooth function of bounded variation,
then

(3.9) lim TV(Q(. ;u))= TV(u).
h0

We observe that in this case the number of intervals in M is finite and is uniformly
bounded by the number of local extrema in u(x). Hence (3.9) will follow if we prove
that Dm+l/2U 0 as h - 0 for all m M. To accomplish this we show that for h sufficiently
small M does not include intervals (Xm, Xm/l) in which u(x) is discontinuous. To see
that let us examine the case where u(x) has a discontinuity at g (xi, xi+). Clearly
d+l/2U approaches the size of the jump in u while d-l/2U approaches zero as h 0.
Consequently

(3.10a) ]Du/a,+,/2u [1 a,_,/2u/a,+,/2u 1 as h 0.

Hence for h sufficiently small

(3.10b) 2ld,+l/2Ul
which implies M.

4. Nonoseillatory reconstruction. Let u(x) be a piecewise-smooth function and
denote by a(x) its mean over (x-hi2, x + hi2), i.e.,

1 f x+h/2

u(y) dy.(4.1) fi(x)
ax-h/2

We denote fi(x) and refer to these values as cell-averages of u(x). Given {}, the
task at hand is to reconstruct u(x) to O(h2) in a nonoseillatory way; denote the
approximately reconstructed function by L(x; ). To achieve O(h2) accuracy it is
sufficient to consider L(x; ) to be a piecewise-linear function. To make L(x; ) a
nonoscillatory approximation we use the nonoscillatory piecewise parabolic interpola-
tion Q(x; ) to compute its slopes as follows:

(4.2a) L(x; ) + S(x x)/ h for ]x x] < 1/2h,

(4.2b) S; h rn -x Q X; 0 a),--xQ(X; +0; t)

Here rn is the min mod function (3.3); d+l/2a and Di+i/2a are (3.2b) and (3.2d),
respectively.
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We note that L(x; ) may be discontinuous at {xj/l/2} and that

(4.3a) L(xj; )= .
To see that wherever u(x) is smooth

(4.3b) L(x, )- u(x) O(h2)
we observe that in this case

(4.4a) t(x) u(x)+ O(h2)
and therefore it follows from (3.1c) that

1 d d
(4.4b) S; xx t(x;) + O(h2) =-x u(x;) + O(h2).

Consequently the RHS of (4.2a) can be expanded as

d
2)L(x; f) uj + (x xJ) -dx U(Xj) + O(h

(4.4c)
u(x) + O(h2) for [x xj[ < 1/2h,

and thus (4.3b) follows.
Denote by L(x; ) the mean value of L(x; ) in (x-hi2, x + hi2), i.e.,

1 x+h/2

| L(y; ) dy.(4.5a) L(x, ) - .,x-h

Using (4.2a) to evaluate the integral in (4.5a) we find

(4.5b) (x; a)=+ d+i/2fi(x-x)/h+(1/2)(S+l-S)(x-x.i)(x-x+l)/h2

for x <= x <- x+
(4.5c) /S(x; fi)= fij.

Hence L(x; a), like Q(x; t), is a piecewise-parabolic interpolant of a(x). Comparing
(4.5b) with (3.2) we find that for x <=x<-x+l
(4.6a) /S(x; a)-Q(x; fi)=1/2(S+-Sj-Dj+a/_a)(x-x)(x-x+a)/hz.

From (4.4b) we see that Si h(d/dx)(xi)+O(h3) (note that this is true also at
local extrema points) and therefore

Sj+ Sj h a dE
dx---u(x.+i/2) + O(h3).

On the other hand, (3.2) shows that

D+l/2a h2 d2
dx---iu(x.i+l/2) + O(h3).

Therefore

(4.6b) S+1- S- D+l/:Z O(h3)
which shows that RHS of (4.6a) is O(h3). Since (2.1c) shows that

Q(x;a)-a(x)=O(h3)
we conclude from (4.6a)-(4.6b) that

(4.6c) /S(x; fi)- fi(x) O(h3).
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We turn now to prove that L(x; if) is a nonoscillatory approximation to t(x);
this certainly implies that L(x; ) is a nonoscillatory approximation to u(x). We shall
do so by showing that TVxj.xj/,](L(" ;fi)), the total-variation of L(x; ) in [xs, xs/l],
which has the value

(4.7a) TVtxj,x+](L(’; ))-(Isl/ls/l)+ld//=a-1/2(s / s/)l,
can also be expressed as

(4.7b) TVtx,xj+,](L( t)) max

Then it follows immediately from (4.7b), (4.3a) and (3.8) that L is monotone in [x, x+l]
if and only if Q is; consequently L is a nonoscillatory approximation to u(x) in exactly
the same sense as Q is to the interpolated function (see {} 3).

(4.8a)

(4.8b)

Next let us denote

ds;. h O(x+/-O;

s; d_,/a +:Os_,i_u, S;. d,.+,/a-:o+,/u,
and observe that (4.2b) implies that

1/2(Isl + ls+,l) 1/2[Im(s;,
-’ I+,/ ,/

max (la+,/,ai,
we note that if Ia+,/,al ID+,/,I then

sn (+,/, Os+,/,a) sn (as+,/,a)O
which in turn implies

sn (ss) sgn (as+,/,a)o, sn (ss+,) sn (as+,/,a)o.
It follows then from (4.8c) that the RHS of (4.7a) is la+,/,al. Thi, ,bows that

(4.9a) la+,/,al ID+,/,aI ...+,((’; )) la+,/,al.
To complete the vericati0n of (4.7b) we still have to show that

(4.9b) 14-+,/,al < lo+,/,al .,.x,,(L(’; a))= llD+,al.
First we obsee that

s? s; a,+,/,a ,+1/,a d,_,/,a + D,_,/,a
(4.10)

Since (3.2d) implies

(4.1 l) ID,aI (1,-,/,1 + Io,+,/,al),
we conclude from (4.10) that

(4.12) (S- ST). sin (D) 0.

We turn now to prove (4.9b). First let us consider the case that Q(x; ) has a
local maximum in (xs, xs+,), i.e., Ds <0, Ds+, <0, and 14+,/,al <lo+,<,ul.
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It follows from (4.12) that

(4.13a) Sf >= S; dj+l/2 -1/2Dj+I/2 > 0,

(4.13b) 0 > d+a/2a +1/2D+l/2fi Sj-+ >_- S+.
The relations (4.13) and the definitions (4.8a), (4.2b) imply that

(4.14a) S S] d+l/2t-1/2D+/2,
(4.14b) S+1 S+ d+/2fi +D+1/2.
e same analysis shows that (4.14) holds also for the case that Q(x; ) has a local
minimum in (x, x+). (4.9b) follows immediately from (4.14) and (4.7a).

We note that since L(x; ) is continuous at x

TV(L(’; fi)) E x,x+,(L(" fi)) max 14+1/2a1, lD+/al
(4.15)

Here M is the set of indices of inteals (x, x+) in the interior of which L (and
also Q) has a local extremum. The number of these inteals is finite and is bounded
by the number of local extrema of a(x). Comparing (4.9) with (3.8) we note that

(4.16) (L(. a)) (O("

5. The constant eoeeient ease. In this section we study the constant coefficient case

(5.1) u, + au 0, a const.

The exact solution of the IVP (2.2) is

(5.2) u(x, t) L(x- at; ").

Hence our scheme (2.3) is

(5.3a) u]+
1 f+/ L(x- ar; ") dx (x- at; ")

where L is (4.5a). We have shown in 3 that the number of local extrema in L(x;
does not exceed that of u". Since "+ in (5.3a) is a cell-average of L, it follows that
the number of local extrema in u"+ does not exceed that of u", and consequently the
scheme (5.3a) is nonoscillatory.

Using (4.5b) in (5.3a) we get the following expression for the scheme

(5.3b)

_-{-d-/-(1-)(S-S) if a>0,
4+/ +(1 +)(S+- S) if a <0,

h denotes the operator form of the finite difference scheme; la, the CFL-number,
is assumed to satisfy

We turn now to prove that (5.3) is second-order accurate in the sense of (2.9),
i.e., if (x) denotes the mean value (4.1) of u(x, t) then

(5.4a) u -(Eh" ) O(h ).
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To show that we observe that in the constant coefficient case (5.1)
fn(xj az), and by (5.3a) (Eh fn)j L(Xj aT"’, fin). Hence the LHS of (5.4a) is nothing
but

(5.4b) f xj a’) L(x az;

which is O(h3) as a direct consequence of (4.6c).
Next we study the time-dependence of the total variation and the maximum norm

of the numerical solution (5.3). In 2 we have pointed out that

(5.5a) TV(),"+I) <-_ TV(L(. ),)).

Using (4.15) and (5.5a) we get the following upper bound on the possible growth of
the total variation of the numerical solution per time-step"

(5.5b) TV(I)n+I)- TV(I,’n)<= (lDm+l/2l)nl--ldm+l/2l,’nl)..tl

Here Mn is the set of indices of intervals (Xm, Xm+l) in the interior of which
L(x; v) (and also Q(x; v")) has a local extremum. The number of these intervals is
finite and remains uniformly bounded in time by the number of local extrema in the
initial data.

Clearly the upper bound (5.5b) is overly pessimistic. It estimates the possible
increase in variation in the reconstruction step due to replacing the cell-averages
by the piecewise-linear function L(x; ),"). It does not take into account the possible
decrease in variation in the averaging step (2.3), resulting from doing just the opposite,
i.e., replacing the piecewise-linear function L(x-az; ),) in (5.2) by its cell-averages
(5.3a).

In the following we shall examine the temporal behavior of the local extrema of
the numerical solution and its total variation by analyzing the explicit values of the
cell-averages v/1 given by (5.3b). To simplify our presentation let us assume that a > 0.

First we note that (4.8b) implies

(5.6a) s _ll <-_ ls l/ lS /ll <- 2 max 1/21D -I/ _ I).
Hence

(5.6b)

Rewriting (5.3) in this case as

(5.7a)
n+l

where

(5.7b)

we see that the CFL condition 0</x <_- 1 and (5.6b) imply that

(5.7c) 0_-< try_l/2_-< 1;

thus we conclude

(5.8) > 1.
Relation (5.8) shows that if )," is monotone for J. -<_j =< JR, i.e. vj -< vrL+, -<" -< %,

or ,L-_>),+,->. .=> ,R, then ,"+1 is monotone for J.+ I <=j <= JR, and in the same
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sense. Relation (5.8) also shows that mesh-extrema of v", i.e., those for which Q has
its local extremum at a mesh point, are being damped at the nth time-step. Namely,

/2n n+l n+l(5.9a) Id+/-l/="l >1/2]Dj+/-I/2 1, < >vj-1 vj=Vj+l=>max(vj ,Vj+l) <vJ,
(5.9b) Idj+,/2,"l > 1/2[oj+a/2pn[, > < n+l n+l

vj+l v v+l =:> min (v v+l --> v..
We turn now to consider interior local extrema of u", i.e. those for which Q has

its local extremum in the interior of some (xi, Xi/l). We recall that such an extremum
pnis characterized by Id,+,/= 1<1/21D,+l/2v land that S, and S,+I in this case are given

by (4.14); therefore Si+l S’ D+l/2v. From (5.3a) and (4.6a) we see that in general

(5.10a) "+
u+l -Q(x+l-ar; v )=1/2tz(1-tz)(D+l/u"-S+l + S’).

Hence

(5.lOb) /2n pn n+l /nId,+1/2 1<1/21D,+1/2 I==> b’i+l Q(Xi+l--a’r; ).

Relation (5.10b) confirms the second-order accuracy of the scheme at local extrema.
,+1 in (5.10b)Although it does not necessitate accentuation of the extremal values, as v

n+lmay still be in [vi, Vi+l], it does allow V+l to deviate from this interval by as much as

(5.10c) 1/21D,+l/=’"l(Id,+l/v"l/ID,+/=’"l
Thus (5.10b) is the essential difference between the present scheme and the

"second-order" TVD schemes.
A similar analysis, which we do not present here, shows that if is a mesh-

extremum then v/1, j i, i+ 1, relates to Q(x-a’r; v") in the following way"

(5.11a) v’+1 ->_ Q(x- at; v), j i, + 1 if v’ is a maximum,

(5.11b) /};+1 Q(x-at; v"), j i, i+ 1 if v’ is a minimum.

From (5.9)-(5.11) we deduce the following relation between the total variation of
the numerical solution and that of its piecewise-parabolic interpolant Q:

(5.12) TV({Q(x.i-a’r; v")}) < TV(v"+I) < TV(Q(:; v")).

The LHS of (5.12) is the total variation of the mesh function {Q(xj-ar;
Relation (5.12) suggests to consider an equivalent definition TV of the total variation
of the numerical approximation of the form

TV( v") TV( Q(

with the hope that the scheme (5.3) is TVD with respect to this modified definition.
Unfortunately our numerical experiments have shown that there are instances, although
rather rare, that TV(v") is increasing with n; the same is true for TV(v")=
TV(L(. v")).

As we have mentioned in the Introduction, because of the nonoscillatory nature
of the scheme, uniform total variation boundedness ofthe numerical solution is implied
by uniform boundedness of its maximum norm. Ifwe follow a particular local maximum
of the initial data we see from (5.9)-(5.10a) that it actually decreases most of the time,
and whenever it does increase (5.10c) and (3.10) suggest that it does so by a "small
amount" that vanishes with h 0. Since the initial data is only piecewise-smooth we
have not been able as yet to rigorize these arguments.

We remark that our numerical experiments clearly indicate that in a normal
computational situation the maximum norm of the numerical solution is indeed
uniformly bounded. We feel that our inability to prove this fact stems only from lack
of theoretical tools to analyze pointwise regularity of the numerical solution.
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6. The nonlinear case. In this section we describe an approximate solution v, (x, t)
of [5] for the IVP (2.2)

(6.1) v, +f( v),, 0, v(x, 0) L(x; v").

This approximate solution is consistent with the conservation form of the equation
(6.1) in the sense that the cell-averaging (2.3) results in a scheme in conservation form,
i.e.,

(6.2) v;+ 1 f+’/ v,,.(x, T) dx= v;-A(+/2--/)-- Xj--I/2

where the numerical fluxf+/2 is consistent withf(u) in the sense of (1.2c). Furthermore,
the approximate solution operator is TVD

(6.3) TV(v,(.;t))_<-TV(v,(.;0)) =TV(L(.;v")) for0_-<t-<r,

and thus by the reasoning presented in 2, the resulting scheme (6.2) is nonoscillatory.
We turn now to outline the derivation of this approximate solution. To simplify

our presentation we ignore entropy considerations and refer the reader to future papers
for details of appropriate modifications. We assign to the point xj+/2 a characteristic
speed that corresponds to the Rankine-Hugoniot speed tj+l/2 of the two neighboring
cell-averages v] and gt;+1

ff(( Vjn+l -_f_!v) if v’# vj+,
(6.4a) aj+l/2 v"+ v

v;) if It;-’- Itj%l,

and denote by ti(x) the piecewise-linear interpolant of {c+1/2}, i.e.,

(6.4b) a(x)=a_l/2+(aj+/2-gtj_,/z) (x-x-/2)/h for X_l/2<-x<=x+l/2

The approximate solution v,(x, t) is defined by specifying its constancy along the
approximate characteristics

(6.5a) x( t) Xo + a(Xo) t,

(6.5b) v,(x( t), t)=- v,(Xo, O)= L(xo; v").

Using (6.5a) and (6.4b) to express Xo in terms of x and

(6.5c) XO(X t) Xj_I/2 dl- h Ix Xj_l/2( t)]l[x+/2( t) Xj_l/2( t)]

we get from (6.5b) that

(6.6a) v,(x, t)= L(x_/:+ h.

where

(6.6b)

x- x_,/:( t) "Xj+l/:( t) Xj-,/2( t)’

Xi+l/2( t) Xi+l/2 -- t" (i+1/2.

for x_/:( t) < x < x+/:( t)

for Xj_I/2( t) < X < Xj+I/2( t)

(6.7a)

Taking cell-averages of the approximate solution (6.6) we get the conservation form
(6.2)
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with the numerical flux

vj +aj+l/2(1 hag_l/2)
(6.7b) Jj+l/2

f( 1-)’+1)- a+1/2(1 + Aaj+3/2) +1

where

(6.7c) S S’]I[1 +/ ((j+l/2- (j-1/2)].
Note that (6.7) is identical to (5.30) in the constant coefficient case.

We turn now to prove that the scheme (6.7) is uniformly second-order accurate
in the sense of (2.9). We start with the exact cell-averages z,; a; in (6.7); this amounts
to showing that

(6.8a) j+l/2 -’j+l/2(lg) + O(h2)
with a sufficiently smooth coefficient in the O(h2) term; here +1/2 is the numerical
flux (6.7b) computed with the exact cell-averages, and f+l/2(u) is (2.1b). We shall do
this in two steps" first we shall show that

(6.8b) fj+ll2(tl)-’1/2[f(L(Xj+l/2; ln))+f(L(Xo(Xj+l/2, 7"); an))]+ O(h2)
where Xo(X+l/2, z) is (6.5c), and then we shall verify that

(6.8c) 1/2[f(L(Xj+l/2; a"))+f(L(xo(x+l/2, r); a"))] =+1/2+ O(h2).
Special attention will be given to the smoothness of the O(h2) coefficients.

To show (6.8b) we start by using the trapezoidal rule to approximate the integral
in (2.1b); we get

(6.9a) fj+ll2(U)--1/2[f(u(xj+I/2, tn))+f(u(Xj+l/2, tn+r))]WO(h2).
The smoothness of the O(h2) term follows from that of f(u) and u(x, t). Next we
observe that a(x) in (6.4b) approximates a(u(x, t,)) to O(h2), and therefore we
can use the approximate characteristic line (6.5c) to trace u(x+l/2, t,+z) to

U(Xo(X+l/2, z), t,) with O(h3) accuracy; consequently

(6.9b) f(u(x+l/2, t, + )) f(u(xo(xj+l/2, ), t,))+ O(h3).

Finally we obtain (6.8b) by approximating u(x, t,) in (6.9a) and (6.9b) to O(h2)
by L(x; a") (see (4.4)). The smoothness of the O(h2) term in this approximation is
due to (4.4c):

S; h. u,(x, t,)+ O(h3).

(We recall that the degeneracy to first-order accuracy at local extrema points of some
"second-order accurate" TVD schemes is due to lack of smoothness there of the O(hE)
term in (2.7a).)

We turn now to verify (6.8c). First let us consider the case ti+l/2_-> 0:

L(Xj+ll2; an) uj +’Sj,

L(xo(x+l/2, r)" a")= u +
1 + (+,/,- _/)

s,

and expand the LHS of (6.8c) around aj’. We get

(6.10a)
f(a;)+l 1

2a(a;)(1 a’(a;)[(1 -/tj_1/2)2 + (h j+l/2)2] ( j)2 + O(h)

h2

=f+l/2+--(2h2a2-1)" a’. (ux)21.#+1/2 + O(h).
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Similarly in the case tj+l/2 O,
1 s;+,,

1 + A (nj+3/2 aj+l/2)
we expand the LHS of (6.8e) around ]+ to get

1
f(u+l)-a(u+,)(1 + A+3/2)+1

1
,( 2(6.10b) +a U+l)[(1 +A+3/2)2+(Afi+1/2)2] (S+1) +O()

h2

=h+/:+(2Aa:- 1). a’. (ux)Z[+/:+O(h3).

We see from (6.10a) and (6.10b) that independently of the sign of +1/2, the O(h2)
term in (6.8c) is the same, namely

h 2

1).

This completes the proof that the scheme (6.7) is second-order accurate in the sense
of (2.9) wherever u(x, t) is smooth, including local extrema and sonic (f’ 0) points.

Remarks. (1) The numerical flux (6.7b) can be rewritten as

(6.11) -[min (0, +,/2)" (1 + A+3/2) +,].
(2) Our proofthat the scheme (6.7) is nonoseillatory is based on the representation

of (6.7) as the cell-average (6.2) of the nonoscillatory approximate solution u,(x, t) in
(6.6). To ensure that v,(x, t) remains univalued for 0t we have to restrict the
time-step so that for all j

(6.12a) X+l/2() > x-1/2().
This implies the condition

(6.12b) max (-/2- +a/2) h.

On the other hand, to derive the paicular form of the numerical flux (6.7b) we have
made the assumption

(6.13a) [x+a/2()- x+/2[ < h for all j,

which implies the condition

(6.13b) max ]+/2[ < h.

The two time-step restrictions (6.12b) and (6.13b) are characteristic to Godunov-
type schemes. The practice of reconciling the two conditions by

max ]+/2l h/2
is completely unnecessary: The scheme (6.7), as the original Godunov scheme, remains
nonoscillatory (orD in the case analyzed in 10]) for the full CFL-restriction (6.13b).
The reasoning for this observation is as follows: The approximate solution (6.6) under
the CFL restriction (6.13b) may fail to be univalued in the jth cell only if _/2> 0
and +/< 0. In this case the numerical fluxes /2 as defined by cell-averaging in
the neighboring cells j 1, remain (6.7b). Thus the only thing that needs to be changed
in this case is the definition of u,(x, ) in the jth cell.
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(3) We observe that once ,n(x, z) is defined globally in (6.6) there is no intrinsic
need to average it on the original mesh. We may average it on different intervals and
still conclude that the resulting approximation is nonoscillatory and conservative.
Furthermore, the construction of the interpolant Q, the approximation L and the
approximate characteristic field ti(x) needed to define ,,(x, t), does not depend on
the uniformity of the mesh. Therefore the scheme (6.7) generalizes immediately to
nonuniform moving meshes. Of particular computational interest are the self-adjusting
moving grids of the type described in [12], which make it possibleto obtain perfectly
resolved shocks and contact discontinuities.

(4) We note that since the approximate solution v(x, t) in (6.6) is conservative,
it is possible to consider an associated random-choice method obtained by replacing
the cell-averaging in (6.2) by a sampling with respect to a variable that is uniformly
distributed in the cell, i.e.,

t,.+l l,,n(xj + O;h, ’r)
where 0’ is uniformly distributed in [-1/2, 1/2]. Following the reasoning of [7] it is clear
that the resulting random-choice method is nonoscillatory and that its limits are weak
solutions of (1.1). Although the random-choice approach has many attractive computa-
tional features, it has been our experience that in many applications it is possible to
accomplish the same computational goals with a self-adjusting moving grid. In this
case the use of the latter is preferable as it offers gain in resolution without a loss in
pointwise accuracy that is associated with sampling.

7. Numerical illustration.. In this section we compare the new uniformly second-
order nonoscillatory scheme of this paper (to be referred to as UNO2) to the typical
second-order TVD scheme (to be referred to as TVD2). Both schemes can be written
in the form (6.7), i.e.,

(7.1a) v+=/; A (j+l/2--j--1/2),
(7.1b)

f(v;)+aj+l/E(1-A(lj_l/E)S;/[l+A((lj+l/E-lj_l/2) if aj+u2--Of+/2= f(z’"+)-1/2f+/E(l+A+a/E)S"+l/[l+A(t+3/2-+l/2)] if t+/2-<0,
(7.1c) S= m(Sf Sf);

here ci2+/2 is (6.4a) and m(x, y) is the min mod function (3.3). S are difterent for
TVD2 and UNO2:

(7.2) TVD2: S d+/-l/2 v",
(7.3) UNO2" Sf d:+/-l/2 v" 1/2D+l/EV",
where di+/2 and Di+l/2 are defined in (3.2).

UNO2 and TVD2 are both second-order accurate Godunov-type schemes that
differ only in the reconstruction step (4.2a):

h
(7.4) L(x" u)= u+S(x-x)/h for ]x-x]<-2’
where the slopes of the lines are calculated by (7.3) and (7.2), respectively. Therefore
we start our comparison on the approximation level.

In Table 1 and Fig. 1 we present approximations to u(x)=sin rx, -1 -<_x-< 1. We
divide [-1, 1] into N equal intervals and define

2
(7.5) x=-l+j., O<-_j<=N.
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TABLE
Approximations to u x sin (Trx), --< x -< 1, with periodic boundary conditions.

N Q

10 1.545 10-2

20 1.971 x 10-3

40 2.476 x 10-4

80 3.104 x 10-5

L-ERROR

LUNO2

5.122 10-2

1.231 10-2

3.083 10-3

7.710 10-4

1.420 x 10-1

3.558 x 10-2

9.163 x 10-3

2.308 x 10-3

Q

1.494 x 10-2

1.802 x 10-3

2.148 x 10-4

2.617 x 10-5

L1-ERROR

LUNO2

2.467 x 10-2

5.576 10-3

1.355 10-3

3.351 x 10-4

/-’FVD2

7.016 x 10-2

1.525 x 10-2

3.902 x 10-3

9.787 x 10-4

-6.

FIG. l(a). Approximations of u sin rx, -1 <_- x <_- 1, with N 10. Piecewise-parabolic interpolant Q(x, u).

x

FIG. (b). Approximations ofu sin rx, -1 <_- x <_- 1, with N 10. Piecewise-linear approximation LUN2(x; u).
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x

FIG. l(c). Approximations ofu sin rx, -1 _-< x_- 1, with N 10. Piecewise-linear approximation LTVD2(x" U).

The symbols in Fig. 1 denote values of uj =sin rxj for N 10 in (7.5). In Fig. l(a) we
show the piecewise-parabolic interpolant Q(x; u) (see 3). In Fig. l(b) we show the
piecewise-linear approximation LtJN2(x; u) which is (7.4) with (7.1c) and (7.3). In
Fig. l(c) we show the piecewise-linear approximation LaWD2(x; u) which is (7.4) with
(7.1c) and (7.2). We make the following observations regarding Fig. 1: (i) Q is a better
approximation than LuN2; LtN2 is a better approximation than LawD2. (ii)
TV(LtsN2) > TV(u) > TV(LrVD2). In Table 1 we quantify the first observation; we list
the L-error and the Ll-error of these approximations to sin 0rx for a refinement
sequence of N= 10, 20, 40, 80 in (7.5). Clearly Q is an O(h3) approximation, while
Ltin2 and LrvD2 are O(h2). The error in Ltin2 is about a of the error in LawD2.

In Table 2 and Fig. 2 we present solutions of UNO2 and TVD2 for the constant
coefficient case

(7.6) u,+ux=0, u(x, 0)=sinrx, -1-<_x=<l,

with periodic boundary conditions, at 2 with -/h 0.8. Figures 3(a) and 3(b) show
UNO2 and TVD2, respectively, with N 20 in (7.5). In Table 2 we list the Loo-error
and Ll-error for a refinement sequence with N 20, 40, 80, 160. Clearly UNO2 is
second-order accurate in both Lo and L1, while TVD2 is second-order accurate in L
but only first-order accurate in Loo. Figure 3(b) demonstrates that the degeneracy to

TABLE 2
Numerical solutions ofu, + u O, u(x, O) sin rx, _-< x _-< at 2 withperiodic boundary

conditions and ’/h 0.8.

N UNO2

20 7.097 x 10-3

40 1.607 x 10-3

80 3.870 x 10-4

160 9.201 x 10-5

Loo-ERROR

TVD2

8.119x 10-2

3.477 x 10-2

1.453 x 10-2

5.975 x 10-3

L-ERROR

UNO2

8.944 x 10-3

2.044 x 10-3

4.926 x 10-4

1.172 x 10-4

TVD2

6.778 x 10-2

2.033 x 10-2

5.626 x 10-3

1.528 x 10-3
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X

(a)

x
(b)

FIG. 2. Numerical solutions ofut + Ux O, u(x, 0) sin zrx at 2, with N 20 and /h 0.8. (a) UNO2.
(b) TVD2.

first-order accuracy at local extrema in the TVD scheme adversely affects the accuracy
everywhere. (Because the scheme is TVD it cannot switch abruptly to second-order
accuracy as this would introduce oscillations; consequently it takes quite a while to
recover the second-order accuracy.)

Next we approximate the discontinuous function

-x sin (3rx2/2), -1 <x <-,
(7.7) u(x) Isin (2x)l, Ixl <,

2x- 1 - sin (3 rx), < x < 1,

which we extend to have period 2 outside [-1, 1].
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In Fig. 3 we present approximations to b(x), using N 20. Figure 3(a) shows
Q(x; a), Fig. 3(b) shows Ltr-(x; a), and Fig. 3(c) shows LrVD2(x; a). We again
observe that Q is a better approximation than LuN2, while LtN2 is a better approxima-
tion than LrvD2.

In Fig. 4 we present solutions of UNO2 and TVD2 for the constant coefficient
problem (7.6), initial data given by (7.2), and periodic boundary conditions. We take

2 and z/h =0.8. Figures 4(a) and 4(b) show UNO2 and TVD2, respectively, with
N =40. Figure 4(b) shows the damping effect that the TVD scheme imposes due to
its degeneracy to first-order accuracy at local extrema.

In Fig. 5 we solve the same problems, except we impose boundary conditions. At
x -1 we impose the given function (7.7) evaluated at -1 t. No boundary conditions
are imposed at x 1. We implement this numerically using UNO2 and TVD2 except

FIG. 3(a). Q(x; 3) for u given (7.7) with N 20.

x

FIG. 3(b). LUN2(x; i) for u given by (7.7) with N 20.
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FIG. 3(c). LTVD2(x; 1]) for U given by (7.7) with N 20.

Oco,

FIG. 4(a). Numerical solution of ut +Ux=0, u(x, O) defined by (7.7) at 2 with periodic boundary
conditions N 40 and /h 0.8, using UNO2.

at the boundary points. There we are, in general, unable to construct nonoscillatory
piecewise-parabolic interpolants Q(x, ), so we construct the only possible parabolic
interpolant through xi, xi+l and the point to either the left or right which lies in the
region. The analogous procedure is carried out at the reconstruction stage. Figures
5(a) and 5(b) again show the results at 2 with -/h 0.8.

The possible introduction of oscillations through the boundary conditions does
not seem to have degraded the performance of either scheme (in fact the opposite is
observed). Again the TVD2 scheme shows a damping effect.

In Table 3 and Fig. 6 we present results for Burgers’ equation

(7.8) u, + UUx =O, u(x, O) a +sin r(x + fl), -l_-<x_<-l,
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FIG. 4(b). Same as Fig. 4(a) using TVD2.

x

FIG. 5(a). Same as Fig. 4(a) except with given data at x =-1, and outflow at x 1.

with periodic boundary conditions and "r/h(l+[al)=0.5. The solution to (7.7) is
smooth for < 1/r; at 1/r it develops shocks. In Table 3(a) we list the Loo-error
and Ll-error of UNO2 and TVD2 at =0.15 for a =/3 =0 in (7.7). This table shows
the same asymptotic behavior as Table 2, except that because of the large gradients it
shows for a smaller h.

In Figs. 6(a) and 6(b) we show results of UNO2 and TVD2 for (7.8) with a--2
and/3 1 at =0.35 with N=20. In this case the solution to (7.8) develops a shock
moving with speed 2 beginning at time 1/r 0.318.

In Table 3(b) and Figs. 6(c) and 6(d) we repeat the previous calculations for the
schemes (2.13):

(7.9a) ui+l //j " (fj+l/2--Jj--’/2),
(7.9b) f+,/2=f(v,,(X+l/2, /2))=f(L(Xo(X+l/2, r/2), v"))
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X

FIG. 5(b). Same as Fig. 4(b) except with given data at x =-1, and outflow at x 1.

TABLE 3(a)
Numerical solutions ofut + UUx O, u(x, 0) sin rx, at 0.15 and ’/h 0.5 UNO2 and

TVD2.

N

20
40
8O
160

Lo-ERROR L1-ERROR

UNO2

1.890 x 10-2

5.712 x 10-3

1.552 x 10-3

3.985 x 10-4

TVD2 UNO2

2.238 x 10-2 1.090 x 10-2

1.054 x 10-2 3.034 x 10-3

4.422 x 10-3 7.771 x 10-4

1.837 x 10-3 1.965 x 10-4

TVD2

1.854 x 10-2

5.051 x 10-3

1.340 x 10-3

3.621 x 10-4

TABLE 3(b)
Same as Table 3(a) for FNO2 and FVD2.

N

20
4O
8O
160

Lo-ERROR

FNO2

6.938 x 10-3

1.050 x 10-3

5.106 x 10-4

1.251 x 10-4

FVD2

2.091 x 10-2

1.054 x 10-2

4.424 x 10-3

1.837 x 10-3

FNO2

3.726 x 10-3

8.869 x 10-4

2.163 x 10-4

5.270 x 10-s

L1-ERROR

FVD2

1.322 x 10-2

3.835 x 10-3

1.072 x 10-3

2.946 x 10-4

N

20
4O
8O
160

TABLE 3(c)
Same as Table 3(a)for ANO2.

Loo-ERROR

2.249 x 10-2

6.623 x 10-3

1.781 x 10-3

4.597 x 10-4

L1-ERROR

1.221 x 10-2

3.243 x 10-3

8.259 x 10-4

2.079 x 10-4
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where Xo(Xj+l/2, z/2) is (6.5c), i.e.,

(7.9c)

1 ;t (a+,/: + d_,/:)/2 )f J " 1+h(d+l/2-d-l/2)/2" S;

f r’j+l-"

if j+l/2 O,

if t+1/2 -< 0.

As we have remarked in 2, v;+ in (7.9a) is not a cell-average of v,(x, z), but
only an approximation to it. Therefore it is not necessary to take d+/2 in (7.8c) to be
(6.4a). We choose d+/2 so that (7.9c) is continuous at d+1/2=0
(7.9d) j+1/2 [f(Pj+l,-Sj+l) -f( vj +Sj )]/[( V+l ’Sj+l) (/j -[" 1/2S;)].

X

FIG. 6(a). Solution to (7.8) with ce 2, fl= 1, CFL= .5, N 20, at =0.35 using UNO2.

u

x

FIG. 6(b). Same as Fig. 6(a) using TVD2.
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x

FIG. 6(c). Same as Fig. 6(a) using FNO2.

x

FIG. 6(d). Same as Fig. 6(a) using FVD2.

We denote the schemes (7.9) with S7 defined by (7.1c) and either (7.2) or (7.3)
by FVD2 and FNO2, respectively. We note that (7.9) is identical to (7.1) in the constant
coefficient case, and consequently FVD2 and FNO2 are nonoscillatory in the constant
coefficient case. Figures 6(c) and 6(d) show that FNO2 and FVD2 are also nonoscilla-
tory in the case (7.8). Furthermore, Table 3(b) shows that FNO2 is much more accurate
than UNO2 (FVD2 is about the same as TVD2).

In all previous examples we have presented pointwise calculations; namely, we
have initialized the numerical solution by taking to be the value of the initial data
at xj, and we have considered v to be an approximation to u(xj, tn). (Surely this is
an acceptable practice for second-order accurate schemes.) In Table 3(c) we repeat
the calculation for UNO2 in Table 3(a), but now in a sense of cell-averages and denote
it by ANO2. Now we initialize UNO2 for (7.8) with a =/3 =0 by cell-averages of the
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initial data, i.e.,

1 sin rh/2)
(7.10a) 5.= --[cos (Trxj+l/2)-cos (Trxj_l/2)]

(rh/2)
sin (rx),

and regard , to represent cell-averages of u(x, t,). To obtain a pointwise approxima-
tion to u(x, t,) we first compute point values V’+1/2 of its indefinite integral u"(x/l/2)
xj+’/2 u (y, t.) dy byxo

J
(7.10b) V’+1/2 h Z ".

i=

Next we obtain a global piecewise-linear approximation u(x, t,) to u(x, t,) by

d
V,(7.10c) u(x, t,)=xx 0(x;

where Q is the piecewise-parabolic interpolant of 3. Finally we get

d
V"

1
(7.10d) ,(x, t.)=-xQ(X, )=( Vjn/l/2 Vjn__l/2)--

Thus the only difference between ANO2 in Table 3(c), and UNO2 in Table 3(a)
is the initialization (7.10a), which itself differs only slightly from the mesh values of
the initial data (since sin (rh/2)/(rh/2)= 1-(rh/2)2+ O(h4)).

We remark that cell-averages do play a significant role when the initial data is
discontinuous (since they provide information about the location of the discontinuity)
and in higher-order Godunov-type schemes; this will be described elsewhere.

We turn now to present calculations with a formal extension of UNO2 and TVD2
for systems of conservation laws. We consider a Riemann problem for the Euler
equations of gas dynamics

(7.11a) ut+f(tt)x=O, U(x,O)-- uL’ xO,
( tR, X>0,

(7.11b) u=(p,m,E) T, f(u)=(m, m2/p+P,m(E+n)/p) T,
(7.11c) n (y- 1)(E -1/2m)/p).

Here p, m, E and P are the density, momentum, total energy and pressure, respectively;
we take y 1.4.

In the following we apply the extension technique of [3] to UNO2 and TVD2.
The idea is to extend UNO2 and TVD2 to systems in such a way that will be identical
to (7.1) in the scalar case, and will decouple into (5.3) for each of the characteristic
variables in the constant coefficient system case. To accomplish that we use Roe’s
averaging for (7.11) (see [13])

(7.12a) /’j+l/2-- V(/;,/;+1)
for which

(7.12b) f(u+)-f(,)=A(uj+l/E)(U+l-U), A(u)=Of/Ou,

and define local characteristic variables with respect to the right-eigenvector system
/l/2Sk=l of A(’/1/2). We extend (6.11) to systems as follows"

(7.13a) u’+ --/ (fj+l/2--.fj--1/2),
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X

(a)

x
(b)

FIG. 7. Numerical solution of density in a Riemann problem for Euler’s equations. (a) UNO2. (b) TVD2.

(7.13b) fj+/ - f(r. +f(vj+) c+/_Rj+/
k=l

(7.13c)

Here k
aj+/2 is the kth eigenvalue of A(pj+I/2) corresponding to R+1/2, and d+l/2W

denotes the component of dj+l/2, uj"+l- , in the kth characteristic field, i.e.,

3

(7.13d) dj+l/2 p k k
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x

(a)

x
(b)

FIG. 8. Numerical solution ofvelocity in a Riemann problemfor Euler’s equations. (a) UNO2. (b) TVD2.

^kLikewise Sj denotes the component of the vector of slopes in the kth characteristic
field, and is defined as follows:

(7 13e) ; m(Sk k_,,, S+,)/[1 + A (J+,/2

m(x, y) is the min mod flnction (3.3). sk:e.,j are different for VD2 and NO2:

(7.14) TVD2: sk d+l/EW,
k(7.15) UNO2" sk+/-,j d+l/EW:F-Dj+l/EW;

kDk+/-,/2w m(aki+3/2w- d,+l/2W, dki+l/2W- dk-,/2w).
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x

(a)

x

(b)

FIG. 9. Numerical solution ofpressure in a Riemann problemfor Euler’s equations. (a) UNO2. (b) TVD2.

In Figs. 7, 8 and 9 we show numerical solutions of UNO2 and TVD2, respectively,
for the Riemann problem (7.1b) with

U (1, O, 2.5) U (0.125, O, 0.25).

These figures demonstrate that the formal extension to systems is nonoscillatory in
this case. Since the solution to the Riemann problem is just constant states separated
by waves we do not get to see here the extra resolution power of UNO2, except that
its numerical solution is somewhat "crisper" than that of TVD2. In this calculation
we have not employed any artificial compression in the linearly degenerate field and
therefore the contact discontinuity smears like n 1/3, as expected. The interested reader
is referred to [4], [5] and 10] for a detailed description of such compression techniques,
as well as for details of entropy enforcement mechanisms.
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