Available online at www.sciencedirect.com

crenon Goimeor- WAVE
¢ MOTION

www.elsevier.com/locate/wavemoti

ELSEVIER Wave Motion 42 (2005) 274—284

On new relations in dispersive wave motion

G. Herrman®, R. Kienzle®*

2 Stanford University, Division of Applied Mechanics and Computation, CA, USA
b University of Bremen, Department of Production Engineering, Germany

Received 11 November 2004; received in revised form 14 March 2005; accepted 31 March 2005
Available online 24 May 2005

Abstract

Based on Whitham'’s variational approach and employing tkel4ormalism for dispersive wave motion, new balance and
conservation laws were established. The general relations are illustrated with a specific example.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Dispersive waves; Conservation laws; Balance laws

1. Introduction

Whitham[1,2] has developed a variational approach to study linear and also non-linear wavetrains and its many
ramifications and applications in a variety of fields, including modulation theory.

The essence of Whitham’s approach consists in postulating a Lagrangian function for the system under con-
sideration, specializing this function for a slowly varying wavetrain, averaging the Lagrangian over one period
and, finally, to derive variational equations for this averaged Lagrangian. Since the average variational principle is
invariant with respect to a translation in time, the corresponding energy equation was derived, and since it is also
invariant to a translation in space, the “wave momentum” equation was also established. Kienzler and Herrmann
[3] have shown that the two relations may be derived also by calculating the time rate of change of the average
Lagrangian and the spatial gradient of the same function. It is also possible to obtain the energy equation and the
three “wave momentum” equations through a simple operation by applyingréldeoperator in four dimensions
of space-time. This has been carried out for elastodynamics by Kienzler and Helfthann

The purpose of this contribution is to consider not onlydhed operator as applied to the average Lagrangian,
but additionally also theiv andcurl operator, which has not been done before.
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Sectior2 summarizes the basic relations of the problem at hand as presented in Whitham, Kienzler and Herrmann,
while SectiorB presents new results stemming from the application afithandcurl operators. Sectiofdiconcludes
with a brief summary and some general comments.

2. Whitham’s variational approach

: ; o : ; : - I 0
Whitham’s variational approach begins with postulating a Lagrangian L (qb, —a—‘f, Tﬁ) for any system
governed by a dependent variable ¢(t, x;) wheret is the time and; are Cartesian coordinates. For linear systems,
L is a quadratic function ap and its derivatives.

Next a slowly varying wavetrain is considered
¢ ~ aw(0 + n), (2.1)

wherea is the amplitudey the phase shifting angle afds the phase

G(Xi, t) = x;k; — ot, (22)
wherek; is the wave numbek; = % andw the frequencyp = —%. This form is substituted into the Lagrangian
L, derivatives ofg, n, ® andk; are all neglected as being small and the result is averaged over one period

1 2
L= —/ L do. (2.3)
2 0
For any linear system, the resultidgis a function

L= L(w, ki, a), (2.4)
or, more specifically,

L = G(w, kj)d?, (2.5)
where

G(w, k) =0 (2.6)

is the dispersion relation.
Whitham proposes then an “average variational principle”

90 90
8/£(—,,a> drdx; =0 (2.7)
ot ox;
for the functionsa(x;, t) ando(x;, t).
Since derivatives oh do not occur, the Euler—Lagrange variational equation for this variable is merely
L
da

while the variational equation faris

0, (2.8)

3 L _,.i L =0, (2.9)

at PYE 4 90
ot 5% ox; g%
ot 0x;
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d [dL 9 (oL
—|(—=)]-—=—=—1]=0. (2.10)
ot \ dw ox; \ ok;
This conservation equation has become known as the conservation of “wave action”. According to Whitham, it plays

a more fundamental role than energy. Additionally, the consistency equations for the existér(oaejrability
conditions) require

or

ok; Jdw
— 4+ = =0, 2.11
ot + 0x; ( )
ki ki _ o, (2.12)
3Xj 8xi

Whitham then invokes Noether’s theorem, which briefly states that there exists a conservation equation corresponding
to any group of transformations for which the variational principle is invariant. Invariance with respect to a translation
in timet leads to the energy equation in the form

d d d d
— (a)ﬁ — L) + — <—a)£> =0. (2.13)
ot ow ij 3kj

Herea)% — L is the total energy (Hamiltonian) amgk,fj is the flux.
Invariance with respect to spageresults in

3 [ oL 3 AL
—(k— ) +— (—ki—+L8; ) =0, 2.14
ar ( ’aw> + ax ( "ok, + ”) 2.14)

wheregj is Kronnecker’s tensor of unity. This is called the “wave momentum” equation.

In [3] it was shown, that the energy E@.13)may be established by considering the time rate of chandg of
i.e.,dL/0t and the “wave momentum” E@2.14)may be derived by considering the spatial gradisiytox; .

The complete set of four conservation equations may be obtained by the applicationgohdheperator in
space-time, as it was shown[#j.

Itis to be noted that for non-uniform and non-linear waves neither the energy equation nor the wave momentum
equation remain conservation laws, since both have to be supplemented by source terms and thus become balan
laws. By contrast, the wave action relation always remains a conservation law.

3. 4 x 4 Formalism, application of grad

In order to introduce the # 4 formalism we agree upon that greek indices have the range 0, 1, 2, 3 whereas latin
indices have the range 1, 2, 3 as before. Further we introduce the four coordipates

= {Cot’ 3.1)

)Cj.

The velocitycy is used to render the dimension of the coordinates equal. It may be chosen arbiyarilyn/s,
Co = velocity sound, or a characteristic wave speed, etc. In the theory of relatjvityist be equal to, the velocity
of light. Partial derivatives of a dependent variable with respect to the independent variables (coordinates) are
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abbreviated by a comma followed by the index of the coordinate
a0 100 1

- - 7()!
() oxg ¢ Ot co
— =0, = 3.2
e =00 (32)
3)6] '
Accordingly, we introduce the phaseas
0 =kux, (3.3)
with the four-vector of wave numbers
ko= ——,
ky = Y (3.4)
kj.
With (3.4), Egs.(3.3)and(2.2) coincide. Finally, the derivatives of the phase are
970 = _gv
0,, = co (3.5)
0,; =kj.
With (3.5), the averaged Lagrangiah(2.3), (2.4)is a function of9,,
L = L(6,,) (3.6)
The partial derivatives of with respect td,,, are then calculated to be
8£ - Eva)’
— L, =1 3.7)
30, w L.

The Euler—Lagrange equation appertaining®) is thus written in a very compact form
(L.6,)n =0. (3.8)

With (3.7)and(3.2) it is easily seen that the Euler—Lagrange Equaf®B) coincides with the conservation of
wave action(2.10)
Next, we examine the four-gradient of the Lagrangian

L d
df = — = —(§,L). 3.9
gradl = 5 = 2 (8,L) (3.9)
Using(3.6) and integration by parts leads to
AL 30,,
s — =La 6’1) = E, 971} LY/ Ev ) 071)' 310
v 39,” ax, 0Yvu ( 6 ) I ( 9) " ( )
Due to(3.8), the last term on the right-hand side(8t10) vanishes an@3.10) can be rearranged wii(3.9) to
the form

(‘C(S;w - £399sv)su = 07 (311)

which is a conservation law in space-time. The quantity in parentheses is usually designated in field theory as the
energy—-momentum “tensor” or material-momentum, cf. 5]

Tow = L8y — Lo, 0.1 (3.12)
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It may be mentioned that this “tensor” is not invariant in space-time, i.e., Lorentz invariant but rather only Galileo
invariant.
Due to(3.11) 7,., is divergence-free.

nv,u =0 (313)

Equation(3.11)is valid only as long a£ depends on the parametexsthrough the functionsg,, only. If £
depends omy explicitly, (3.11)differs from zero by terms involving the explicit derivatives®fvith respect to.
The material behaviour of the system under consideration is then either time-dependent or inhomogeneous.

Exploring the physical interpretation of the conservation (@ 3)we consider first the component 0. Using
(3.1)—(3.5)and(3.7)leads to

1[0 d
Too., = L,p— L (wl,..)| =0, 3.14
10, co I:at (a) ) ax.,‘ (0) k]):| ( )

which is identical with the conservation-of-energy equation givégR.ih3) Proceeding similarly with =i we arrive
at the wave momentum E(R.14)

a d
77”,“ = |:8t(ki£,w) + gj(ﬁsj'[ — k,’ﬁ,kj):| =0. (3.15)
Thus, the application offrad in space-time delivers both conservation of energy and conservation of wave
momentum.
With (3.14)and(3.15)the components of the material-momentum tensofre

Too=L—wl,,=—H Hamiltonian or total energy
1 1
Tio=—wLl,, =—S8; field intensity or energy flux
o= by =5 y ay (3.16)
Toi = cokiL,,, = —coR; field-momentum or wave-momentum density
Tii =L — k,ﬁ,k_/. =—-Bj material-momentum or Eshelby tensor

All quantities are understood as average quantities in the spi 8f With (3.16), Eq.(3.13)can be rewritten
as

1

-——H —-3Sii) =0,
<o

—(Rj +Bji.j) = 0.

,Ew,u = (317)

Concluding this section it may be mentioned that@gLO)reveals a further possibility to derive the conservation
laws treated so far. By multiplying the Euler—Lagrange ), with the phase derivativg, leads after rearranging
to (3.11)along solutions of3.8), i.e., multiplying conservation of wave acti¢2.10)with » delivers conservation
of energy whereas multiplying witk delivers conservation of wave momentum. Obviousiandk; play the role
of integrating factors and the resulting conservation laws are first integrals of the wave-action equation. A deeper
discussion of this matter and its connection to the Neutral-Action Method introduced by Honeifbgtrady be
found in[3].

4. New relations

Since the application of the standard vector operatgi@u to the LagrangiarC delivers conservation laws, it
seems to be intriguing to explore whether or not the application of the vector operditi@micurl lead to further
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conservation laws. The operatalig andcurl are to be applied to vectors (or tensors). Followiigthe appropriate
vector is expected to be, L.

4.1. Application of the div operator

First let us consider the divergence of the veatof. We have

B(XVC) zaﬁ+x1,%, (41)
oxy 0xy

wherea = 4§y relates to the dimensionality of the problem. If we consider three spatial coordinates and the time
coordinateg is equal to four. Witl{3.10)and(3.8)the quantityoL/dx,, may be replaced bﬂe,,ﬂ,u), « andinstead

of d(x,L)/dx, we used(x,s,,L)/dx,. Rearranging4.1) in this way and integration by parts where appropriate
leads with(3.12)to

L0, O)op = (o L)y + 0L = [¥0(Lat O = L8] s = L, 01800 + 0L

= [-xTuw] o — Z,9,,0.p+0aZ=0 (4.2)

If the Lagrangian is a homogeneous function of degree?, ,, i.e., if

aL
L=—"109, 4.3
"= e, " (4.3)

holds, and since

(‘Cae,ﬂ)ealu = (‘C’Q,He)’ﬂ
along solutions of the Euler—Lagrange E8.8), Eq.(4.2)is rewritten as

n—uo
X0 Ty — " 9[:,9,# w=0 (4.4)
The vector
n—o
Vi =x,T — eﬁ,g,ﬂ (4.5)

might be called the virial of the systejm,8]and its divergence vanishes
Vuu =0. (4.6)

The resulting conservation law can be transformed into the more usual form by em{@ying(3.5) (3.7) and
(3.12) In addition, we assume linear elastic behaviow2 ande =4. The result is

0
i

[t(wﬁ,w - L)— (Xjkj +0)L, a)] " [(ta) - 9)[,,/{[, + Xj(ESij — kj[’vk,')} =0. 4.7)

ad
ot
On checking Eq(4.7)we use(3.5) and the product rule where appropriate, and arrive at

d ad d a0
_2 - - i YK; . r - - 5 YK; - / . j ' a_ i. - j IK;
(2L — oL, — kil,y,) + 1 [8t(w£ L) ™ (0L k,)] Xxj [at(kjﬁ )+ ™ (L8i; — kL)

a ad
0| 2e) -~ (e =0 9
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Since it was assumed that the Lagrangian is homogeneous of grade 2, the first brél&tahishes due to
(4.3). With the remainder of E(4.8)we arrive at the stateme(.1)

¢t times conservation of energy
minus x; times conservation of wave momentum
minus 6 times conservation of wave action
equals «a divergence-free expression

(S.1)

4.2. Application of the curl operator

Thecurl operator in space-time makes use of the completely skew-symmetric permutatioretgns@f rank
4,
Applying curl to the vectorr, £ and use 0{3.10)with (3.8)results in

Eaﬁuv(xu»c)au = 8aﬂuu(5vkxu»c)ax = Eaﬁuv((guvﬁ + xp,»cvv) = Eafuv I:x/_,l,(ﬁve,keal})a)\, + Csuv}

= Eafuv [(X;Lﬁ’e,ﬁ,u),x - (ﬁ,e,,ﬁ»v - Ea/xv} (4.9

Rearrangment leads to
Eappv [Xu(L8rw = L19,0,0)] 1 = apur(L8uy — Lg, ,0,0), (4.10)
or, with (3.12) to a more compact form
v (X Ton)sn = appvTpv- (4.11)

It turns out that the application of tleirl operator leads to a conservation law only if the material-momentum
tensor7,, is symmetric, i.e.J,, = 7,,, which is generally not satisfied. Exploring the physical significance of
(4.10)and(4.11)further, we return to the usual notation in the same manner as shown above. We have to distinguish
between two cases, namely

Caseaw =k =1

a 1 d 1
& Cotkj,c,w + ;OXj(wﬁ,w — ﬁ):| + a |:C()t(£5,'j — kj£7ki) - ;OXj(wE,ki)

1

1 1
= Cokjﬁ,w - —a),C,kj = —(CoRj + ij). (4.12)
o 0

Thus, rotation in space and time results in a balance rather than a conservation laws. The right-hand side is eque
to the negative sum of field momentum and field intensity appropriately scaled by the characteristic gglocity
Applying the product rule of differentiation where approprigte12)is transformed to

a a 1 a a
— (kL) + —(L8ij — k; L.y, —xj | =(wLl,p, — L) — — (0L,
cor | 505 £a) + 568 = )| + 2oy | 0 = 0 = S0 )

1
—coRj — C—Sj = divergence (4.13)
0
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which leads to the stateme(8.2)

cot times conservation of wave momentum
plus  x; times conservation of energy
minus the sum of field momentum and field intensity
equals a divergence

(S.2)

This divergence generally does not vanish. Note the interchange of conservation of wave momentum and energy
and the change in sign between the statem@tigand(S.2)

Caseb:x=0,8=k

d ad

P [(xjki — xikj)ﬁ,w} + aTc, [xj'(ﬁ&i — kiﬁ,k]) — x,‘(ﬁ(slj — kjﬁ,kl)} = E’kikj — ﬁ,kjki. (4.14)
The right-hand side g#.14)vanishes for isotropic materials, i.e., if the wave speed is direction-indepg@fient

and it turns out that rotation in space (while keeping the time axis fixed) leads to a conservation law for isotropic

materials. On checkin@#.14)by differentiation as above yields the statem &8}

xj times conservation of wave actionin— direction
minus x; times conservation of wave actionir-direction (S.3)
equals a divergence-free expression

4.3. Example

As afirst simple example we consider wave motion in a one-dimensional, linearly elastic bar on a linearly elastic
foundation, with Young’s modulug, cross-sectional ared, densityp, mass per unit of lengtjy = pA, spring-
stiffness per unit of lengtl8 and axial displacement A prime indicates differentiation with respect to the axial
coordinatex and a dot indicates differentiation with respect to time. The Lagrarigiamiven by[2]

1. 1
L = Zpi® — ZEAu'® — B, (4.15)
2 2

After proper adjustment of the consta(#,15)may also be identified as the Lagrangian of the Klein—Gordon
equation of quantum mechanics.

The averaged Lagrangiahfollows to be

1
L= Zaz(,ua)z — EAK? — B), (4.16)

the term in parentheses being the dispersion relation of the system. With elastic foundatidnthe system is
dispersive, without it g = 0) the system is non-dispersive. The Euler—Lagrange equation or conservation of wave
action is

o + EAK = 0. (4.17)

As a second example we consider wave motion in a one-dimensional, linerarly elastic beaandlx as
before, second moment of inertiand transverse displacementAs mentioned a prime indicates differentiation
with respect to the axial coordinateand a dot indicates differentiation with respect to time. The Lagrarigian
given by[2]

1 1
L= i - éE](w”)2 (4.18)
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and the averaged Lagrangidrfollows to be
1
L= Zaz(uwz — EIK%), (4.19)

the term in parentheses being again, the dispersion relation of the system. The Euler—Lagrange equation or conse
vation of action is

o + 6EIKk' = 0. (4.20)
The components of the material-momentum teri8d6)for this two-dimensional; t) setting are identified as

Too=L —wL,, =—H,

Ti0 = %wﬁ,k = C%S,

(4.21)
To1 = cokL,, = —coR,
Ti1=L—kL,; =—B.
Thegrad operator leads to two equations that correspor(@.tb4)and(3.15) namelyv=0:
1 1
co co
or
H -8 =0, (4.23)
which states that energy is conserved, ardL:
1
—Tor + T'11=(KL.u) + (£ = kL) =0, (4.24)
0
or
H +B =0, (4.25)

which states that wave momentum is conserved.
The dimensionality of the problem under consideratioa #2 and the degree of homogeneitynis 2. Thus
a—nin (4.4)is equal to zero and thdiv operator yields

(L, — L) — xkL,o] — [twLl.; + x(£ — kL.,)] =0, (4.26)
or
[tH + xR] — [tS — xB])/ = 0. (4.27)

The term in the first bracket might be identified as the energy—field momentum Vii@calar moment), while
the term in the second brackets is the material momentum-energy flux (field intensity)Wirielg.,

Vy+ V| =0. (4.28)

Thus, the time rate of change of the virldj is balanced by the spatial rate of change of the visal
The application of the product rule of differentiation verifies the well-known fact that the Hamiltéhequals
the negative of the material ford®in one-dimensional problems of elastic[8].
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Thecurl operator involves the permutation tensqy of rank two and only rotation in space-time is possible.
The corresponding equation (4.12)is

I 1 ' 1 / 1
—cotkL,, — —x(@L,, — L')} + [—cot(ﬁ — kL) + —x(wL,;)| = —cokLl,, + —wLl,, (4.29)
lely) o €0

or

17 1) 1
cotR — X’H:| + [CotB + S:| =coR + —S, (4.30)
L co cox co
which is, as mentioned above, a balance rather than a conservation law. The first term in brackets might be labelled
as the energy-field momentuwurl —Cgp, as the second term in brackets is the material momentum energyufiux
Ci1. The right hand side represents the negative of the sofmmaterial momentum density and the energy flux.
Thus

Co+Cl=—c (4.31)

which states that the sum of the time rate of change of theCguathd the spatial rate of change of the ati] is
not vanishing, but is rather balanced byg. Note again the chiasmus betweRn~ H andS < B and the change
in sign betweer{4.27)and(4.30)

5. Conclusions

Based on Whitham’s variational formulation of dispersive wave motion, it has become possible to extend his
conservation laws of “wave motion”, “energy” and “wave momentum”. While Whitham’s approach to establish the
latter two laws was based on the application of Noether’s theorem, it was shown here that they in fact can be obtained
by subjecting the average Lagrangian to the operatoraafin four-dimensions of time and three-dimensional space
as this is done in the theory of relativity. Developments were restricted to linear problems and a four-dimensional
“Lagrangian vector” was subjected to two further standard operatativ @hdcurl. In the first of these two cases
a conservation law for the “wave virial” was derived, while in the second case merely a balance equation for the
“wave curl” was obtained because it did not appear possible to remove a non-vanishing source term, when rotation
in space and time was considered. Rotation in space, while keeping the time axis fixed, led to a conservation law
for isotropic materials. To illustrate the general relations, two two-dimensionglXjirexamples were presented.

It is recalled that thgyrad operator (translation) leads in fracture mechanics taltheegral, thediv operator
(self-similar expansion) yields thd-integral and theurl operator (rotation) results in theintegral, as discussed
in [3,4].

Whitham has shown that his variational formulation of dispersive wave motion for linear uniform problems may
be extended to non-uniform (non-homogeneous and/or time-dependent) media and also to non-linear problems.
It would indeed be a tempting task to extend the essential contents of the present contribution along those two
directions and the authors intend to tackle this task in the near future.

As regards the value and usefulness of conservation and balance laws in a general way, reference may be made t«
an evaluation of such laws by OIM&]. It may suffice to mention here the applicability of conservation (and balance)
laws in numerics. Being incorporated into various algorithms, the accuracy of the numerical results can be validated
by checking whether or not the conservation laws are satisfied identically. If the equations are not satisfied, so-called
spurious material nodel forces occur in finite-element calculations, which can be used to improve the finite-element
mesh by shifting the nodes in such a way as to eliminate the spurious forces, cf.[BouMuller and Maugin
[11], Steinmann et a[12].
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