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A, STATEMENT OF THE PROBLEM STUDIED

1. Motivation

The importance of conservation laws is widely recognized in many fields of physics
and mechanics. Conserved quantities such as mass. energy., momentum and angular mo-
mentum are fundamental in classical and modern physics. They provide insights into the
behavior of various systems, ranging from dynamic of rigid bodies to continuum physics.
In the theory of elasticity, conservation laws represented as path-independent integrals
(such as J, L and M) have captured the interests of many researchers (see, for example,
(71, (8] ,[9] ,(10] and [14]). These integrals contribute significantly to the study of fracture
and defects. Conservation laws may also be useful in the improvement of algorithms in
numerical solutions, the establishment of global existence and uniquencss theorems, the
study of stability of solutions, the investigation of phase transformation and the reduc-
tion of the order of the governing equations for different systems considered. Since there
are numerous applications for conservation laws. it is of considerable interest to develop
methodologies for obtaining these laws and to apply them to various systems of practical

mterest, including dissipative systems.

2. General Background

Mathematically, a conservaticn law of a physical system with four independent. vari-

ables. x, y. z and ¢, for example. is an equation of the form
Di\'P:DAADJ'"%'D:/PU“’FD:P:'FDIP! (1)

where P = (P, Py. P.. P;) is a vector function that depends on the independent variables.
the dependent variables and derivatives of the dependent variables of the system. Here

D; designntes a total derivative operator. Physicatly. a conservation law states that the




rate of change of P, inside any spatial domain is equal to the nct flux of the “currents”
(P, Py, P.) through the surface of the domain. In the special case of systems with only
one independent variable, conservation laws lead to quantities which are constant on the
solution manifold.

Based on variational principles, Noether's first theorem provides a method to estab-

gian

lish conservation laws for Lagrangian systems. i.e.. for systems possessing a Lagrang

function and, therefore, governed by the associated Euler-Lagrange equations. While pro-
viding a condition for existence of conservation laws. Noether's theorem by itself does not
offer an explicit method for constructing divergence-free exp:essions. However, if one com-
bines Noether’s theorem with Lie group theory, a systematic procedure for constructing
conservation laws for Lagrangian systems becomes available [2], [15] and [16].

While providing a direct procedure for obtaining conservation laws, Noether’s theo-
rem 1s applicable only to Lagrangian systems. In 1921, Bessel-Hagen extended Noether's
theorem by introducing the concept of divergence symmetries, however, his generalization
also operated only in realm of Lagrangian systems

Several isolated attempts have previously been made with the aim of deriving consc: -
vation laws for dissipation systems. Most of these start by tryving to reduce the problem
to a variational framework in which Noether's theorcm is applicable. For example, Jiang
|12] and [13] has developed conservation laws in viscoclastostatics and viscoelastodynamics
by employing first Laplace’s transform and then applving Nocther’s first theorem to the
transformed equations. The conservation laws thus obtained involve convolution and when
expressed in the time-domain they therefore depend on the total history of the material
evolution. Later, Caviglia and Morro {3] applied the sanie procedure with the Bessel-Hagen
extension of Noether’s theorem to arrive at more general results. Soon afterwards (4], (3],
they recexamined their results in view of a different procedure. ealled direct approach.
which has been developed by Arens {1] in connection with Maxwell equations. The direer
approach consists simply in integrating equation 117 subject to the constraint provided by
the governing equation of the svstem.

In the realm of conservation laws tor dissipative svstems, it s worth mentioning the
work of Djukic and Sutela [6] whose aim is ro derive conservaiion laws for a finite-

witne 1sional dinainical svstems  However, these anthors provide necessary but not sut-




ficient condition for the derivation of the conservation laws.

In a recent work {11}, the present authors have proposed a novel approach, called
the Neutral Action method, to derive, in a highly systematic fashion, conservation laws for
dissipative systems governed by ordinary as well as partial differential equations. Moreover,
the conditions provided for the existence of consecrvation laws are necessary as well as

sufficient.

3. Statement of the problem

The problem consists in applying the Neutral Action method in order to derive con-
servation laws for viscoelastic bodies. In contrast with the previous attempts, emphasis
will be put in constructing conservation laws in the space-time domain and the viscoelastic

models considered are therefore given in terms of rate equations.




B. SUMMARY OF THE RESULTS ACHIEVED

The “Neutral Action” method is applicable to dissipative as well as nondissipative
systems.

When specialized to Lagrangian systems, it reduces to Noether’s first theorem as ex-
tended by Bessel-Hagen. By applying the “Neutral Action” method we were wvierefore able
to obtain in a unified and systematic fashion all the aforementioned results. In addition.
conservation laws in the space-time domain were derived for a one-dimensional viscoelas-
tic bar. The models considered first were: Voigt, Kelvin and Maxwell elements. Then we

considered the more general case where the constitutive equation is given by

Q(al)(f:]?(az)f
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where @ and R are polynomials in the operator @y, and ¢ and € designate the stress and
strain, respectively. For the quasistatic case, we were able to show that the conservation

laws are given by

P, = —g'(0,)o + o) - C <i - .l') (3)

0,
Pl = yloy) (4)

where ¢ is defined by ¢ = R(; )u, u bemng the displacement field and ¢ and I are arbitrary
functions, while C' is an arbitrary constant. A prime designates differentiation with respect
to the arguments.

By suitable choices of g and &, different conscrvation laws can be obtained. One of
them is the statement of energy couservation.

A generalization to two-dimensional linear isotropic viscoelastic materials has been
carried out for the Voigt model.

One of the conservation laws obtained 15 given by
P = .—l{(f,.ru_, STt T+ 1‘{71.”‘,}
[ . .
P!/ = Algy vt apu g+ vo

. !
gyt T UT 0]




Pt =

~A2W*® + (a+ 280w u . + vy ) Foalv U+ U U yt)
+ B(u gt ye + U gV 2 + U Uy + VU )]

where A is an arbitrary constant, W€ is the elastic strain energy and «, 3 are the coeffi-

cients of dissipation. One can verify that this conservation law is nothing but the statement
of energy conservation.
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