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The inverse scattering problem for one-dimensional nonuniform transmission lines with
inductance L (z), capacitance C (z), seriesresistance R (z)andshuntconductance G (z) perunitlength
(z€R) is considered. It is reduced to the inverse scattering problem for the Zakharov-Shabat
system. It is found that one can construct from the data the following functions of the travel time

X:
g% x)=
PACS numbers: 02.30.Jr, 02.30.Bi, 84.40.Mk

I. INTRODUCTION

In this paper we consider the inverse scattering problem
(ISP) for transmission lines extending in a z direction from
zZ= — o toz = oo, with inductance L (z), capacitance C (z),
series resistance R {z), and shunt conductance G (z) per unit
length. We suppose that

—L (2),C(z), R (2), and G (z) (zeR) are sufficiently regular
real functions;

—L (2)>0,C(z}>0, R (2)>0, G (2)>0;

—L (z) and C (z) have strictly positive finite limits L (o)
and C (), [resp. L (— o) and C{ — )], as z— oo (resp.
Z— — oo).

I(z,t)and U (z,t ) being, respectively, the intensity of the
current and the voltage at position z and time 7, we use the
transmission lines equation (zeR):

al oU
— +C2)— +G(z)lU=0,
. + C(z) £ (2)
(44 +L(z)g£ + Rz =0. (1.1)
Jz at
For a wave of frequency &, i.e., for
I{z,t)=1(k,z)e ™, (1.2)
Ulz,t) = Ulk,zle ™, (1.3)
Eq. (1.1) may be written in the form
ar kCz2)U+ G(z)U=0,
dz
% — kL (2l + R (z)I=0. (1.4)
z

In the following instead of z, we obtain the variable x defined
by

x(z) = fz(L ©)C (u)"'? du. (1.5)

Wealso use the convention J{k,z(x)) = I (k,x), L(z(x)) = L (x),
etc., justified by the one-to-one correspondence between z
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and x, x(z) varying from x( — «0) = — o0 t0X(0) = 0. We
shall see below that x(z) is the travel time of waves from the
origin to the position z.

The data of the ISP are the reflection coefficients to the
right and to the left, 7(k Jand ¥k ), and the transmission coeffi-
cient ¢ k), for k > 0, and also the quantities L { — ), L {0),
C(— «),and C (). The ISP can be stated thus: what infor-
mation can beobtainedon L, R, C, and G from thedata?,i.c.,
what quantities connecting L, C, R, and G can be construct-
ed from the data?

In the lossless case, i.e., R = G = 0, it is well known—
see the survey by Kay'—that this ISP can be solved by re-
duction to the ISP for the one-dimensional Schrodinger
equation

d? 2

(S): —3 + [k*=V(x)]ly=0, xeR. (1.6)
For the solution of the ISP for (S) see Kay?, Kay and Moses’,
and Faddeev®. In the lossless case, it is then found that the
quantity which can be constructed from the data, is the quo-
tient L /C as a function of the travel time x.

The lossy case with only one kind of absorption, i.e.,
R = 0or G =0, has been studied by Jaulent>® and indepen-
dently by Schmidt.” This ISP can be solved by reduction to
the ISP for the one-dimensional Schrédinger equation with
an energy-dependent potential

2
) 2L 4 k2 Vikx)ly =0, (1)
dx

Vikx)= V(x)+ kQ(x) (1.8)
There also exists a radial version of the ISP for the lines (i.e.,
z>0 instead of zeR) which can be solved using the radial
version of the ISP for (S') (i.e., x>0 instead of xcR) (see Ref.
6). For the solution of the ISP for (S') see Jaulent and Jean,®
Jaulent,®' for the radial case (x>0), and Jaulent and Jean'’
for the one-dimensional case (x€R). In the lossy case with
R = 0(resp. G = 0)itis then found that the quantities which
can be constructed from the data are the quotients L /C and
G /C (resp. L /C and R /L) as functions of the travel time
x. In Sec. Il of this paper we give some additional indications
on the lossless case and the lossy case with R =0 or G = 0.

In this paper we consider the general lossy case. In Sec.
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II1 we prove that the lines equation (1.4) can be put into the
form of a generalized Zakharov-Shabat system (Z )[¢g*, ¢,

g:):
.
Y | koY (q3 7 )11 (1.9)
dx q

— g,
with

Y\ 1 O)
Q) =\ —1

Then through (Z)[g*, g™, g;] we introduce the scattering
data associated to the lines equation {1.4). In Sec. IV we re-
duce the ISP for (Z)lg™, ¢, ¢,] to the well-known ISP for
the Zakharov-Shabat system (Z )[§*, §~, g, = 0]. The moti-
vation to study this ISP was first to solve nonlinear evolution
equations. See Zakharov-Shabat'2, Ablowitz, Kaup, Newell,
Segur,'? and Calogero and Degasperis.'* In Sec. V we briefly
reproduce the solution of this ISP.

As aresult we find that the following quantities, §* and
G~ , can be constructed from the ISP data for the lines in the
general lossy case, as functions of the travel time x:

- £{o)s 3(2-2)

con( (2 £)o)

where the indices + and — correspond to each other. In-
deed §* and g~ data are equivalent to the ISP data for the
lines, so that we can conclude that, although it is widely
underdetermined, the ISP for the lines is theoretically
solved. g+ and §~ represent two functional relations
between L /C, R /L and G /C. In order to determine the quo-
tientsL /C,R /Land G /C (asfunctions of x) we need another
relation between L /C, R /L and G /C. Such is the case if we
are given R /L + G/Cor R /L or L /C. We notice that if
R = O(resp. G = 0) we find again the result of Ref. 6,i.e., L /
Cand G /C (resp. L /C and R /L) are determined from the
data. Indeed these two approaches are equivalent since it has
been proved by Jaulent and Miodek '’ that the ISP for the
Schrodinger equation (S')[V,Q ] and the Zakharov-Shabat
system (Z)[g ™", ¢, §, = O] are equivalent. The keystone of
the proof consists in introducing the generalized Zakharov—
Shabat equation (Z)[g ™, ¢, 4,] and noticing that (S')[V,Q]
and{Z)[g",§~,§; = 0] are in some way ““particular cases” of
this equation. Furthermore, it is possible to go easily from
one inversion procedure to the other.

(1.10)

(1.11)

. THELOSSLESS CASEAND THECASEAR =00RG =0
If R = G = 01t is easy from the lines equation (1.4) to
obtain
d ( 1 dU
L) dz
Using the Liouville transformation, i.e., using the variable x
defined by (1.5) and setting

yWM=[%ngan (2.2)

we find that y(k,x) satisfies the Schrodinger equation (S) with
the potential

)+kTMU 0. (2.1)
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Itis assumed that V' (x) is a sufficiently regular function going
to O fast enough as |x|-— . The solution of the ISP for (S)
allows to construct ¥ (x) and therefore C (x)/L (x).

If R = 0 we obtain from (1.4) the equation

d ( 1 dU

dz\ L(z) dz
Using the Liouville transformation defined by (1.5) and (2.2)
we find that y(k,x) satisfies the Schrodinger equation (S') with
the potentials

)+kTmU+meU 0. (24)

C(x 174 d2 C(x) 4
[ ] [Lm ’ 25
x
Qx)= —i—— Cin (2.6)

Itis assumed that V (x) and Q (x) are sufficiently regular func-
tions going to O fast enough as |x|— 0. The solution of the
ISP for (S') allows one to construct ¥ (x)and Q (x} and there-
fore C (x)/L (x) and G (x)/C (x). The case G = Qs treated ex-
actly in the same way by replacing U (k,z) by I (k,z), L (z) by
C(z), Clz)by L (z), and G (z) by R (z).

l. REDUCTION OF THE LINES EQUATION (1.4) TO (2)
[g7,q@~, ;) AND DEFINITION OF THE SCATTERING
DATA

We use the variable x defined by (1.5) and we set

w, (kyx) = %%T@wn, (3.1)

w,fk,x) = [C“) U tk,x), (3.2)
(w0 1

W kx) = (wz(k,x))’ 9= (1 0)' (3:3)

Then we find that the lines equation (1.4) can be put into the
form

aw + iko W
dx
14, L G
| 44 c W R
= R 1 d. L) T
&L - ht
L 4 dx C
(3.4)

One may readily put Eq. (3.4) into the form (Z) [¢*, ¢, g,]
by setting

Y= NW, (3.5)
N=N‘%=€§wr+mﬁ=€%c _jJ, (3.6)
- L) 122w
I o

(Note that No, = o\ V).
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We assume that ¢ (x), ¢~ (x), and g,(x) are sufficiently
regular functions going to O fast enough as |x|— . Since the
trace of the matrix

(i43 q" )
q — ig,

is 0, it is possible to introduce the scattering data for (Z) [¢ ™,
4, g;] in the same way as in the well-known case ¢ = 0.
Instead of (Z) [¢*, g™, ¢] it is technically convenient to
consider both systems (Z)*[¢™, ¢, ¢;]:

+ ] +
dy iql:% 4 )Yr. (3.9)
X q -+ 195

If ¥ ~{k,x) is a solution of (Z)~ then 0, Y ~{ — k,x) is a solu-
tion of (Z)*. This symmetry property allows one to reduce
the study of two types of Jost solutions at + o (orat — <)
to only one.

The right and left Jost solutions of (Z}*, F *
F *(k,x), are defined as

0\ . < N
F*(kx) ~ (l)e""‘, Flkx) ~ (O)e~’kx.

X — oo

+ iko, Y * =(

{k,x) and

(3.10)

o, F ¥(— k,x) and alf' F( — k,x) are also Jost solutions of
(Z)* with

N . 0\ ..
o FF(—kx) ~ 0/¢ = o F¥(—kx) ~ 1e' .

(3.11)

Using standard arguments (see Ref. 13 for example) one can
prove that F * (k,x) and Ft (k,x) are analytic in k for
Imk>0and contmuous for Im k>0 F *(k,x)and

o F ¥ — kx) [resp. F= {k,x)and o, F ¥ (k,x)]} form a funda-
mental system of solutions of (Z)* for k€R. The reflection
coefficients to the right and to the left, »* (k ) and ¥ (k ), and
the transmission coefficient ¢ * (k ) associated with (Z)* are
defined for keR by

fa g TEE) g 1 -

F *{k,x) r(k) (kx) + WIF (— k.x),
(3.12)

Pk = T F otk + o (k.
(3.13)

It follows from (3.10}~(3.13) that there exist two solutions of
(Z)*: ¥ tkx) [ =1 T(k)F *(k,x)] and ¥ *(k,x)
[ =t *(k)F *(k,x)] such that (keR)

= ereg)e

7 £kx) ~

R
o el (e
s )( ) (3.15)

The scattering matrix associated with (Z)* is defined by

St(k)_:(ti(k) r=(k)

FE(k) i(k))’ keR.

(3.16)
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The function 1/t * (k) is analytic for Im £ > 0 and contin-
uous for Im k0. We assume that this function has no zero
for Im k0, i.e., (Z)* has no bound state (square integrable
solution). This point should be studied thoroughly. Indeed,
in the case R = G = 0 one can prove a similar but weaker
result for Eq. (1.7) (see Ref. 6).

We deduce from (3.5), (3.6), {3.14), and (3.15) that there
exist two solutions of (3.4), iw(k,x) and W (k,x) such that

ﬁ/(k,x)x; 1k )(i)e-"kx
(e (e e
Wiy — e (e
X:wt+(k)( l)e”"‘. (3.18)

Therefore fuse (1.5), (3.1)—(3.3)] there exist two solutions of
the lines equation (1.4),

(Bi) = (252)

such that

LR b
~ _C(w) o + ikx(z) — tkx(z)
h*w[L(oo)] [r* (k)™ 4 emmy, o (3.19)
~ .{‘.M 4 — +k ikx(z) — ikx(z) 320
[ EE ] ey e, .20y
—_ _C_’_(_f’_'i.)_ . ikxl(z)
sl L(oo) t " (ke Je™, (3.21)
o [ 2L 172+ g it 392
Hw[C(w)] £k (3.22)

We see on Egs. (3.19)-(3.22) that r * (k ), F* (k),and ¢ * (k)
represent also for the lines equation (1.4) the reflection coeffi-
cients to the right and to the left and the transmission coeffi-
cient for the frequency & (k > 0). Furthermore, recalling(1.2),
(1.3), and (1.5}, it is clear that

v(z) = (L (2)Cz)) """ (3-23)
is the local wave velocity at point z and that x(z) is the travel
time of waves from the origin to the position z.

The ISP for the line is the construction of quantities
connecting L, C, R, and G from the data of S * (k) (k> 0),
L(w),L(— o), C(— ), and C(w).¢*, ¢~, and ig, being
real [see Egs. (3.7) and (3.8)], one can prove that

S*tk)=S*(—k), keR, (3.24)

where S ¥(k)is the complex conjugate matrix of § * (k).
ThereforeS *(k )(keR)isdeterminedbyS *(k }(k >0).§ "(k)
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(keR) is also determined because of the general identity
SEkYSTF(—k)=1, (3.25)

where “¢” means “transposed” and I is the 2 X 2 identity
matrix. So the data.§ *(k) (k> 0) imply the data r* (k) and
r~ (k) (keR). For this reason we consider in what follows the
ISP associated with (Z) [¢*, ¢, ¢5) from the data of (k)
and r~ (k) {keR).

IV.REDUCTION OF THE ISPFOR (Z) (9", 9, ga] TO THE
ISPFOR (2)[¢", G, 45 =0]

Let us write the generalized Zakharov-Shabat equation
(Z)*[q™", 97, q5] [id. Eq. (3.9)] in the form

0 +
(7";— $iq3a3)Yi+ika3Yi=( 9 )Yi,

gt 0
4.1)
and let us notice that
g"; Figo, =M ?(x)( % )oM *(x), 42)
0y =M F(x)a,M *(x), (4.3)
where
M *(x) = exp (T zf 4s)rs dy)
exp (T if a:0) dy) 0
0 exp(£i f as) dy)
- (4.4)

It is then easy to see that ¥ * defined by
YE=M=*xY=, (4.5)

is a solution of the Zakharov-Shabat system (Z)* [g*, 7,

7% =g* explF2 [ g1yl (4.6)

The Jost solutions of (Z)*[¢g™*, ¢, ¢;) and (Z)*[¢ ", G,
2, = 0] are connected by
F £ (kx) =M *(x)F *(kx), (4.7)

F *(kox) = expl T zj G M EF £ (kx).  (48)

— o

From (3.12), (3.13), (4.7), and (4.8) it is easy to obtain the
connection between the scattering data (keR)

FE(k)=r=(k), (4.9)

P (k) = exp( + sz as) dyF = (k ), (4.10)

Frk)=expl i gl (k)

Note that this result is a particular case of a lemma used in
Ref. 15. So we are led to solve the ISP for the Zakharov—
Shabat system (Z)*[§™, §~, §; = 0] from the data of
F*(k)=r*(k)and 7~ (k) = r~ (k) for keR. Because of Egs.
(4.6), (3.7), and (3.8), the potentials §* and §—, solutions of

(4.11)
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this ISP, are connected to L, C, R, and G through Eq. (1.11).

We remark that it would be quite possible to introduce
the ISP data for the lines [see formulas (3.19)—3.22)] by using
the Zakharov—Shabat system (Z)[g*, 4, §; = 0] instead of
the generalized Zakharov-Shabat system (Z) [¢*, ¢, ¢,] as
done in Sec. III. The choice of the intermediate step (Z)[g™,
97, g5} may be justified by the following remarks:

—The equation [¢*, ¢, ¢,] is more directly connected
with the lines equation (1.4} than the equation (Z) [§7, ¢,
G, = 0] and is no more difficult to investigate;

—The potentials ¢+, ¢, and ig; have the nice property
of being real and thus lead to the nice relation (3.24).
V.SOLUTION OF THE ISP FOR (2) [§*, 4§, §3 = 0]

The starting point is the following representation for-
mula for the Jost solution F * (k,x)of (Z)* [¢*, G, ¢; = 0]:

- 0\ | bl )
Fkx) = (l)e"“‘ + f K *(x,p)e™dy, (5.1)
where the kernel
K *(x,
K i(x,y):( 1i( y))
KZ (x!y)
is such that
1.
KFxx)= — —z-qi(X), (5.2)
1 (~. .
Kbx) = — [ 2 (). (53)

The insertion of (5.1) into (3.12) and the use of contour inte-
gration in the complex & plane yield the inversion equations

ok =)= (o ix +)

‘+‘J Py + 1)K F(xt)dt, y>x, xeR,
’ (5.4)

where p™(x) and p ~(x) are the scalar functions connected to
the data 7+ (k) and 7~ (k } (keR) by

pEix)= — EI_J'“’ FE(k )e*dk (5.5)
T J—

(we recall that we have assumed that there is no bound state).
Therefore the steps of the solution of this ISP are:

(a) construct p™ and p~ from 7* (k ) and 7~ (k ) (keR) us-
ing Eq. (5.5);

{b) find the solution (K *, K ~) of the system of integral
equations (5.4);

(c) obtain [g*, g ] from (K *, K ~) using Eq. (5.2).
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