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Abstract

The objective of this investigation is the establishment of governing balance and conservation laws in elastody-

namics. The feature of the approach employed here consists in placing time on the same level as the space coordinates,

as is done in the theory of relativity, i.e., pursuing a 4 · 4 formalism. Both the Lagrangian and the Eulerian descriptions

of the postulated Lagrangian function are formulated. The Euler–Lagrange equations in each of the two descriptions

are discussed, as well as the results of the application of the gradient, divergence and curl. The latter two operations are

made to act on the product of coordinates and the Lagrangian function, i.e., a four-vector. In this manner a variety of

balance and conservation laws are derived, partly well known and partly seemingly novel. In each case the general

results for elastodynamics are illustrated for the simple case of a linearly elastic bar.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Several methods exist in the theory of fields to establish the governing conservation and balance laws.

The procedure used probably most widely is that of Noether (1918), based on her first theorem including an

extension by Bessel-Hagen (1921). The starting point in this procedure is a Lagrangian function. If such a

function for a system under consideration does not exist, due, for instance, to the presence of some form of

dissipation, then a relatively recently established, so-called neutral-action method (cf. Honein et al., 1991;

Kienzler and Herrmann, 2000) can be used. It can be shown that for systems which do possess a Lan-

grangian function, the neutral-action method leads to the same results as the Noether procedure, including
the Bessel-Hagen extension. In addition to the above two methods, a third procedure may be employed by

means of direct submission of the Lagrangian (for fields for which it exists) to the differential operators of

grad, div and curl, in symbolic notation r, r� and r�, respectively. The latter two operations are applied

to a vector xL where x are the independent coordinates and L is the Lagrangian function.
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The procedure has been successfully used in elastostatics in material space, leading to the path-inde-

pendent integrals commonly known as J, M and L. It is obvious that the operators grad, div and curl are

related to the transformation of translation, self-similarity and rotation, respectively.

The authors have become interested recently in a 4 · 4 formalism in discussing the basic laws of con-
tinuum mechanics because, as they found, it permits to reveal hidden relationships between, e.g., conser-

vation of mass and balance of linear physical momentum (stress) (Herrmann and Kienzler, 1999; Kienzler

and Herrmann, 2003).

Thus it appeared intriguing to investigate the results of the application of the three differential operators

to the elastodynamic field considering the time not as a parameter, as is usual, but as an independent

variable on the same level as the three space coordinates.

In the first section of this paper we lay out the required general formalism for an arbitrary system

specified by a Lagrangian function with an unspecified number of dependent and independent variables.
In the following sections this formalism is applied to an elastodynamic system, first in the Lagrangian

formulation in which the independent variables are the reference coordinates and time. To make certain

that all four coordinates have the same dimension, the time is multiplied by some characteristic velocity, as

is done in relativity theory where the characteristic velocity is the speed of light. As a result, three balance

laws are derived and it is investigated under which conditions, if any, these balance laws reduce to con-

servation laws.

An analogous procedure is followed for the Eulerian formulation of elastodynamics in which the

dependent and independent variables are interchanged leading to analogous results.
As a specific and most simple example a linearly elastic bar is considered in both formulations, leading to

the necessity of defining some new quantities (such as for example a ‘‘kinetic force’’), and to some seemingly

novel balance and conservation laws.

It may be mentioned that conservation laws in general, and the newly derived conservation laws in

particular, have a broad range of applicability. They are useful in studying problems of defect and fracture

mechanics, stability of surfaces and interfaces, moving phase transformations, melting and mass-accretion,

etc. They are also valuable tools in establishing global existence and uniqueness theorems and in the

improvement of algorithms in numerical procedures (cf. Olver, 1993).
2. General system

2.1. Euler–Lagrange equations

We consider a system possessing a Lagrangian function L which depends on the independent vari-

ables nl, the dependent variables /m and the covariant derivatives /m
;m. The range of l and m shall be

arbitrary
L ¼ Lðnl;/m;/m
;mÞ: ð1Þ
The system is embedded in a space with metric coefficients
glm ¼ gmm; glm ¼ gml: ð2Þ
The associated Euler–Lagrange equations are
EmðLÞ ¼
oL
o/m � oL

o/m
;m

� �
;m

¼ 0: ð3Þ
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We furthermore introduce the abbreviation
oL
onl

� �����
expl

¼ jl: ð4Þ
2.2. Application of grad

We first evaluate the gradient of L, i.e.,
L;l ¼ oL
onl

� �����
expl

þ oL
o/m

o/m

onl þ oL
oð/m

;mÞ
o/m

;m

onl : ð5Þ
We assume that the space under consideration is free of curvature and that, therefore, the order of the

differentiation in the last term is interchangeable. We apply the rule for differentiation of products. Further,

we express L;l as dm
lL;m where dm

l is the Kronecker delta. The result of these manipulation leads to
ðLdm
lÞ;m ¼ jl þ /m

;l
oL
o/m

"
� oL

oð/m
;mÞ

� �
;m

#
þ oL

oð/m
;mÞ

/m
;l

� �
;m

ð6Þ
which can be rewritten as
Ldm
l

�
� oL
o/m

;m
/m

;l

�
;m

¼ jl þ EmðLÞ/m
;l: ð7Þ
It is seen that the tensor in brackets, which shall be labelled T m
l, is divergence-free along solutions, i.e.,

EmðLÞ ¼ 0, and provided the Lagrangian does not depend explicitly on nl, i.e., jl ¼ 0,
T m
l;m 	 Ldm

l

�
� oL
o/m

;m
/m

;l

�
;m

¼ 0: ð8Þ
In general field theories, T m
l is called the energy–momentum tensor.

2.3. Application of div

We next evaluate the divergence of the vector nlL, i.e., ðnlLÞ;l

ðnlLÞ;l ¼ dl

lLþ nlL;l: ð9Þ
We set dl
l ¼ a which indicates the dimensionality of the underlying space. The second term above shall be

subjected to the same manipulations as in the preceding section, namely interchange of the order of dif-

ferentiation and application of the rule for differentiation of products.

Further, similarly as before, we set
ðnlLÞ;l ¼ ðnldm
lLÞ;m: ð10Þ
By substitution, the following results
nlT m
l

�
þ /m oL

oð/m
;mÞ

�
;m

¼ aLþ oL
o/m /m þ jln

l; ð11Þ
where, as before T m
l is given by (8).

We introduce next the following definition: We shall call a system to be homogeneous of grade n,
provided the relation holds
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nL ¼ oL
o/m

;m
/m

;m: ð12Þ
For such a system it follows with (3)
aL ¼ a
n

oL
o/m

;m
/m

� �
;m

"
� oL
o/m /m

�
; ð13Þ
and the substitution results in
nlT m
l

�
þ n� a

n
/m oL

oð/m
;mÞ

�
;m

¼ n� a
n

oL
o/m /m þ jln

l: ð14Þ
It is seen that a conservation law exists only if L does depend neither on nl (explicitly) nor on /m. With these

restrictions and the notation
V m 	 nlT m
l þ

n� a
n

/m oL
oð/m

;mÞ
; ð15Þ
where V m might be called the virial of the system, we have
V m
;m ¼ 0: ð16Þ
By further manipulations and provided EmðLÞ ¼ 0, i.e., along solutions, V m
;m can be expressed as
V m
;m ¼ nlT m

l;m ¼ 0: ð17Þ
2.4. Application of curl

The rotation of a vector nlL in a-dimensional space may be represented as
ecd


lmðnlLÞ;m; ð18Þ
where ecd


lm is the completely skew-symmetric permutation tensor of rank a. The rotation of a vector is a

tensor of rank a � 2.
The expression ðnlLÞ;m may be subjected to similar manipulations as in the preceding sections. In

addition, the metric tensor is applied to lower or raise tensor indices, e.g.,
nl ¼ glkn
k; ð19Þ

Tlm ¼ glkT k
m: ð20Þ
The result of a straightforward manipulation is
ecd


lm½nlT
k
m�;k ¼ ecd


lmðTlm þ nljmÞ; ð21Þ
where the energy–momentum tensor appears in a mixed form and in a purely covariant form, T k
m and Tlm,

respectively.
It is seen that a conservation law exists, provided jm ¼ 0 (independence of L on nm) and, in addition, Tlm be

symmetric, i.e.,
Tlm ¼ Tml; ð22Þ
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and this conservation law has the form
ecd


lmðnlT
k
mÞ;k ¼ 0: ð23Þ
3. Elastodynamics in Lagrangian description

3.1. Lagrangian function

We consider an elastic body in motion with mass density qo ¼ qoðX JÞ in a reference configuration. We

identify the independent variables nl as
n0 ¼ t̂ ¼ c0t;

nJ ¼ X J ; J ¼ 1; 2; 3:
ð24Þ
The independent variable t̂ and not t is used in order for all independent variables to have the same

dimensions, where co is some velocity. In the special theory of relativity, co ¼ c ¼ velocity of light is used,
to obtain a Lorentz-invariant formulation in Minkowski space. In the non-relativistic theory, an alternative

invariant formulation does not exist and co may be chosen arbitrarily, e.g., as some characteristic wave

speed or it may be normalized to one. The independent variables nJ ¼ X J ðJ ¼ 1; 2; 3Þ are the space-

coordinates in the reference configuration of the body.

Although n0 ¼ t̂ and nJ ¼ X J have the same dimensions, the time t is an independent variable and is not

related to the space-coordinates by a proper time s as in the theory of relativity. Therefore, we will deal with

Galilean-invariant objects, four ‘‘vectors’’ and 4 · 4 matrices that will be called (cf. Morse and Feshbach,

1953) ‘‘tensors’’, although the formulation is not covariant. Special care has to be used when dealing with
div and curl, where time- and space-coordinates are coupled.

The current coordinates are designated by xi and play the role of the dependent variables or fields /m.

They are defined by the mapping or motion
xi ¼ við̂t;X JÞ; i ¼ 1; 2; 3: ð25Þ
The derivatives are
oxi

on0
¼ oxi

coot

����
XJ fixed

¼ 1

co
vi; ð26Þ

oxi

oX J
¼ F i

J ð27Þ
with the physical velocities vi and the deformation gradient F i
J as the Jacobian of the mapping (25). For

later use, the determinant of the Jacobian is introduced
JF ¼ det½F i
J � > 0: ð28Þ
The Lagrangian function that will be treated further is thus identified as
L ¼ Lð̂t;X J ; xi; vi; F i
JÞ: ð29Þ
In more specific terms, we postulate the Lagrangian to be the kinetic potential
L ¼ T � qoðW þ V Þ ð30Þ
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with the densities of the
� kinetic energy T ¼ qoðXJ Þvivi;
� strain energy qoW ¼ qoW ð̂t;X J ; F i

J Þ;
� force potential qoV ¼ qoV ð̂t;X J ; xiÞ:

ð31Þ
The various derivatives of L allow their identifications in our specific case as indicated
oL
oxi

¼ qofi Volume force; ð32Þ

oL
ovj

¼ coqovj Momentum; ð33Þ

oL
oðF i

J Þ
¼ �PJ i First Piola–Kirchhoff stress; ð34Þ

oL
ôt

����
expl

¼ j0

1

co
Energy source term; ð35Þ

oL
oX J

����
expl

¼ jJ Inhomogeneity force: ð36Þ
The Euler–Lagrange equations are in this case the equations of motion
o

ot
ðqovjÞ � P Ij;I � qofj ¼ 0: ð37Þ
3.2. Energy–momentum ‘‘tensor’’

The ‘‘tensor’’ T m
l in the Lagrangian description is given as
T m
l ¼ Ldm

l �
oL

oðxj;mÞ
xj;l ð38Þ
which is identical to the energy–momentum ‘‘tensor’’ discussed by Morse and Feshbach (1953). The various

components of T m
l may be identified as follows
�T 0
0 ¼ H ¼ T þ qoðW þ V Þ Hamiltonian ðtotal energyÞ; ð39Þ

�T 0
J ¼ qvjF j

J co ¼ coRJ Field-ðor wave-Þmomentum density; ð40Þ

�T I
0 ¼ �P I jvj

1

co
¼ � 1

co
SI Field intensity; or energy flux; ð41Þ

�T I
J ¼ ðqoðW þ V Þ � T ÞdIJ � P I jF j

J ¼ bI J Material momentum or Eshelby tensor: ð42Þ
It is noted that if j0 ¼ 0, then T m
0;m ¼ 0, stating that energy is conserved. Further, if jJ ¼ 0, i.e., the body is

homogeneous, then T m
J ;m ¼ 0, stating that the material momentum, involving the Eshelby tensor, in con-

served. This is stated in explicit formulae
T m
0;m ¼ 0 ¼ � 1

co

oH
ot

�
� o

oX J
ðPJ jvjÞ

�
; ð43Þ
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T m
I;m ¼ 0 ¼ � o

ot
ðqovjF j

IÞ
�

þ o

oXJ
bJ I

�
: ð44Þ
3.3. Application of div and curl

If W is homogeneous of degree n ¼ 2, i.e., for a linearly elastic body, then the application of the div

operator leads to the vector V m with the components
V 0 ¼ ð�tH � XJqvjF j
J � xjqovjÞco; ð45Þ

V I ¼ tP I jvj � X JbI J þ xjP I j;
and to the conservation law
oV 0

ôt
þ oV I

oX I
¼ 0 ð46Þ
or with (17)
t̂T m
0;m þ X IT m

I ;m ¼ 0 ð47Þ

which states in words that

t̂ times conservation of energy plus X I times conservation of material momentum equals a divergence-

free expression.
After transforming Eq. (4.87) in Maugin (1993) to the notation used here, Eqs. (46) and (4.87) are

identical. Maugin’s statement (4.88)

XJ times conservation of material momentum plus t times conservation of energy plus xi times equa-

tion of motion equals a divergence-free expression

coincides with our statement above, since here it has been assumed from the beginning, that conservation

laws exist only along solutions of EjðLÞ ¼ 0, i.e., the equations of motion are satisfied identically. Maugin’s

derivation, however, is quite different from our approach.

Finally, the application of the curl operator does not lead to a conservation law because Tml is not

symmetric, i.e., Tml 6¼ Tlm.

Considering l ¼ 0 and m ¼ J in Eq. (21), in the absence of inhomogeniety forces jm ¼ 0 and volume

forces fi ¼ 0ðV ¼ 0Þ, we find
ðcotT k
J Þ;k � ðXJT k

oÞ;k ¼ T 0
J þ cot

oT 0
J

ôt

�
þ oT I

J

oX I

�
� XJ

oT 0
0

ôt

�
þ oT I

0

oX I

�
� T 0

J ¼ �coqvjF j
J �

1

co
vjP jJ

¼ �ðfield intensity þ field momentum densityÞ: ð48Þ
Thus rotation in space and time results in a balance rather than a conservation law.

Considering l ¼ I and m ¼ J the general equation (21) yields
ðXIT k
J � XJT k

IÞ;k ¼ TIJ � TJI : ð49Þ
This right-hand side can be rearranged as a divergence for isotropic materials leading to (Kienzler and

Herrmann, 2000)
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o

ot
ðeIKJXKqovjF

j
J � eikjF I

ixkqovjÞ þ
o

oXN
ðeIKJXKbN J þ eikjF I

i xkPN jÞ ¼ 0: ð50Þ
Thus rotation about the time axis (̂t fixed) leads to a conservation law, provided the material is isotropic.

3.4. Example

As a specific example we consider a linearly elastic bar with Young’s modulus E, cross-section A, density

qo and displacement u. The prime indicates differentiation with respect to the axial coordinate X and a dot

indicates differentiation with respect to time. The kinetic energy T and the strain energy W are, with

l ¼ qoA, mass per unit of length
T ¼ 1

2
l _u2; W ¼ 1

2
EAu02: ð51Þ
The four components of T l
m are
T 0
0 T 0

1

T 1
0 T 1

1

� �
¼

� 1
2
l _u2 þ 1

2
EAu02

� 	
�Pu0co

þN _u 1
co

þ 1
2

l _u2 þ 1
2
EAu02

� 	
2
4

3
5 ¼ �H �coR

S 1
co

B

� �
ð52Þ
with the notation
P ¼ l _u Physical momentum; ð53Þ

N ¼ EAu0 Normal force; ð54Þ

H ¼ 1
2
ðl _u2 þ EAu02Þ Hamiltonian or total energy; ð55Þ

R ¼ Pu0 Field momentum or material momentum density; ð56Þ

S ¼ N _u Field intensity or energy flux; ð57Þ

B ¼ 1
2
ðl _u2 þ EAu02Þ ¼ Lþ Nu0 Material momentum: ð58Þ
It is interesting to note that the Hamiltonian and the material momentum are identical in this one-

dimensional space.

The derivatives T l
m;l ¼ 0 lead to two conservation laws:
o

ôt
T 0

0 þ
o

oX
ðT 1

0Þ ¼ � 1

co
½H � � ðN _uÞ0� ¼ 0 ð59Þ
which is a statement of conservation of energy and
o

ôt
T 0

1 þ
o

oX
T 1

1 ¼ �½ðPu0Þ� � B0� ð60Þ
which is a statement of conservation of material momentum.

The application of the div operator leads first to
tH þ XR ¼ �V 0 ð61Þ

which may be labelled the energy–field momentum virial (scalar moment) and to
tS þ XB ¼ V 1 ð62Þ

which is the material momentum–energy flux (field intensity) virial.



R. Kienzler, G. Herrmann / International Journal of Solids and Structures 41 (2004) 3595–3606 3603
The final result is
oV 0

ot
þ oV 1

oX
¼ 0 ð63Þ
which is a conservation law, stating that the time rate of change of the virial density V 0 is balanced by the

spatial rate of change of the flux V 1.

Turning now our attention to the application of the curl operator we calculate first
tcoR� XH ¼ �C0 ð64Þ

which is the energy–field momentum curl, and then
cotB� XS ¼ C1 ð65Þ

which is the material momentum–energy flux curl.

The final result is
oC0

ot
þ oC1

oX
¼ �ðc2

oRþ SÞ ð66Þ
which is not a conservation but a balance law stating that the time rate of change of C0 and the spatial rate

of change of the flux C1 are equal to a source term which is the negative of the sum of material momentum
density and the energy flux.
4. Elastodynamics in Eulerian description

4.1. Lagrangian function and the energy–momentum tensor

In this description the role of the dependent and independent variables is reversed, as compared to the
Lagrangian description above, i.e.,
L ¼ Lðcot; xj;XJ ;X J
;mÞ: ð67Þ
We introduce a different symbol L for the Lagrangian function in Eulerian description to indicate, firstly

that the functional dependence is different from L and, secondly, that the Lagrangian L is the action per

unit of volume of the actual configuration whereas L is the action per unit of volume of the reference

configuration. Thus, with (28), the following relation is valid
L ¼ JF L: ð68Þ

By contrast to the Lagrangian description, the ‘‘tensor’’ Tl

m (corresponding to T l
m in the Lagrangian

description) cannot be written down in a straight forward manner, but is rather the result of a certain

power-law expansion of relevant quantities. Since a detailed derivation may be found in Kienzler and

Herrmann (2003) it will not be repeated here. We merely recall that the Euler–Lagrange equations now

represent conservation (or balance) of material momentum (Eshelby) and the Tl
m ‘‘tensor’’ represents the

mass-stress ‘‘tensor’’, which may be written out as
Tlm ¼ T00 T0j

Ti0 Tij

� �
¼ qc2

o qvjco
qvico qvivj � rij

� �
; ð69Þ
where vi is not oXJ

ot jxifixed ¼ V J but oxj

ot jXI fixed as in the previous description. The connection between vj and V J

is (cf., e.g., Maugin, 1993)
vj ¼ �F j
JV J : ð70Þ
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Instead of the mass density in the reference configuration, qo, the mass density of the current configuration,

q, is used with the interrelation
qo ¼ JFq: ð71Þ

The connection between the first Piola–Kirchhoff stress P I j of the Lagrangian description and the Cauchy

stress rij is
rij ¼ J�1
F F i

IP I j; ð72Þ

where J�1

F is the Jacobian of the inverse transformation XK ¼ vK
�1ðcot; xkÞ (cf. Maugin, 1993). Differenti-

ation of Tlm leads now first to
Tm0
;m ¼ 0 ¼ co

oq
ot

�
þ o

oxj
ðqvjÞ

�
ð73Þ
which represents conservation of mass and next to
Tmj
;m ¼

o

ot
ðqvjÞ þ o

oxi
ðqvivj � rijÞ ¼ 0 ð74Þ
which represents conservation of physical momentum, i.e., the equations of motions, which can be written

as
q
Dvj

Dt
� orij

oxi
¼ 0 ð75Þ
with
Dð Þ
Dt

¼ oð Þ
ot

þ vi
oð Þ
oxi

ð76Þ
provided mass is conserved.

4.2. Applications of div and curl

Since the associated Lagrangian function is not homogeneous of any degree, the operation of div does

not lead to a conservation law, but rather to the balance law
o

ot
ðxjqvj þ c2

otqÞ þ
o

oxi
½xjðqvivj � rijÞ þ c2

otqv
i� ¼ qc2

o þ ðqvivi � riiÞ ¼ Tm
m: ð77Þ
The source term is equal to the trace of the mass-stress ‘‘tensor’’.

The ‘‘tensor’’ Tlm is, however, symmetric which indicates that the operation of curl will lead to a

conservation law of the form
o

ot
½tqvj � xjq� þ o

oxi
½tðqvivj � rijÞ � xjqvi� ¼ 0; ð78Þ
or expressed in words

t times equation of motion minus xj times conservation of mass equals a divergence-free expression.
4.3. Example

As an illustration we consider again the linearly elastic bar employing the same notation as above. The

‘‘tensor’’ Tlm has the components
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Tlm ¼ T00 T01

T10 T11

� �
¼ lc2

o l _uco ¼ Pco
l _uco ¼ Pco l _u2 � N ¼ K

" #
: ð79Þ
Differentiation leads first to
o

ôt
ðT00Þ þ o

ox
ðT10Þ ¼ co½ _l þ ðl _uÞ0� ¼ 0 or

ol
ot

þ oP
ox

¼ 0; ð80Þ
and expresses conservation of mass, and second to
o

ôt
ðT01Þ þ o

ox
ðT11Þ ¼ ðl _uÞ� þ ðl _u2 � NÞ0 ¼ 0 or

oP
ot

þ oK
ox

¼ 0: ð81Þ
Here P is the physical momentum as before and K may be called a kinetic force.

The right-hand side of (81) may be rewritten as
_u½ _l þ ðl _uÞ0� þ lð€uþ _uu0�Þ � N 0 ¼ 0: ð82Þ

The first term expresses again mass conservation and the parentheses of the second may be rewritten with

(76) as a material time derivative
€uþ _uu0� ¼ D _u
Dt

ð83Þ
resulting in the standard form of the equation of motion of the elastic bar
l
D _u
Dt

¼ N 0: ð84Þ
Application of div leads first to
c2
otl þ xP ¼ V 0 ð85Þ
which is the virial of the mass-physical momentum, and then to
c2
otP þ xK ¼ V 1 ð86Þ
which is the physical momentum–kinetic force virial.

The result of a further calculation is
oV 0

ot
þ oV 1

ox
¼ lc2

o þ K; ð87Þ
which states that the sum of the time rate of change of the virial density V 0 and the flux of the virial

intensity V 1 are balanced by a source term which is the sum of the density lc2
o and the kinetic force K. Thus

not a conservation, but a balance law results.

By contrast, application of curl does lead to a conservation law. First we calculate the mass-physical

momentum curl C0 as
�xl þ tP ¼ C0 ð88Þ
and then the physical momentum-kinetic force curl C1 as
�xP þ tK ¼ C1; ð89Þ
and a further calculation leads to the result
oC0

ot
þ oC1

ox
¼ 0 ð90Þ



Table 1

Juxtaposition of the results in Lagrangean and Eulerian descriptions

Elastodynamics in Lagrangian description Elastodynamics in Eulerian description

Euler–Lagrange eqs. EjðLÞ ¼ 0 Balance involving phys.

momentum (equations of motion)

Euler–Lagrange eqs.

EJ ðLÞ ¼ 0

Balance involving mat.

momentum (Eshelby relation)

Gradient
T m

0;m ¼ 0
T m

J ;m ¼ 0

�
Conservation of energy Gradient

Tm
0;m ¼ 0

Tm
J ;m ¼ 0

�
Conservation of mass

Balance involving mat.

momentum

Balance involving phys.

momentum

(Eshelby relation) (equations of motion)

Divergence Leads to a conservation law Divergence Leads to a balance law

Curl Leads to a balance law Curl Leads to a conservation law
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which states that the time rate of change of the curl density C0 is balanced by the flux of the curl intensity

C1.
5. Concluding remarks

The investigation presented in this paper has revealed new relationships existing in elastodynamics

whose establishment was made possible by considering time on the same level as space, i.e., the point of
view which is always adopted in the theory of relativity but is not common in continuum mechanics.

The principal results obtained are summarized in Table 1 which juxtaposes the two possible descriptions

in elastodynamics, namely the Lagrangian and the Eulerian. Starting with a Lagrangian function, the

Euler–Lagrange equations, as seen, lead, as should be expected, to different relations involving the physical

momentum in the Lagrangian and the material momentum in the Eulerian description. Application of grad,

div and curl leads in succession to different results, as is seen in the table.
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