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This is the first part of a series of papers devoted to direct and inverse scattering of transient waves
in lossy inhomogeneous media. The medium is assumed to be stratified, i.e., it varies only with
depth. The wave propagation is modeled in an electromagnetic case with spatially varying
permittivity and conductivity. The objective in this first paper is to analyze properties of the
scattering operators (impulse responses) for the medium and to introduce the reader to the
inverse problem, which is the subject of the second paper in this series. In particular, imbedding
equations for the propagation operators are derived and the corresponding equations for the
scattering operators are reviewed. The kernel representations of the propagation operators are
shown to have compact support in the time variable. This property implies that transmission and
reflection data can be extended from one round trip to arbitrary time intervals. The compact
support of the propagator kernels also restricts the admissible set of transmission kernels
consistent with the model employed in this paper. Special cases of scattering and propagation
kernels that can be expressed in closed form are presented.

I. INTRODUCTION

The propagation of waves in lossy media can be modeled
in a number of ways, depending on the features of the propa-
gation that are of interest. This series of papers will deal with
linear wave propagation in an inhomogeneous medium that
is characterized by dissipation and phase velocity profiles
that are independent of the frequency of the wave. A precise
model for such propagation is given in Sec. II of this paper.
This model involves one-dimensional electromagnetic wave
propagation in the time domain in a medium that is charac-
terized by spatially varying permittivity and conductivity
profiles.

This series of papers presents a time domain approach to
wave propagation that yields a unified theory for both direct
and inverse scattering. The basis for this approach is in the
splitting/invariant imbedding techniques that have been ex-
ploited in earlier work. Specifically, these techniques apply
to time domain reflection and transmission operators for a
given scattering medium.

For the convenience of the reader, the pertinent features
of previous work in this area will be explicitly displayed
when necessary. The present paper, Part 1, deals with the
direct scattering problem; i.e., given the dissipation and
phase velocity profiles, determine the scattering operators
(or impulse responses) for the medium. These are operators
that can be used to map any transient normally incident field
over to the resulting scattered fields. Various properties of
these operators are developed, and it is shown how they can
be utilized to “extend” scattering data.

A subsequent paper,’ Part II, deals with the full inverse
problem; i.e., given the scattering operators for a medium,
determine both the dissipation and phase velocity profiles
for the medium. Since a number of results derived in Part I
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are not used in Part II, the reader who is primarily interested
in the inverse problem can proceed to Part II after reading
this introduction and Sec. II of the present paper, in which
notation is established and a precise statement of the prob-
lem is given. Results from Part I that are used in the inverse
problem are summarized at the beginning of Part II. Some
numerical examples showing scattering operators (as well as
inversion procedures) will be given in Part IL

Section III of the present paper reviews the integrodif-
ferential equations satisfied by the kernels of the scattering
operators and relates these kernels to the propagator kernels
for the medium. A reciprocity result is also derived. Integro-
differential equations for the propagator kernels are derived
in Sec. IV. In Sec. V a result that can be used to characterize
transmission data is developed. This result is also used to
extend reflection and transmission data from a single round
trip time trace to a time trace of arbitrary length. Section VI
is a summary of the work in Part I. Appendix A supplies
technical details used in Sec. V. Closed form expressions for
scattering and propagator kernels in special cases are given
in Appendix B. Finally, operator equations for the propaga-
tors are shown in Appendix C.

To put the present results in their proper context, some
details regarding previous work are now given. Corones and
Krueger? and Davison® developed a system of integrodiffer-
ential equations for the reflection and transmission opera-
tors. Those studies displayed the time domain behavior of
these operators. However, it was also shown that those re-
sults could be interpreted in the frequency domain. In that
case, a Riccati differential equation for the reflection coeffi-
cient was obtained.

In later work, Corones et al. used the reflection operator
equation as the basis for an inversion algorithm in nondissi-
pative*~’ as well as dissipative media.®~'° (In the dissipative
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case, @ priori information about phase velocity or dissipation
isrequired.) Bruckstein ez al.'! have given a partial review of
Riccati equation techniques in the frequency domain and
shown their relation to certain integral equation approaches
to inversion.

There are several well-documented solutions to the full
inverse problem (i.e., simultaneous reconstruction of both
dissipation and phase velocity profiles). Such solutions,
however, use completely different methods than the tech-
niques presented here. Weston'>™'* was the first to use the
full scattering matrix in the time domain to solve the one-
dimensional dissipative inverse problem. He applied a Rie-
mann function approach to develop a system a Gel’fand-
Levitan-type equations whose solution yielded the desired
profiles. The data for this problem consisted of the time do-
main reflection and transmission operators. These results
were generalized by Krueger'>™"" to include more realistic
material profiles. This had the effect of also reducing the
data requirements in the problem, although transmission
data were still required. More will be said about this in Part
IL Jaulent'®'® pursued a frequency domain approach to dis-
sipative inverse problems in a variety of settings. The prob-
lems considered involved a complex potential with a linear
dependence on frequency, and the required data consisted of
reflection and transmission coefficients.

A model of dissipative wave propagation, which is more
physically motivated than that used in this paper or in any of
the above-referenced papers, is possible. Such a model is ob-
tained by appealing to the underlying constitutive relation in
the problem. In the frequency domain, this implies a certain
dispersion relation, whereas in the time domain, this implies
the existence of a memory function for the medium. The
methods used in the present series of papers also have been
applied to direct and inverse scattering problems-in electro-
magnetic’® and viscoelastic>’ media, which are character-
ized by such a memory function.

Il. STATEMENT OF THE PROBLEM

In this section some notation is introduced and a precise
statement of the inverse problem is given. The geometry of
the problem is shown in Fig. 1. An inhomogeneous slab oc-
cupies the region 0<z<L. This medium is assumed to be
stratified so that the permittivity and conductivity are func-
tions of depth z only. A homogeneous, lossless medium is
situated on either side of this slab.

Homogeneous / € (2) /

O (z)

LA
A

z=0 z=L

Homogeneous

lossless medium lossiess medium

FIG. 1. The geometry of the inhomogeneous medium.
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An electromagnetic plane wave is launched in the region
exterior to the slab. This impinges normally on the medium,
giving rise to an electric field E(z,t) within the slab, with E
satisfying

E,(zt) — ¢ 2 (2)E,(zt) — b(2)E,(z,) =0, (2.1)

where
c72(2) = €2y, b(2) = (2) e, (2.2)

and w, is the permeability in vacuum, o(z) is the conductiv-
ity, and €(z) is the permittivity. The analysis becomes
simpler if the phase velocity ¢(z) is continuously differentia-
ble within the slab. This will be assumed throughout this
paper. It is further assumed that the phase velocity is contin-
uous (although not necessarily smooth) at the boundary of
the slab. Thus, in the regions exterior to the slab the phase
velocity is given by

c(z) =c(0™), z<0,

c(z)y=c(L7), z»L
(where the 4 superscript denotes the limit from the right
and the limit from the left, respectively). These assumptions
insure that E and E, are everywhere continuous. This pre-
cludes the existence of impulsive echoes in the scattered
fields.

Now if the incident plane wave is launched in the region
z <0, then the general solution of Eq. (2.1) in the region to
the left of the slab is

E(zt) =E', (t —2/c(0)) + E", {t +2/c(0)), z<O.
(2.4)

Here, E‘, and E', denote the incident and reflected fields,
respectively. The subscript ““ + ” denotes the fact that the
incident field is propagating in the + z direction. In addi-
tion, a transmitted field is produced in the region to the right
of the slab. This has the form

(2.3)

Ety=E* (t—1—(z—-L)Y/c(L)), z>L, (2.5)
where
L
I=J c~Y(z2)dz. (2.6)
0

The incident and scattered fields are related by the scattering
operators (i.e., reflection and transmission operators) for
the slab. These are integral operators represented by

E" (1) =f§ t(t—t")E', (t"dr',
° 2.7)
E' ()=t*E', (1) +f'?+(t—t')Ef+ (t")dt’,
where °

L
;+=[Z((€)) l/zexp[_—;-J;b(z)c(z)dz]. (2.8)

InEq. (2.7) the functions R * and 7' * are the reflection and
transmission kernels, respectively, for incidence from the
left. Notice that the lower limit of integration in (2.7) has
been chosen to be 0, which is equivalent to assuming that the
incident wave front first impinges on the slab at ¢ = 0. Notice
also that the time variable ¢ in Eq. (2.7) does not represent
physical time, but rather a characteristic variable for Eq.
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(2.1) outside the slab [cf. also Eqs. (2.4) and (2.5)].

The existence of the scattering operators in Eq. (2.7)
can be verified in a number of ways, one of which is shown in
Ref. 15. In particular, these operators are independent of the
incident field used in the scattering experiment and depend
only on the properties of the slab. Furthermore, velocity mis-
match effects have been taken out of the problem by the
assumption that ¢ is continuous (although not necessarily
smooth) at z = 0 and z = L. Hence, in comparing the form
of the operators given in Eq. (2.7) with those in Ref. 15, the
constants ¢, and ¢, in Ref. 15 must be set equal to 1.

A second pair of reflection and transmission operators
describe scattering experiments for incident fields impinging
on the medium from the right. In this case the general solu-
tion of Eq. (2.1) in the regionz> L is

Eizt)=E'_(t+(z—L)/e(L))
+E"_(t—(z—L)/e(L)), z>L, (2.9)

where E‘_ and E”_ are the incident and reflected fields,
respectively. To the left of the slab the transmitted field is
given by

E(zt) =E' ((t—1+2/¢(0)), z<O. (2.10)

These fields are again related by scattering operators for the
slab, which are represented by

E"— () =fft ~(t—t)E'_ (t")dt',
b (2.11)
E' ()=t"E'_ () +f T-(t—t)E" (t"dt',
0

where

- 172

-_ _[e@) 1 r ]

t [ <(0) exp[ >k b(z)e(z)dz|. (2.12)
Again in Eq. (2.11) it is assumed that ¢ = O corresponds to
the time the wave front first impinges on the slab at z = L.
Notice that if E, (¢) = 8(¢) (where & is the Dirac delta),
then from Egs. (2.7) and (2.11), it follows that
E’, (t)=R(t) and E*, (t) =t *8(¢) + T(¢). Hence, the
scattering kernels R *, T * are the impulse responses for the
medium.

The inverse problem considered in this series of papers is
that of determining both €(z) and o(z) (as well as L) for the
slab through the use of scattering experiments performed on
the slab. More precisely, the scattering data used in the re-
construction of € and o consist of finite time traces of both
reflection kernels, R £(¢), and one of the transmission ker-
nels, say, T * (¢) for O < t <21. Here, 2/ [with ! defined by Eq.
(2.6) ] represents the time it takes a signal to travel one com-
plete round trip through the medium.

The data used in this formulation of the problem are a
deconvolution of Eq. (2.7) and (2.11). The effect of imper-
fect deconvolution can be studied (at least numerically) by
means of the inversion algorithms presented in Part II.

At this point a transformation of dependent and inde-
pendent variables in Eq. (2.1) is made. This transformation
is not necessary for the implementation of the inversion al-
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gorithms given in Part II. However, it does result in a
simpler-looking analysis (compare with Ref. 10) and nu-
merical scheme. Begin with the change of coordinates,

Z — 1y ]
x=x(z)=Jc_M,
o l
s=t/l,
u(x,s) =E(z),

(2.13)

where x is normalized travel time and s is normalized time.
In these new coordinates the slab occupies the region 0<x<1
and a round trip time trace is described by 0 <5 < 2. Equa-
tion (2.1) becomes

U, —u, +Ax)u, + B(x)u, =0, (2.14)
where
A(x) = —-——d—ln clz(x)), (2.15)
dx
B(x) = —Ib(z(x))c*(z(x)), (2.16)

and In denotes the natural logarithm function. The coeffi-
cient functions A and B vanish outside of the interval [0,1]
and are continuous on the interval (0,1), with possible finite
discontinuities at x = 0 and x = 1. Typical plots of 4 and B
are shown in Fig. 2.

It follows from the compact support of 4 and B that for
x <0 and x > 1, solutions of (2.14) reduce to right and left
moving waves. These are readily related to the physical
fields. In particular, scattering operators again exist for Eq.

A
1 .
Normalized
travel time
8
1
Normaglized
travel time
FIG. 2. Profile functions A and B.
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(2.14). For a right moving incident wave ', (s —x),
launched in the region x < 0, it can be shown that the reflect-
ed and transmitted fields are given by

3

u, (s) =JR *(0,1,s — s )u', (s')ds, (2.17)
(1]

3

u', (5) =t*(0,Du’, (s) —+-‘[T“L(O,l,s—s’)u"Jr (s')ds',
0
(2.18)

while a left moving incident wave, u°_ (s +x — 1), in the
region x > 1 produces reflected and transmitted fields

u_ (s) = J“R ~(0,1,s — s )u'_ (s')ds, (2.19)
0

' (s) =t (0,)u'_ (s) +f T(0,1,s —s)Hu'_ (s')ds,
0
(2.20)

where
1
t£(0,1) = exp[ IF%J {4(x) ¢B(x)}dx]. 2.21)
0

The reflection and transmission kernels in (2.17)-
(2.20) are related to the physical kernelsin (2.7) and (2.11)
via

-~

R *(0,1,5) =IR = (),
(2.22)
T £(0,1,5) = IT * (Is).

Notice that these transformed kernels reference the end
points of the scattering medium. This is because in later sec-
tions of this paper, scattering kernels for subsections of the
original medium will be considered. Observe that the inde-
pendent variable in (2.18) and (2.20) can be thought of as a
characteristic variable.

Finally, it is necessary to define a second set of operators
for the scattering problems relevant to (2.14). These are
propagation operators?” for the medium and are used to ex-
press the incident and reflected fields in terms of the trans-
mitted field. They are given by (see Ref. 15)

u', (5)=[t=(0,1)] ", (5

+f W £(0,1,s —s")u', (s')ds, (2.23)

0

u, (s) = [t (0,1)]_‘J; V£(0,1,s —s)u', (s)ds'.
(2.24)

Notice that the “ W’ operator is just the inverse of the corre-
sponding “T” operator. Consequently, the kernels
W £(0,1,5) in Eq. (2.23) are just the resolvent kernels for
the functions T" * (0,1,s). The explicit relation between these
kernels is

[ £(0,1)]7'T(0,1,5) +¢ £(0,1) W *(0,1,5)

+fTi(O,l,s—s’)Wi(O,l,s')ds’=0. (2.25)
0

The end points of the (transformed) slab are explicitly
displayed in the arguments of R * (0,1,s) and T * (0,1,s),
and as well as in ¥V *(0,1,s) and W *£(0,1,s). In the next
section both of the end points of the slab are allowed to vary
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(see Fig. 3) and in this more general case R * (x, y,s) and
T *(x, y,s) denote the reflection and transmission kernels,
respectively, for the subregion of the slab with end points at x
and y, with O0<x<y<l. A similar notation holds for
V £(x,ys) and W % (x, y,5). It should be stressed that it is
only the kernels corresponding to x = 0 and y = 1 that are
physically obtainable.

Ill. EQUATIONS FOR THE SCATTERING KERNELS

In the preceding section the physical reflection and
transmission kernels were introduced. These are the data
that are obtained from a scattering experiment. Throughout
the remainder of this paper, the transformed problem given
in (2.14) will be studied, and in particular the kernels on the
left-hand side of (2.22) will be referred to as the physical
scattering kernels (since they are easily obtained from the
physical data).

The dependence of the scattering kernels on the param-
eters x and y (which are the end points of the subregion
[x, ¥]) will be reviewed in this section. It is intuitively clear
that this dependence is related to the material properties of
the slab. Relations to this effect are developed in detail in
Ref. 2. For the convenience of the reader and for complete-
ness the main results of that reference are given here:

b A
4
/1

/
S
|
/ |
/ ]
7 x
// y 1 Normalized
P4 travel time
AB
x y !

/,"\ : Normaiized
; travel time
|
|
7

r'd
’/

FIG. 3. Profile functions 4 and B for the subregion [x, y]. The dashed lines
indicate the omitted portions of the physical region.
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R (x,5)
=2R * (x,y,5) — B(x)R *(x,,5)

—J[4(x) + B(x)]

XJ R ¥ (x,ps5 )R *(x,y5s—5)ds, s>0,

0

R +(y9y)s) =01 s>0y (3-1)
R*(x,y,0") = —i[4(x) — B(x)], x<J;
Tr(x,y5)
=1[4(x) — B(x)]T * (x, y,5)
— %[A(x) +B(x)]{t *(x, )R *(x,p,5)
+ f TH(x,ps5)R*(x,p5 —S’)dS’], 5>0,
’ (3.2)
TH(y,ys)=0, s>0
T;(x,p5)
= —i[4(x) + B(x)]
X[T‘(x,y,S) +t (x5, )R *(x,3.5)
+J.ST‘(x,y,9’)R +(x,y,S—S’)dS'}, 5>0,
’ (3.3)
T (y,ys8)=0, 5>0;
R 7 (x,p.5)

= }[A(x) +B(x)]{t T T (X, p,s — 2(y —x))
+t7 T x, ps —2(y — X))

s — 2(y — x)
+f T+ (6, ps')

0

XT 7 (x,ys —2(y —x) —s’)ds'},

5>2(p—x), (3.4)
R (y,ps)=0, 5s>0
R (x,p5)
= — 2R (x,,8) + B(y)R ~(x,.5)
—1[4(y) — B(y)]
XJR (x5 )R " (x,y,s —5')ds, s>0,
0
R " (x,x,5)=0, 5>0, (3.5

R7(x,y0") =4[4(y) + B(y)], x<y;
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T (x,5)
= —1[4(y) - B(y)]

X [T+(x,y,S) +t7(x, )R ~(x,,5)

+ J T*(x,ps5)R ‘(x,y,S—S’)dS’}, 5>0, (3.6)
(1]
T*(xx,s) =0, s>0;

T (x,ps5)
=1[4(py) + B(»)IT ~(x, )

— %[A( y) —B(y)] [t (%, )R T (x,3,5)

+ f T~ (x,ps )R (x,ps —s’)ds’], s>0, (3.7)
0
T (xxs)=0, 5>0

R 5 (x,p,5)
= —}l4(y) —B(y)]{t“(x,y)T+(x,y,s

—2(y—x))+t e, T~ (x, 9,5 —2(y — x))
s — 2( ¥y — x)

+ T (x,ps")

0

XT*(x, 5 —2(y—x) —s’)ds’], 5>2(y—x),

(3.8)
R (xxs)=0, s>0;
where
y
ti(x,py)= exp[ ZF-%I [4(x") IFB(x’)]dx’}. 3.9)

Equations (3.1)—(3.8) are the imbedding equations for
the slab, obtained from continuously imbedding scattering
kernels for subintervals of the slab into a family of scattering
kernels. In particular, these equations display the change in
the scattering kernels due to variations in one of the end
points of the imbedded slab. As seen from above, these equa-
tions are in general nonlinear and of integrodifferential type.
Note that two of the equations, Eqgs. (3.1) and (3.5), are
both equations for a single unknown kernel. The other six
equations couple different kernels together. With each of the
equations above there is also a boundary condition for the
case when x = y. This corresponds to a slab of zero thick-
ness. In Egs. (3.1) and (3.5), there are also two auxiliary
conditions relating the early time behavior of the reflection
kernels R * (x, p,s) to the properties of the slab (see also Fig.
4). Equations (3.1)—(3.8) are written in a slightly different
form than in Ref. 2 due to the particular representation of
the scattering operators given in Eq. (2.17)-(2.20).
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rY(0,1,s)
(Physical data} s

(0,1,2}

R*(x,1,s)

/ R+(oo¥ts) is
independent of y

x
(1,1,0)

R*(x,4,0%) = - }(A()-B(x)

(1,1,0) e

R™(0,1,s}
(Physicol data)

(0,1,2)

R™(x,1,s)

is independent R7(0,y,s)

e

of x

A
LI

4 RT(0,y,0%) = 4 (Aly)+B(y))

FIG. 4. A portion of the domain R * (x, ,s). The entire domain is 0<x<y< 1, s>0. The region inside the tetrahedron is the domain of R * (x, y,s) for s limited

to one round trip in the subregion [x, y].

The reflection kernels R * (x, y,s) are discontinuous
across the plane s = 2( y — x). These discontinuities are as-
sociated with the echo of the wave front from the rear inter-
face. Again referring to Ref. 2, the jumps in the kernels along
that plane are

[R*(x,p5)15232-507
y
=Ll —B(y)]exp[f B(x')dx'],
[R=(x,p9) 3222282

= — -}[A (x) + B(x) ]exp[JyB(x')dx’].

(3.10)

In Ref. 2 it is also shown that the reflection kernels
R £(x, y,s) satisfy (see also Fig. 4)

R+(x,y,s)=R+(x,x+s/2+,S), S<2(,V"‘x),
(3.11)
R7(x,p8)=R (y—5/27,ps5), s<2(y—x).

These relations state that the reflected field is independent of
the position of the rear interface of the slab for times less than
one round trip through the subregion [x, y]. The properties
of the reflection kernels R * (x, y,s) given by Egs. (3.10)
and (3.11) will be used in the inversion algorithm presented
in Part II of this series of papers.

In the transmission kernel equations given above, there
isadistinctionbetween the T+ and T ~ kernels. Now assume
that there is a relation between the kernels T * (x, y,5) of the
following form:

T*(x,p8) = f(, )T~ (x,p.5), (3.12)

where f (x, y) is an unknown function to be determined. A
relation of this kind is suggested by the fact that a reciprocity
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result should exist for the transmission operators. Equations
(3.2), (3.3), (3.6), (3.7), and (3.12) imply that f(x,y)
must satisfy
Sfx(x,p) =A(x) f(x,y),
fy(x,}’) = —-A(,V)f(x,J’),
f(x,J’) = t+(x,}’)/t_(xy.\’)-

(3.13)

These three equations are consistent and it is therefore con-
venient to introduce a single transmission kernel T'(x, y,s)
defined by
T(x,p8) =T (x,98)/t* (%, ) =T~ (x,95)/t ~(x, ).
(3.14)
In what follows, this new definition of the transmission
kernel will be the one that is used and from now on there are
only three different kinds of scattering kernels, i.e.,
R %(x,y,5) and T(x, y,s5). It is easy to see that with this new
definition of the transmission kernel the Egs. (3.2), (3.3),
(3.6), and (3.7) can be replaced by two simpler ones,

T, (x,p8)= — %[A (x) + B(x)] {R (%, 3.8

+ f T(x, 5 )R " (x, 5,5 — s’)dS’],
0

5>0, (3.15)
1
T,(x,ps8) = — —2-[A(y) — B( .v)]{R T(x, ,8)
+ J T(x, .5 )R ~(x,p,s — s’)dS’},
0
$>0. (3.16)
G. Kristensson and R. J. Krueger 1672
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The resolvent equation (2.25) for W * generalizes to
the subregion [x, y] in the obvious way. Now since the T’ t
are simply related to a single kernel 7, it follows that W *
can be related to a single kernel W. Specifically,

W(x,ps) =t (x, )W (x,p,8) =t~ (x, )W " (x, p,5).

(3.17)
The resolvent equation for W(x, y,s) now reads
T(x, y,s) + W(x, »,s)
+ [T ps =)W p2ds =0 (3.18)
0

The equations for the ¥ * (x, y,s) kernels are
R E(x,p5) =V *(x,)s)

+ J“T(x, »s—5)VE(x, ps5)ds,
0
(3.19)

which follows (in the “ + >’ case) from inserting Eqgs. (2.17)
and (2.18) into Eq. (2.24) and using (3.14). Finally, Eq.
(3.19) can be solved for ¥ * by using the fact that W is the
resolvent kernel for T. This yields

VE(x,p5) =R *(x,s)

+ J R :(x,y5—5)YW(x,y,s)ds'.
(1]
(3.20)

Exact representations of thekernelsR *, 7, W,and V' *
can be obtained in the special case when 4 (x) and B(x) are
constants. This is done by using the Laplace transform in the
variable 5. Details are provided in Appendix B.

V. THE W AND V* EQUATIONS

In this section, the dynamics of the kernels Wand V' *
are derived. The definition of the resolvent W(x, y,s) of the
transmission kernel T'(x, y,s) is given by Eq. (3.18). Differ-
entiation of this equation with respect to the left end point x
gives

T, (x,y5) + W, (x,1,5)

+ f W, (x,y5)T(x,y,s —5')ds'
0

+ J“ W(x,ys5)T,(x,y,s—s')ds' =0. 4.1)
0

Now use the imbedding equation for the transmission kernel
T given by Eq. (3.15) and the definition of the resolvent in
Eq. (3.18) to get

W, (x,y5) —4[A(x) + B(x)]R *(x, ,5)
M f W, (x, 35 T(x,y,5 — s )ds' =0, (4.2)
0

which can be simplified to
W, (x, y,8)

= %[A(x) + B(x)] {R *(x,3:5)
+f W(x,y,5')R " (x, p,s —S’)dS’], s>0. (4.3)
(4]
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This equation gives the variation of the resolvent W(x, y,s)
as the left-hand side of the slab is varying. Note that this
equation is very similar to the equation for the variation in
the transmission kernel T'(x, y,s), given by (3.15).

The equation for a variation of the right-hand end point
is similar to the derivation above and the result is

W, (x,y,s)

=%[A(y) —B(y)][R “(x, 3,5)

+f W(x, y,s')R ~ (x, y,s —s’)ds'}, s>0. (44)
0
A direct comparison between Eqgs. (4.3), (4.4), and (3.20)
shows that
W, (x,y,5) =4[4(x) + B(x)]V * (x, p.s), (4.5)
W, (x,p.5) =3[A(y) —B(y)1V ™ (x,3:5). (4.6)
The two pairs of equations for ¥ £ (x, y,s) now can be
derived quite easily. Differentiate ¥ * (x, y,s) in Eq. (3.20)
once with respect to x and once with respect to s and use Eqgs.
(3.1) and (4.5) to obtain
VEx,ps) =2V (x,p5) —B(x)V 7 (x,5)
+4[4(x) — B(x)1W(x, y,5), 5>0
VE(3,ys5)=0, 5>0, (4.7)
V*(x,p0%) = —§[4(x) —B(x)], x<y.
Similarly, by differentiating ¥ ~ (x, y,s) in Eq. (3.20) with
respect to y and s the following equation is obtained by the
use of Egs. (3.5) and (4.6):
V,yx,p8)= =2V (x,35) +B(y)V ™ (x,9)
+3[4(p) + B(p)|W(x,ps), s>0,
V= (xxs) =0, s>0, (4.8)
V=(x,3,0%) =4[4(y) + B(y)], x<y.
Notice that the two Eqgs. (4.7) and (4.8) do not contain any
convolution integral, but couple ¥V * with W.
The two final equations for the kernel V' * (x, y,s) are
derived by a differentiation with respect to the other end
point in Eq. (3.20). The dynamics of ¥ ;' and ¥ in the

interval 0 <s <2( y — x) are now easily obtained by the use
of Egs. (3.11), (4.5), and (4.6). This results in

V,5(x,ps) =4[4(y) —B(y)]
xrR “(x, 8V T (x, p,s —5)ds'
(o]
=1[4(y) - B(y)]

fo (X, p8YV T (x, ps —5')ds,

0

0<s<2(y—x), (4.9)
V. (x,ps5) =4[4(x) + B(x)]
Xf R *(x, 5V ~(x,y5 —s')ds
o
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=1[4(x) + B(x)] fR sV (s — 8')d
(0]

XLR Xy YV (x, y,s —5')ds, = fR xSV T (x,ps —5)ds', s>0, (4.11)

0
O<s<2(y—x), (4.10)  Which is easily obtained from Eq. (3.20).
The equations (4.9) and (4.10) are not valid for
5>2(y — x). In the derivation of the corresponding equa-
where the last equality in each of these equations comes from  tions valid for s>2( y — x), the following integral is en-

the identity | countered:

f R} (x,y5)YW(x,y,s —s")ds

2(y—x)

= —4[A(y) =Bt x, 0t~ (x, ){W(x, .8 — 2(y — x))

s —2(y — x)
+ 2f T(x,ysYWix,y,s —2(y — x) —s'¥ds’
0

s —2(py — X) s’
+J [J T(x,y,s")T(x,p,s ——s”)ds”]W(x,y,s— 2(y—x) —s’)ds’], §>2(y—x). (4.12)
(] Q

This equation can be obtained by use of Egs. (3.8), (3.10), and (3.14).
It is now straightforward to combine Egs. (3.20) and (4.12) and repeatedly use the resolvent equation (3.18) to get

V,hx,ps8) = —4[4(y) —B(y)][t"(x,y)t T T (X, ps —2(y —x))

——J.R +(x,y,s’)V‘(x,y,s—s')ds’], $>2(y—x). (4.13)
0

The equation for V  is derived similarly. The result is

V(x5 = —}[4(x) +B(x)]|t Tt T (x5, Tx, s —2(y — X))

—fR‘(x,y,S’)V*‘(x,y,s—S')ds'], 5>2(y—x). (4.14)
0

Equations (4.13) and (4.14) can be simplified considerably with use of results presented in the next section. The conse-
quences of this simplification will be discussed at the end of Sec. V. An alternative derivation of the results in this section is ob-
tained by considering the dynamics of the propagator matrix for Eq. (2.14). This is carried out in Appendix C.

V. THE EXTENSION OF DATA

The W(x, y,5) and the V' * (x, y,5) kernels all share the important feature that they have compact support. More precise-
ly, for times larger than one round trip in the subregion [x, y], i.e., s> 2( y — x), these kernels are identically zero,

Wx,ps) =0, s>2(y—x), (5.1)

Vi(x,ps5)=0, s>2(y—x). (5.2)
These relations are derived in Appendix A.

Now suppose scattering data are known for one round trip through the subregion occupying [x, y]. Then Egs. (5.1) and
(5.2) can be used to extend that data beyond one round trip. To be more explicit, consider the end points x and y to be fixed for
the moment, and assume that T'(x, y,s) is known for times 0 <s < 2( y — x). Equation (3.18), which is a Volterra equation of
the second kind for the kernel W(x, y,5), then can be solved for W(x, y,s), 0 <5 <2( y — x). The kernel W(x, y,s) is thus
known for all s> 0 due to Eq. (5.1).

Now assume that s> 2( y — x) and rewrite the resolvent Eq. (3.18), using Eq. (5.1), in the following form:

'S

T(x,p,5) + Wi(x, y,s — s)T(x, y,s")ds'
2(y — x)
' 2(y — x)
- Wix,p,s —s)T(x,p,s))ds', 2(y—x)<s<4(y—x),
=G(x,ps5) = -[—Z(y—x) ¥ ¥ y Y (5.3)

0, s>4(y—x).
Notice that the function G(x, y,s) is known as a function of s for fixed values of x and y with the assumptions made above.
Equation (5.3) is a Volterra equation of second kind for T'(x, y,s) for s>2( y — x) and this equation can be solved for the
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unknown T'(x, y,5), s> 2( y — x). Equation (5.3) thus provides a tool for extending the data T'(x, y,5), 0 <s<2(y — x), to
the time interval s >2( y — x).

The extension of the reflection data now follows quite similarly, with the exception that both reflection and transmission
data have to be known for one round trip. More precisely, assume that R *(x, y,s) and T(x,y,s) are known for
0<s5<2(y— x). Then from Eq. (3.19) and Eq. (5.2) above, R *(x, y,5), s>2( y — x), is expressed as

2(y —x)

R = (x,y,5) =I T(x,ps—s)YVt(x,ps)ds, s>2(y—x). (5.4)
0
However, V  (x, y,5), 0 <s <2(y — x), is related to R * (x, y,s) by Eq. (3.20),
VE(x,ps5) =R *(x,s) +f W(x,ys —5)R = (x,ys5)ds’, 0<s<2(y—x). (5.5)
0

Combining these last two equations gives
2(y —x) s’
R t(x,y5) = f T(x,y,s—5s") [R E(x, ps8) + f W(x,y,s —s")R *(x, p,s" )dS"]dS', s>2(y—x). (5.6)
0 0

Notice that in this last equation, reflection data R * (x, y,s) are used only for times less than one round trip, i.e.,
0 <s<2(y —x), while transmission data, T'(x, y,s), are used for all s> 0. However, for times beyond one round trip the
transmission data can be extended with the technique discussed above in Eq. (5.3). These ideas will be exploited in a special

context in Part I1.

An alternate approach to the extension of the reflection data is to rewrite Eq. (3.20) fors>2( y — x) and use Eq. (5.2) to

obtain
W(x,y,s — s )R *(x, p,s')ds'

2(y—x)

2(y —x)
— f Wi(x,ys —5)R *(x, ys)ds,
= s—2(y—x)

R *(x,p5) +

Uy —x)<s<4(y—x),

0, s>4(y—x).
Thus far, the compact support of the kernels ¥ * has not been used in the imbedding equations derived in Sec. IV. Now
using the fact that ¥ * vanish identically for s> 2( y — x) reduces Eq. (4.13) and (4.14) to the following new representation

of the transmission kernel 7 for s> 2( y — x):

tr(x, )t (x5, )T (x, 3,5 —2(y — X))

2(y —x)
=f V*(x,y,S')R‘(x,yJ—S’)dS'=f

0 0

2(y —x)

VI. SUMMARY AND CONCLUSIONS

In this paper some mathematical tools for transient
wave propagation in lossy media have been introduced. This
work primarily focuses on the direct scattering problem and
the properties of the scattering operators. However, many of
the equations developed in the present paper are of impor-
tance for the inverse algorithm presented in Part IT (See Ref.
1).

Reciprocity is shown to imply that the two transmission
kernels T * are proportional to each other, see Eq. (3.14).
This property simplifies the analysis considerably and also
reduces the number of independent imbedding equations for
the scattering kernels.

The propagator kernels for the medium are also intro-
duced and some of their properties are exploited. In Sec. IV
the new imbedding equations for these kernels are derived in
Egs. (4.3), (4.4), and (4.7)-(4.10).

One of the main results in this paper, the compact sup-
port of the propagator kernels, has several consequences. In
Sec. V this property is shown to provide a way to extend
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V=(x,35)R *(x,y5 —5)ds,

§>2(y —x). 5.7

{

transmission data from one round trip to arbitrary time, see
Eq. (5.3). This extension is also possible for the reflection
data provided transmission data are available, see Eq. (5.6).

The compact support of W provides an important limi-
tation of the functional behavior of the transmission kernel
T. To be an admissible transmission kernel T for the model
considered in this paper, its resolvent W also must have com-
pact support. This observation provides an important char-
acterization of the transmission kernel 7. Furthermore, only
data for times less than one round trip are needed for this
characterization, due to the extension of data discussed
above. This implies that all information available in the
transmission kernel is contained in the time interval up to
one round trip and that if it is admissible or not is based upon
the functional behavior in this finite interval. Unfortunately,
the compact support of ¥ * doe not imply any simple char-
acterizations for R *. However, from the new imbedding
equations for V' * and the compact support of ¥V * a new
representation of the transmission kernel T is obtained, see
Eq. (5.7), which relates T to ¥ * and R *.
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APPENDIX A: COMPACT SUPPORT OF WAND V+

In this section it is shown that the kernels Wand V *
have compact support. This fact was introduced in Sec. V
[Egs. (5.1) and (5.2)]. The arguments given below suffice
to show that the kernels W(x, y,s) and V * (x, y,5) vanish
for s> 2(y — x). The compact support then follows from
causality, which implies that these kernels also vanish for
5s<0.

In the model problem given in Eq. (2.1), the velocity
¢(2z) is assumed to be continuous at the end points of the slab,
z=0and z = L. For the sake of proving a stronger result,
which should be useful in later work, this assumption will be
relaxed. Thus, ¢(z) can have finite jump discontinuities at
z=0and z = L. This generalization alters the transformed
problem given by Eq. (2.14) in that #, is no longer contin-
uous at x = 0 and x = 1. Instead, u, satisfies the relations

COux (O-ys) = u.x (0+,S),

(A1)
e, (1%,5) =u, (17,9),
where
co=c(0")/c(07),
(A2)

c;=c¢(L™)/c(L™).

It is now shown that for this more general problem,
W(0,1,s) vanishes for s>2. (The arguments given below
clearly generalize to any subregion [x, y] of the slab.) In
order to produce the desired result, an explicit formula for W
will be derived.

Being by expressing the solution # of Eq. (2.14) in terms
of transmission data #',_ (s) via

u(x,s) =5[t*(x,1)]“{(cl + Du', (s—x)

1
— (=D, (s+x— 2)exp[f B(s’)ds’]

x

2 —x
+f u', (s —S')N(x,S')dS’], (A3)

for 0 < x < 1. Equation (A3) is derived in Ref. 15. The func-
tion N(x,s) is related to the Riemann function for Eq. (2.14)
and satisfies

N, —N, +B(x)(N, +N,) +D,(x)N=0, 0<x<l,
(A4)
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and boundary conditions for 0 <x < 1,

1
2N(xx) = ¢, B(17) —A(17) — (¢; + l)f D, (s')ds',
2N(x,2 — x)

1
= [c,B(l“) —A(17) + (¢, — l)j D_(s’)ds’]

1
Xepr‘ B(s’)ds’], (AS)

where

D, (x)=}(B*—A4%) +4(—4'+B"). (A6)

The prime in Eq. (A6) denotes differentiation with respect
to x.
Differentiate Eq. (A3) with respect to x and set x = Oin the
resulting equation. Rewrite the left-hand side in terms of
4", and u’; (differentiation with respect to the argument)
using

u (0%,5) =¢co[ —u”, () +u) ()] (A7)
Now integrate this equation from O to s, using the assump-
tion that 4’, (0) =", (0) = ‘. (0) =0, and obtain

2] —uy () + 4, (5)]

= [t+(0,1)]"[ — (e, + D', (9)

1
— (e, — D', (s— 2)epr. B(s’)ds’]
0

+ fsu; (s")F(s — S’)dS’], (A8)
where i
F) =a+bHGs—2) + [ [N, 05)
—1(4 —B)|,. N(0s") JH(2 —s)ds'  (A9)

and
a= —}(e;+1)(4—B)|,. —N©00),

1
b=4(c;~1)(4+ B)|,- epr. B(s’)ds’] — N(0,2),
0

0, s<0,

1, 5>0.

Now evaluate Eq. (A3) at x = 0" and rewrite the left-hand
sideas #', (5) + u”, (s). Use Eq. (A8) to eliminate 4", (s)
from the resulting equation and thus obtain

(co+ 1)((:1 + l)ut.;. €))

H(s) = Heaviside function = {

u', (s) = [t+(0,1)]“[

4co
_ (e =1 (e, = D', (s— 2)exp[ S B(s')ds']
4co
+J>u'+ (s’)W(O,l,s—s’)ds’], (A10)
0
where the W kernel is given by
W(0,1,5) = [¢oN(0,5)H(2 —s) — F(s5)])/4¢c,. (All)

Equation (A10) is the generalization of Eq. (2.23) when
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¢(z) is discontinuous as z = 0 and z = L. Notice from Egs.
(All) and (A9) that W(0,1,s) is constant for s> 2, a fact
which also follows from the domain of dependence argu-
ments. To evaluate that constant, set

fo) = f x[N, (%5) = A~ B) xN(x,s')]ds'
(Al12)
so that, from Eq. (A11),
W(0,15) = [k —f (0)V/dey 552, (A13)

where

k=N(0,0) + N(0,2) +4(c; + ) (4 — B) |~

1
—-;—(c, —1)(4 + B) exp[f B(s’)ds’]. (Al4)
ot 0

The constant k is known from the boundary conditions Eq.
(A5), so it remains to determine f (0).

Differentiate Eq. (A12) with respect to x and eliminate
the N,, term by using Eq. (A4). Upon performing the s’
integrations, it follows that

[(x) + 34+ B)|.f(x) =g(x),

where

(A15)

d d
= L ——N(x,2 —
g(x) pm N(x,x) I -N(x, X)

+3(4 + B)|,N(xx) + (4 — 3B)|,N(x,2 —x).
(Al6)
Solving Eq. (A15) yields

1 >4
f0) = —fg(x)exp[-%-f [A4(x") +B(x')]dx’]dx.
0 0

(A17)

Using Eqgs. (A17) and (AS), a tedious calculation now
shows that

f(0) =k
Hence, W(0,1,s) =0fors>2.
Fortunately, this calculation does not need to be repeat-
ed to verify the compact support of the ¥ * kernels. Instead

observe that if Eq. (A8) is used to eliminate 4’ (s) from Eq.
(A3), then

(A18)

V*(0,1,5) = — W(0,1,5), s>2. (A19)
In a similar manner it follows that
V=(0,1,5) = — W(0,1,5), s>2. (A20)

APPENDIX B: EXACT REPRESENTATIONS OF THE
SCATTERING AND PROPAGATOR KERNELS FOR
CONSTANT A(x) AND B(x)

For constant 4 (x) and B(x) the scattering kernels R *,
T, W, and V * can be determined analytically. Throughout
this appendix it is therefore assumed that the function
A(x) =Aand B(x) = B, for0<x<1, where 4 and B are real
constants. For the convenience of the reader the basic equa-
tions [see Egs. (3.1), (3.5), (3.15), (4.3), (4.7), and (4.8)]
that are used in this appendix are repeated here:
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R} (x,p5)
=2R " (x,p,5) —BR " (x, )

— %(A + B)f R ™ (%, ys8 )R (x,y,5 —5')ds,
0

5>0, (B1)
R*(y,ys5)=0,

R*(x,y0")= — (4 —B), x<y;

s>0,

R (x,p5)
= —2R 7 (x,,5) + BR ~(x, y,s)

_ %(A _B f R~ (x,.5)R ~ (%, ps — 8 ),
(¢]

>0, (B2)
R " (xx,5) =0,

R7(x,y0") =44+ B), x<y,

§>0,

T, (x,s5)

= — (4 +B)[R T (x, 3,8

+JT(x,y,s')R*(x,y,S—s’)ds’], s>0, (B3)
0

T(y,ys5) =0, s>0;

W, (x, y.s)

=1(4 +B)[R *(x, 3,8

+J Wi(x,y,s)R *(x,p,5 — s’)ds’], s>0, (B4)
(1]

W(y,ys) =0,
Vi(x,p.s)
=2V (x,p5) —BV*(x,s)
+4(4 — B)W(x, y,s),
VE(rps) =0,
V*(x,y0")= —1(4—B), x<y

5>0;

5>0, (BS)

Ve (x5
= =2V (x,55) + BV " (x, p,5)
+ i(A - B) W(xyy’s))
V-(xxs)=0, 5>0,
V_(x9yyo+)=£(A +B)) x<y.
These equations can be solved by a Laplace transforma-
tion in the “time” variable s. The Laplace transform of a
function f is indicate f or A[ f] and the transformed time
variable is denoted by p. In this notation the x and y depen-
dence of transformed functions are suppressed for conve-
nience. Equation (B1) transforms into the Riccati equation
Ry (@)~ (2p—BR*() - 14— B)
+4(4 + B)R **(p) =0,
R+ ») =0, x=y,

(B6)

(B7)
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with solution

A 1—e™ 9
R0y = - (A+(B)(1+6:-")
= _TA—ZT) 1—(1+5)"§l(~6)"-‘e-""],
(B8)
where
a=i(42—BH'",
B=(y—x)((20 — B)* + 4a})'?, (B9)

y=((2p — B)* +4a%)'? - 2p + B,
8 = y*/4a’.

It is now rather straightforward to invert each term in
the bracket in Eq. (B8) with the use of the identity

}'((pZ + a2)1/2)

=f(p) — A[af [ (u) Jyla(s* —u?)'y)
0

X(sz-—uz)“”zudu](p). (B10)

The final result is
R*(x,p5)

= —§A =B T (— 1)'H(s —2n(y—x))
n=0

X {S,(s —2n(y — x))

'S

—2n(y—x)a2f S, (s —5)
2n(y —x)
J,(a(s'z . 4)12( y - x)2)l/2) ’]
ds't, Bi11
a(sIZ _ 4n2(y _x)2)l/2 § ( )
where
S,(s)=[2n~1)J,,_, (as)
+2n+1)Jy, 1 (as))/as, n=123,..,
(B12)

So(s) =J,(as)/as,

where J, is the Bessel function of order n. Some plots of R *
are shown in Fig,. 5.

The reflection kernel from the right-hand side
R ~(x, y,5) is easily obtained by replacing 4 with — 4 in the
equations above. With the same definitions of S, (s) as
above, the result is

R~ (x,y5)
=44 +B)e”? 3 (= 1)"H(s — 2n(y — %))
n=0
X{S,s —2n(y —x))

23

—2n(y -—x)azf

2n(y — x)

S,(8 =)

(B13)

Jl(a(slz _ 4”2( y— x)2)l/2) ,]
—ds'}.
a(s12 _ 4n2( y— x)2)l/2 o
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FIG. 5. The reflection kernel R *(0,1,s) for three round trips in the medi-
um. Two examples with constant 4 and B profiles are shown.

The transmission kernel T'(x, y,s) is obtained from the
Laplace transform of Eq. (B3). The solution in the trans-
formed time variable p is

1+6
1468e %

= TTN2(1 4 8) ~ 1

e—r(y—x)/Z

T(p) = — 1+

4 e~ r=02(] 4 §) i(_a)ne—nﬁ. (B14)

n=1

The inversion of this equation leads to rather cumbersome
algebra. The following identity is of great help:

fa+ @ +a)?—p)—f(a)

Al o[- ila(S + 2us)'?) d]
_A{ aL e 2 1 2u5) uf (u)dui(p).
(B15)

The result of the inversion is
T(x,y,s)

= —a®%"2 3 (— D)'H(s—2n(y —x))
n=0
X{P,ls —2n(y —x))

'S

—2n(y —x)azf

2n(y —x)

P,(s—5")

J,(a(s'2 - 4n2(y ___x)2)1/2) 1]

a(SIZ _ 4’12( y— x)2)1/2 (B16)

where

ro=|CE) G5

Jla(s® + 2us)'’?)
- a(sz+2us)”2 u=2(y—x)

=2w =" *(as)*{a’s[4n(y — x)

X(s+y—x)— 8y, ,w)
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+wl(y—x)a’s—2n(2n+1)

X(s +2(y —x)) W, (w)} (B17)
and
w=al(s®+ 2s(y —x))"%

Plots of T are shown in Fig. 6.
The solution to Eq. (B4) in the transformed time vari-
able p is
1 + 68 -BeY( y— x)/2.
146
The inversion of this equation gives
W(x,ps) =1H(2(y — x) — 5)e"?a*[2(y — x) — 5]
1,(a2(y —x)s —5°)'"%)
al2(y —x)s — 57)"/?
Proceedingto the V' * equation, the result in the transformed
variable p is
V*(x,pp) = — (A~ B)((2p — B)? +4a?) ™'

Xery=P72[1 —¢=F], (B20)

Wp)=—1+ (B18)

(B19)

with inverse
V*(x,35) = — (4 —B)H(22(y—x) — s)eP?

XI(a2(y — x)s — s9)'/?). (B21)

The corresponding result for V ~ (x, y,s) is easily obtained by
replacing 4 with — A in the equation above. The result is

V= (x,p5) =}(4 + BYH(2(y — x) — s)e®"?
XIy(a2(y — x)s — s7)'/2). (B22)

The compact support of the kernels Wand ¥ £, which is a
general property derived in Appendix A, is clearly seen in
Egs. (B19), (B21), and (B22). Typical examples of the ker-
nels Wand V' * are shown in Figs. 7 and 8.

Now having the explicit expressions for the kernels R *,
T, W, and V * for the case when A and B are constants, it is
instructive to verify some of the basic equations in this paper
for this special case. For example, the jump in the kernels

Travel fime s

FIG. 6. The same as Fig. 5 but showing the transmission kernel 7(0,1,s).
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0
Ty
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£
=
20|
: —— A=S., Ba-.t
..... A=10,, B=-.1
o[
l ! ! | |
0 1 2 3 + 5 s

Travel time s

FIG. 7. The same as Fig. 5 but showing the propagation kernel W(0,1,s).

R * along the plane s =2( y — x) given by Eq. (3.10) is
easily verified from Egs. (B11) and (B13). It s also easy to
verify Eq. (3.11).

Equations (4.9) and (4.10) can also be verified in this
special case of constant 4 and B. These equations are equiva-
lent to the Bessel function identity

—-d—-Jo((tz _ 2.xt) 1/2)
dx

=f Tl = 2x¢")172) J'—ﬁt-_-t‘,ldz 3 (B23)
X =

This identity can be proved by showing that both sides are
the same entire function in x.

APPENDIX C: PROPAGATOR DYNAMICS

In this appendix the dynamics of the kernels ¥ * and W
are derived in an alternate manner that does not utilize the
dynamics of R * and T. This derivation depends on a contin-

o _-\__/
-20 |
=
=)
->,
> 40—
— ASS, , B=-1
..... A=10., B=-.1
-60 |—
| | | ] |
() 1 2 3 4 5 [

Travel time s

FIG. 8. The same as Fig. 5 but showing the propagation kernel ¥ * (0,1,s).

G. Kristensson and R. J. Krueger 1679

Downloaded 13 Nov 2008 to 142.104.222.48. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



uous representation of the propagation operator.

For the sake of convenience, the transformed problem
[Eq. (2.14)] will be the starting point for this analysis, al-
though the derivation could be carried out in terms of the
physical variables that appear in Eq. (2.1). The analysis pre-
sented here is similar in spirit to that given elsewhere>>'° for
derivation of the scattering operator equations. The inde-
pendent variable x in Eq. (2.14) will be replaced by the dum-
my variable z, since x is used to denote the end point of a
subregion [x, y]. The variable z should not be confused with
that appearing in Eq. (2.1). Begin by introducing a split-
ting®® of the field u(z,s) in Eq. (2.14), defined by

ut(z,s) =4[u(z9) F9, 'u.(29)],
where

(C1)

3.7 'u,(2,8) = J. u,(z,s')ds'.

In a homogeneous medium, this splitting merely reduces the
field u(z,s) into right moving ( + ) and left moving ( —)
waves. More generally, Eq. (C1) is a change of basis from
(u,u,)T to (u*,u~)T for Eq. (2.14). In this new basis, Eq.
(2.14) becomes

a u*(z,s)]=[a(z) B(Z)] [u+(z,S)

Zlu=@nl  ly@ 8@l lu(zs)
+
Ep(z)[“_(z’s)] , (C2)
u=(z,5)
where
1 ad
= ——[A(z) — B(z)] ——,
a(z) 2[ (z) (2)] %
B(z) =1[4(z) + B(2)], (C3)

¥(2) =4[4(z) — B(2)],
1 d
= —— B =z
8(2) 2[A(2)+ (Z)]+6s

Now consider a subregion [x, y] of the original slab. Let
P(x, y) denote the propagator for the subregion [x, y]; i.e.,
Pis a 2 X2 matrix of operators that maps the field at y over to
the field at x,

[u’“(x,s) — P(x y)[u+(y,S)
u~ (x,5) T Hum(po
Now differentiate Eq. (C4) with respect to x to obtain

(C4)

+ +
a [u™ (xs) _aP(J;,y) [u (3:5) (C5)

axlu—x] ™  ax lum(pol”

Use Eq. (C2) (evaluated at z = x) and (C4) to express the
left-hand side of (C5) in terms of the fields at y:

ut(ys)] _ 9P(x,y) [u+(y,S)

D(x)P(x, [ =2 . C6

(R, ) u= (:s) dx lu=(ys) (o

Since (u™* ( y,5),u~ ( ,5))T can be chosen arbitrarily, it fol-
lows that

oP(x,p)

o D(x)P(x,y).

(7))
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It can similarly be shown that

dP(x,y) _

dy B

Having now obtained differential equations (C7) and

(C8) for the propagator, a representation for the entries of P

is required. In order to use a representation compatible with
that in Sec. III, let u * be represented by

— P(x,y)D(y). (C8)

. u, (s—z+x), z<x,
u(zs8) =1 , ,
U, (s—z+x)+u_(s—z+y), z3y
(C9)
_ Wy (s+z—x)+u_(s+z-p), 2<x,
u (z8) =y,
u_(s+z—y), z3y.
(C10)

The fields on the right-hand sides of Egs. (C9) and (C10)
are related by [cf. Egs. (2.17)-(2.20), (2.23), and (2.24)
for the special casex =0and y = 1]

W, () =[RE(x Uy ()](6)

=J. R*E(x,ps— ', (s)ds, (C11)
u', ()= [T 0, p)uy ()] ()
=t t(x,y)[u"i (s)
+J T(x,y,s —s")u', (s’)dS’], (C12)

w, () =[7"(x,nu, ()](s)

=[t*(xp)] “f V*(x,ys—s)d', (s)ds,

(C13)
uy, () =[# (), ()](s)
= [t"(x,y)]“[u'+ (5)
+£ Wi(x, y,s —s)u', (s’)dS']. (C14)

The relations Eqs. (3.14) and (3.17) have been used in Eqgs.
(C12) and (C14), respectively, and ¢ * (x, y) is defined in
Eq. (3.9). In Egs. (C11)—(C14) it is assumed that the fields
are quiescent prior to some finite time s,, although s, is not
necessarily zero.

It is also convenient to introduce a shift operator Q,
whose action on a function of the s variable is defined by

Qyx)f(s)=f(s+x—y).
Repeated applications of Q have the obvious interpretation:

Q% yx) () =Q(px)[Q(yx) f ()]
=Q(yx)f(s+x—y)
=f(s+2x —2y),

Q(x, »)Q(yx) f (s) =f(s).
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Still confining attention to the subregion [x, y], it now fol-
lows that

u*(x5) =u', (5)
=[#""(xpu', ()])
=[#* e n{ut(y)—u_ ()} (s+y—x)
=0, M[¥# " (x, )u*(y,)1(s)
— Q) [F T (X, )R (%, p)u" (3,)1(5),

(C15)
}
W (x,y) —HT(x, IR (x,y)
PG, y) =005 0) | s yy)

In order to pass from the operator equations (C7) and
(C8) to equations involving the kernels W and V' ¥, it is
easier to consider these equations at the level of Eq. (C6).
Setting 4~ ( y,5)=0 yields

Q( y,x)o,;ix[Q(x,y)Vﬂx,y)u*(y,-)l(s)
=[l@ax)# ™ (x,y) + BX)Z F(x, »))ut (3,)]1(s),
o y,x)aix[g(x,y)% ) (1,)1(9)

= [(¥x)F# " (x,p) +6X)ZF(x, ))u* (p,)1(5).

Expressing these equations in terms of kernels produces Eqs.
(4.5) and (4.7). Similarly, applying Eq. (C8) to
(u™ (y,5),0)" yields Eqs. (4.4), (4.9), and (4.13) and veri-
fies that the jump in ¥ * (x, y,s5) ats = 2( y — x) is the same
as that in R * (x, y,5), as given in Eq. (3.10). This last fact
also follows from Eq. (3.20).

With the notation established above, it is now easy to
compare the action of the propagator matrix P(x, y) with
that of the scattering matrix S(x, y). Here S relates the 4
components of u according to

u*(ps) [u“(x,v)
=S s s
[u‘(x,v) ) U= (ys)
and is represented by
T (xy) P (x,p)
S(x,y) = _ .
x.7) R (x5y) T (xy)

It can be shown (see Ref. 3, 5, or 10) that S satisfies

s _ T (x,p) 0] [ a(x) B(x)
Ox R (xy) Ill—y(x) —6(x)
I 0 ]
, 1
X[%’*(x,y) T (x,p) (C18)
as_ 1 %"(x,y)” a(y) B(y)
dy 0 T xnll-y(y) —6»
>([7+(:~c,y) %‘(x,y)]
0 I ’
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Q¥ yx)T ~(x,p) — 7 (%, )R~ (x,¥)

and
um(xs)=u", (s)+u'_(s+x—y)
= [7""(xp)u' ()]6) + Q(yx)
X[T (% p)u™(3,)]1(s)
=00, M7 (x,p)ut(y,)]1(s)
— Q[ 7, )R (x,3,)u” (1) ](s5)

+Q(yx) [T~ (x, p)u=(,)1(s). (C16)

Using Egs. (C15) and (C16), the propagator can be written
in the explicit form

]. (C17)

where0and I denote the zero and identity operators, respec-
tively. Equations (3.1)—(3.8) can be obtained from the oper-
ator equations (C18) by rewriting the latter in terms of the
representations (C11) and (C12).
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