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The one-dimensional inverse scattering problem for inhomogeneous lossy media is considered.
The model problem involves electromagnetic wave propagation in a medium of unknown
thickness with spatially varying conductivity and permittivity. Two inversion algorithms are
developed in the time domain using data obtained from normally incident plane waves. These
algorithms utilize reflection data from both sides of the medium, and one of them also uses
transmission data. These algorithms are implemented numerically on several examples, one of
which includes the effects of noisy data. The possibility of using one-sided reflection data and no

transmission data is reviewed and analyzed.

I. INTRODUCTION

Inverse scattering problems for lossy media are not well
understood, even in the one-dimensional case. Such prob-
lems can be addressed on a variety of levels, depending on
the underlying model of dissipation and the information
sought from the inversion procedure. In this paper a one-
dimensional wave propagation model is considered in which
the dissipation and phase velocity are spatially varying func-
tions; i.e., functions of depth in the medium. The analysis is
carried out in the time domain. Inversion procedures are
developed for simultaneously reconstructing the dissipation
and phase velocity profiles using data obtained from normal-
ly incident plane waves.

In a previous paper' (hereafter called Part I) various
aspects of the direct scattering problem were developed. The
pertinent results from Part I will be summarized in Sec. 11
below. Hence, the reader who is primarily interested in the
inverse problem will find this paper fairly self-contained,
with the exception that the first two sections of Part I should
be consulted for an overview of the problem at hand and also
for an explanation of the notation.

A model problem for the techniques presented here in-
volves one-dimensional electromagnetic wave propagation
in a medium characterized by nonconstant permittivity and
conductivity profiles. A precise statement of the model prob-
lem is given in Part I, Sec. II.

Two inversion algorithms are developed in this paper.
In both of them it is assumed that the medium has finite but
unknown thickness and that reflection data are available on
both sides of the medium. One of the algorithms also re-
quires transmission data. All of these data are in the form of
finite time traces of impulse responses. The specific data re-
quirements are given in Sec. III.

The inversion procedure using transmission data and
both sets of reflection data is shown in Sec. ITI. Two numeri-
cal examples are also given, one of which shows the perfor-
mance of the algorithm using noisy data. In Sec. IV the in-
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version algorithm using only reflection data is given. This is
an iteration procedure, and a numerical example of its per-
formance is also provided. In Sec. V the question of inverting
reflection data from only one side of the medium is consid-
ered. Inversions of this nature have been addressed in pre-
vious works?>* under the assumption that either the conduc-
tivity or permittivity is known a priori. In the present paper,
it is shown that if only a finite time trace of the (reflected)
impulse response is known, and no information regarding
the medium is given, then an infinite number of medium
profiles can be found that produce such a time trace.

A number of authors*® have developed inversion proce-
dures for dissipative media that require two-sided reflection
data as well as transmission data. The inversion procedure
given in Sec. III seems to be more intuitive than these other
procedures since it clearly shows the interplay between the
early time behavior of one reflected signal with the late time
behavior of the reflected signal from the other side. This is
also evident in the inversion procedure in Sec. IV. An inver-
sion procedure using transmission data and one-sided reflec-
tion data has been previously developed,®'! although the
model problem is different from that considered in this pa-
per.

A brief summary is presented in Sec. VI. Also, an exam-
ple is provided that demonstrates that under certain condi-
tions it is possible for two different media to produce the
same two-sided reflection data for time traces corresponding
to one round trip in the medium.

The paper concludes with an Appendix that provides
sufficient conditions for the inversion procedure of Sec. IV to
be well posed.

1l. SUMMARY OF PREVIOUS RESULTS

The equations used in the inverse algorithms presented
in this paper are summarized in this section. The reader in-
terested in the details in the derivations is referred to Part I.

The reflection kernels R * (x, y,s) for the subregion
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1By
[R] = () + B(x)) -I"B( )
FIG. 1. The domain of
R *(x,1,5) for one round trip.
The boundary value of R * at
s =0" and the discontinuity of
R ~ along the line s=2(1 —x)
are also shown.

1 x

R010") = - } () - Bx)

[x, y] satisfy (see also Sec. III, Part I)
R (x5 =2R " (x,5,8) — B(x)R ™ (x,y,5)
—4[4(x) +B(x)]

XJ R*(x,y8)R *(x,y,5 —5')ds',

0

5>0, (2.1)
R*(x,p0%)= —1[4(x) —B(x)], x<y,
R, (%35~ —2R; (x,y5) +B(y)R ~(x,p.s)
—3[4(y) —B(»)] 22)
XJ:R (X, 9,8 )R ~(x,p,s —s5")ds', s>0,

R~ (x,35,0%) =1 [4(y) +B(»)], x<y.

These kernels are discontinuous across the plane
s = 2( y — x). The discontinuities can be related to the in-
ternal properties of the slab (see Fig. 1):

[R*(x, 39523323

'y
—1[4(3) — B(»] exp U B(x')dx'],

(2.3)
[R~(x, 8152358
id
= —1[A(x) + B(x)] exp [f B(x’)dx’].
Furthermore, the kernels satisfy
R*(x,p8) =R (xx+5/2%5), s<2(y—x),
R7(x,p8) =R~ (y—5/27,ps), s<2(y—x).
24)

These last relations express the property that the reflected
field is independent of position of the rear interface for times
less than one round trip.

In Sec. III in Part I, the effect of reciprocity on the trans-
mission kernels 7" * (x, y,5) was analyzed. It was shown that
the two transmission kernels T % (x, y,s) are proportional to
each other as functions of s, as are the propagator kernels
W % (x, y,5). Thus it suffices to consider just one transmis-
sion kernel T"and one propagator kernel . The relations are

T(x,p,5) =T*(x,p,8)/t T (x,y)

=T_(x,y,5)/t_(x’)’), (25)
W(x,y,s) =W (x,p5)t " (x,p)
=W (x,p,8t " (x,9), (2.6)

where
"y
tE(x,y) =exp{ F %f [A(x') F B(x')]dx']. 2.7)

The resolvent equation which relates 7and W to each other
is

T(x,y.5) + W(x, y.s)

+ f T(x, 3,5 — §') W(x, p,5')ds' =O0. (2.8)
0

The propagator kernel W satisfies the imbedding equations
1
W, (x,y8) = > [4(x) + B(x)] {R T (x, $,5)

+ J- Wi(x,y,s )R *(x,p,s — S’)dS'], >0,
0

(2.9)

W, (x,ys5) =—;— [4(y) —B(y] [R (x, y,5)

+f W(x,y,S’)R_(x,y,s—s’)ds’], s>0.
0
(2.10)

In Sec. V in Part I the extension of data from one round
trip, 0 <s <2( y — x), to arbitrary time s is derived. Trans-
mission data and reflection data for 0 <s < 2( y — x) are ex-
tended to s> 2( y — x) by the following equations:

T(x,ys) + f W(x,y,s —s')T(x, p,s")ds’
2(y—x) -
— G(x, ps) = _ J;_z(y_x) W(x,y,s —s)T(x,y,5)ds', 2(y—x)<s<4(y—x), 2.11)
0, ’ s>4(y —x),
R ¥ (x,y,s5) = J:(y—” T(x,y,s—5') [R E(x,p5) + J: W(x,y,s' —s")R * (x, y,s”)ds"]ds', s>2(y—Xx). (2.12)
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lil. THE INVERSION ALGORITHM WITH COMPLETE
DATA

The new algorithm presented in this section utilizes a
complete set of data, namely the two (physical) reflection
kernels R +(0,1,5) and the (physical) transmission kernel
T(0,1,s) for a complete round trip in the slab, 0 <5< 2.
These data are complete in the sense that they can be ex-
tended to arbitrary time s by the extension procedure de-
scribed in Sec. V in Part I. Loosely speaking, the algorithm
combines an early time behavior in R * with a late time
behavior in R T and the properties of the discontinuity in
R 7. This statement and its more precise meaning will be-
come much clearer in this section.

All the data described above and the constant G(1) de-
fined below are needed to recover the two unknown func-
tions A (x) and B(x), 0 <x < 1. From these two functions it
is then easy to find the unknown permittivity and conductiv-
ity as a function of z as well as the total length L of the slab.
However, two more constants are needed to transform from
A and B to € and 0. Thus the complete set of data to simulta-
neously recover both the permittivity and the conductivity
are

R™(0,1,5), O<s<2,
R7(0,1,5), O0<s<2,
T(0,1,5), O<s<?2, (3.1)
G(1),
A
€(0) or e(L),
where

G(x) =1/[t*(0x)t ~(0x)]

= exp [ —f B(x')] dax’
0

[see Eq. (2.7) for a definition of ¢ * (x, )], and G(1) is a
constant associated with the attenuation of the field within
the slab. From the definition of the transmission operators
[Eqgs. (2.18) and (2.20) in Part I], G(1) is a measurable
quantity. The constant / [see Eq. (2.6) in Part I} is a con-
stant related to the total time of measurement. The permit-
tivity €(0) at the left interface [or e(L) at the right] is also
assumed to be known from experimental data.

The inversion algorithm works from one side of the me-
dium to the other. For convenience the algorithm is present-
ed for a propagation from the left-hand side of the slab
towards the right and all the details of the alogorithm will be
shown for this particular choice. Thus, the subregions to be
considered are of the form [x,1] with y being fixed at 1. The
necessary modifications to propagate from the right-hand
side are rather straightforward.

In Eq. (2.3), the jump across the plane s = 2( y — x)
was given as a function of the internal properties of the slab.
This jump can, however, be expressed in an alternative way
by the extension of data presented in Sec. V in Part I. Sup-
pose the reflection data are known for s<2(y —x). In
terms of these data the value just above the plane
s = 2(y — x) can be calculated from Eq. (2.12). The result-
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ing jump is
[R *(x,y) ;23523"

2(y — x)
=f Tx,p2(y—x)—5) [R T (x,p,5")

0

s’

+ f W(x,y,s' —s")R i(x,y,S”)dS”]ds'
0

—R i(xay’z(y—x)_)

2(y — x)
= __f Wix,3p2(y—x) —s')R *(x,y,5')ds

(]

—R Tx,p2(y—x)"). (3.2)

The resolvent equation, Eq. (2.8), has been used to simplify
the expression above. In particular, the jump in the reflec-
tion kernel R ~ for y = 1 can, with use of Eq. (2.4), be ex-
pressed as

(R (xLs))iz20on
2(1 — x)
= —f Wix,1,2(1 —x) —s')R ~(0,1,5")ds’
0

—R7(0,1,2(1 —x)7). (3.3)

It should be noted that only the physical kernel R —(0,1,s),
0<s<2,is used in Eq. (3.3).

From the equations above it is now clear that knowing
R *(x,1,5) and W(x,1,s) for a fixed x gives two linearly
independent relations between the two unknown functions
A(x) and B(x) at the point x. This can be seen by combining
Eqgs. (2.3) and (3.3) together with the early time behavior of
R *(x,1,5) in Eq. (2.1),

2(1 — x)
f Wix,1,2(1 —x) —s')R ~(0,1,5")ds’
0

+R7(0,1,2(1 —x)7) (3.4)

1
=—41— [4(x) + B(x)] exp U B(x')dx'} ,
R +(x91’0+) = "‘i [A(X) —B(x)]‘

Before describing the general inversion algorithm, the
initialization of the procedure is addressed. From the data in
Eq. (3.1) the resolvent W(0,1,5), 0 <s<2, is obtained by
solving Eq. (2.8) at x = 0. Equations (3.4) are then easily
solved for A(x) and B(x) at x = 0 and the initialization of
A(x) and B(x) is completed.

The inversion scheme can now be written down in a
general setting. As in earlier works,>'? which used only the
R * equation [Eq. (2.1)], a grid of points is established in
(x,s) space. The mesh is uniform in each direction, with
As = 2Ax, which takes advantage of the directional deriva-
tive nature of Eq. (2.1). Now Egs. (2.1) and (2.9) are dis-
cretized on this grid. The calculation proceeds from left to
right across the grid, starting at x =0 and marching to
x = 1, with 0<s<2(1 — x). In its most basic form, the inver-
sion algorithm for determining 4 (x) and B(x) is as follows.

(1) Equation (2.9) is used to explicitly step W(x,1,s)
forward in the x direction to the next set of x grid points.

(2) Equation (2.1) is used to implicitly step a portion of
R *(x,1,5) forward in the x direction to the next x grid point
ats=0.
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(3) Equations (3.4) are used at these new x grid points
to obtain 4 (x) and B(x).

(4) Equation (2.1) is used to implicitly step the remain-
ing R *(x,1,s) data forward in the x direction to the next set
of x grid points.

(5) Now repeat steps (1) through (4) to move one step
deeper into the slab.

This procedure can be modified in a number of ways to im-
prove its numerical accuracy. Details regarding the numeri-
cal implementation are not discussed here.

There are some interesting points to notice in the inver-
sion algorithm outlined above. First, the transmission data
T(0,1,5) are used only in the initialization step, and there-
after it is the resolvent of 7' that is used to step into the
medium. Second, since the calculation is being carried out in
the plane y = 1 (see Part I, Fig. 4), the R ~(0,1,s) data are
constant on lines of constant s. Therefore, it is not necessary
to propagate R ~ into the medium via an integrodifferential
equation; rather, it is the physical data R ~(0,1,s) that ap-
pears in Eq. (3.4).

The final step in the inversion scheme is to calculate the
depth z(x), the total length L, the permittivity €(z), and the
conductivity o(z) from the profile functions 4 (x) and B(x),
0 <x < 1. From the definitions of A(x) and B(x), given by
Egs. (2.15) and (2.16) in Part I, it is easy to obtain the

True

....... Reconstructed

Relative permittivity
I

Depth 2
$.00E-03 [—
———— True
....... Reconstructed
4.00E-03
& 3.00E-03
H
£
g 2.00£-03
1.00E-03
0.00E+00 L
] 2 4 6 8 10
Depth z

FIG. 2. The relative permittivity and conductivity profiles in example 1.
The depth is given in m.
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following relations:

) * )
z(x) =—~——f exp [ — f5 A(x")dx" ]dx’,
Vo€ (0) Jo °
O<x<«l, (3.5)
€z(x)) = e(O)exp[2J A(x')dx’] , (3.6)
0
ofz(x)) = — 6(0)B(x)exp[[2 So A(x")dx'] ‘ (3.7)
5 |—

Travel time a

| | |
2 3
Travel time s

o
-

1(0,1,5)

-2

S I IS SN
1 2 3 4
Travel time s

FIG. 3. The physical scattering kernels R * (0,1,s) and T(0,1,s) for exam-
ple 1. Two round trips are shown. The value of 7(0,1,0*) is marked with a
solid dot.
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¥ (0,13)

-4 | L |
0 1 2 3 4
Travel time s

FIG. 4. The resolvent kernel W(0,1,s) for example 1. Two round trips are
shown. The value of W(0,1,0*) is marked with a solid dot.

In particular, the total length L of the slab is

l Jq x’ ” ” '
L=—u-—— | exp[ — f5 A(x")dx"1dx'. (3.8)
VHo€(0) Jo Pl :

The results of some inversions are now shown. In all of
the examples in this paper, synthetic R * data were generat-
edusing Egs. (2.1) and (2.2), and T data were generated via
Eq. (3.15) in Part I. The procedure for doing this was to first
choose an (e(z),0(z)) profile, convert to an (4(x),B(x))
profile, generate R * and T for two different step sizes (Ax),
and then extrapolate those results to obtain the data for the
inverse problem. The accuracy of all numerical algorithms
was verified using the exact solutions displayed in Part I,
Appendix B. All calculations were performed in single preci-
sion on a VAX 11/750.

Example I: The (€,0) profiles in this example are ap-
proximately piecewise constant, as shown in Fig. 2. (Recall
that the derivations required that € be smooth.) The length
of the medium is 10 m and permittivity relative to that of free

Travel time s
2.0 1.5 1.0 0.5 0.0

Reflecfion kemels

0.0 0.5 1.0 1.5 2.0
Travel time s

FIG. 5. The physical reflection kernels R * (0,1,s) for example 1 for one
round trip. The solid line is the time trace for R *+ and should be read from
left toright using the lower scale in the figure. The dotted line shows R — and
should be read from right to left using the upper scale.
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104

102

96

3.00E-03

2.00E-03

Conduuctivly (mho/m)

1.00£-03

0.00E+00 | L l { L
0 2 n s 8 10

Depth

FIG. 6. The relative permittivity and conductivity profiles in example 2.
The solid lines are the true profiles and the broken lines and the circles are
reconstructions using noisy data. Each reconstruction uses 129 data points,
but for graphical clarity not all circles are displayed. For an explanation of
the noise, see the text. The depth is given in m.

space is shown. Scattering data for this medium are dis-
played in Fig. 3 for two round trips in the medium, although
it is only the data for 0 <5 < 2 that are used in the inversion
algorithm. It is difficult to see the discontinuities in
R *(0,1,5) at s =2. Figure 4 shows the resolvent kernel
W(0,1,s), which is obtained from Eq. (2.8). Notice the com-
pact support, with W vanishing for s> 2. The R * data are
shown differently in Fig. 5, with the R * time scale running
along the bottom axis and the R ~ along the top. The spikes
in the two time traces line up at corresponding regions of
high reflectivity in the medium. Those traces decay toward
zero quite rapidly due to the absorption of energy in the
medium and the reflection of energy out of the medium.

The reconstructed profiles are shown in Fig. 2. These
reconstructions used 513 data points from each of the time
traces for R * and 7. There is essentially no difference if 257
points are used instead.

Example 2: The performance of the inversion algorithm
with noisy data is now examined. The medium profiles are
shown by the solid lines in Fig. 6. The exact scattering data
for these profiles are shown by the solid lines in Fig. 7. Gaus-
sian white noise was then added to the kernels, resulting in
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the corrupted data shown by the broken lines in Fig. 7. The
signal to noise ratio for these data is approximately 1.8. The
noisy data were smoothed using two applications of a five
point linear least squares smoother. (The first application
left too much high-frequency noise in the data.) The broken
line in Fig. 6 shows the resulting reconstructions using 129
data points. The reconstruction was carried out a second
time with noisy data having signal to noise ratio of approxi-
mately 6.8. The results are much improved, and are shown
with circles in Fig. 6. In the absence of noise, the reconstruct-
ed profiles are indistinguishable from the original profiles.

The definition of the root mean square signal to noise
-0.60 il L L ratio (rms S /N) that was used above is

0.0 0.5 1.0 1.5 2.0
2 _ 172
rms S/N = [J- [K(0,1,5) —K]zds] /20).
(1)

0.00

-0.20

R(0.1.)

Travel time s

0.00

Here, o denotes the standard deviation of the noise, K(0,1,s)
denotes a noisy scattering kernel, and
-0.20

R(0,19)

2
E:lf K(0,1,5)ds.
2 Jo

-0.60 | l | IV.INVERSION USING REFLECTION DATA FROM BOTH
00 05 1.0 15 20 INTERFACES

Travel time s

In the previous section an inversion algorithm was pre-
sented that utilized both of the reflection kernels and the
transmission kernel for one complete round trip in the slab.
These data are sufficient to recover both 4 and B (i.e., € and
o) for the medium. In this section an inversion algorithm is
given that uses only the reflectiondata R * (0,1,s) foracom-
plete round trip. More explicitly, the data are a subset of
(3.1), namely, R *(0,1,5), 0<s<2, and constants / and
€(0) [ore(L)].

The algorithm is an iteration procedure. It has the prop-
erty that the iterates may not converge, and if they do con-
verge, the result may not be the correct solution. However,
sufficient conditions for convergence to the correct solution
are supplied in the Appendix.

00 03 ol o 18 20 The basis for the inversion algorithm is Egs. (2. 11)1 and
. , (2.2). Begin by setting y = 1 in Eq. (2.1) and using the di-
FIG. 7. The physical scattering kernels R ° (0,1,5) and T(O,L,s) forexam - tional %il:rivative niture of that equation to rewrite Eq.

ple 2. The solid lines are the time traces without noise and the broken lines e
show the noisy data with rms S /N = 1.8. For further details, see the text. (2.1) in integrated form as

1(0,1,3)

R*(x,1,s) =R *(0,L,s + 2x) —f (BG)R (¥, Ls + 2(x — x))
0

+4[4(x') +BG&)IR Y * R )X, 1,5 + 2(x — x"))}dx), (4.1)
where the * operation denotes convolution in s,
(f28)(x,38) = f S(x, p:s)8(x, p,s — 5')ds'. (4.2)
0
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Similarly, in integrated form, Eq. (2.2) becomes (with x = 0)

1
R=(0,7.5) =R ~(0,Ls+2(1—) —f {B(Y)R (0,55 +2(¥ — )
¥y

—3[4(y) —B(¥)IR ™ «R7)0,ys+2(y —p)}dy.

(4.3)

Notice that the first term on the right-hand side of Egs. (4.1) and (4.3) is the given reflection data. Denote this by

F£(s) =R *(0,1,5).

(4.4)

Now Eqgs. (4.1) and (4.3) form the basis for an iteration procedure given by

R} (x1,s)=F*(s+2x) ——f {B,(x)R;(x'\15+2(x—x"))
0

+1[4,(x) +B,(x)] (R} *R}F)x,1,s+ 2(x — x))}dx',

with 0<x<1,0<s<2(1 —x),n=1,2,3,.., and

4.5)

1
R (0,p5) = F~(s+2(1 =) —f {B,(Y)R7 (0,55 +2(y =)
y

—3[4.()) =B, (V)R *R.7)0,Ys+2(y —y)}dy,

with O<y<1,0<s<2y,andn = 1, 2, 3,... . The functions 4,
and B, are defined as
An (x) = 2[R n— (0,x,0+) —R n+ (x,l,0+)],
4.7)
B,, (x) = 2[R n (O,x,o+) +R n+ (x,1p0+)]9

which is suggested by the initial conditions given in Egs.
(2.1) and (2.2). One method for starting the iteration is to
choose

R [ (x,1,5) = F* (s + 2x),

(4.8)
R (0,p8)=F~(s+2(1—p))
Now if the iterates converge,
RXR %, (4.9)

then it is natural to define 4 (x) and B(x) by Eq. (4.7), with
subscript n removed from all quantities. Also, notice that if
the iterates converge, then the limit functions given in Eq.
(4.9) agree with the given reflection data when x is set equal
to 0 and y is set equal to 1.

It is interesting to note that the initialization procedure
given in Eq. (4.8) is a generalization of the nondissipative
Bremmer approximation given in Ref. 12. It corresponds to
ignoring dissipative effects on the reflected fields as well as
ignoring multiple scattering effects. Hence, in a weakly dissi-
pative, weakly scattering medium, Eqs. (4.7) and (4.8)
themselves yield a good approximation to 4 and B given by

A(x)=A(x) =2[R[(0,1,2(1 —x))—R ' (0,1,2x)],

(4.10)
B(x)=B,(x) =2[R[(0,1,2(1 —x))+ R " (0,1,2x)].

Continuing the iteration can be thought of as bringing high-
er-order effects into the calculation.
Sufficient conditions exist to guarantee that the scheme
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FIG. 8. The relative permittivity and conductivity profiles in example 3.
The solid lines are the true profiles, and the broken lines are the initial ap-
proximations given by Eq. (4.10). The dotted lines show the profiles after
20 iterations. After 60 iterations the profiles coincide with the solid lines.
The depth is given in m.
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FIG. 9. The physical reflection kernels R * (0,1,s) for example 3.

does converge to one and only one solution. These are condi-
tions on the physical reflection data and therefore have prac-
tical implication. The conditions are

|F*(s)|<f, O0<s<2, (4.11)

where f = (11/422 — 50)/27-=0.059 06. In the Appendix,
it is shown that if the condition (4.11) is satisfied, then the
solution of the inverse problem, (4,B), exists, is unique, and
depends continuously on the data F *. Thus, in this case,
reflection data alone suffice to reconstruct 4 and B.

These positive results do not imply that any two func-
tions F * satisfying (4.11) correspond to scattering data for
some physical medium. This is because the reconstructed
B(x) may be greater than O, a result that is nonphysical for
the model problem, Eq. (2.1) in Part I. Also, condition
(4.11) is not a necessary condition for convergence, as will
be apparent from the following example.

Example 3: The € and o profiles are shown in solid lines
in Fig. 8, and the corresponding R * data are shown in Fig.
9. Notice that these data do not satisfy condition (4.11).
Nevertheless, the iterates converge to the original profiles in
Fig. 8. The broken lines in Fig. 8 display the estimates of €
and o given by the initialization procedure in Eqs. (4.8), or
equivalently in Egs. (4.10). After 20 iterations the estimates
of € and o are given by the dotted lines in Fig, 8. After 60
iterations the estimates coincide with the original profiles.
Continuing the iteration procedure produces no change in
the estimated profiles.

V. INVERSION USING REFLECTION DATA FROM ONE
INTERFACE

It was shown in the previous section that under certain
circumstances, reflection data from both interfaces can be
used to uniquely reconstruct 4 and B. In this section some
aspects of reconstructing 4 and B are considered for the case
in which the data consist onlyof R * (0,1,s) for 0 < s < 2. This
is an important problem since it corresponds to the case in
which all data measurement is carried out on one side of the
slab and consequently, a semi-infinite medium can be con-
sidered. In such a case, the parameter / defined in Part I, Eq.

1690 J. Math. Phys., Vol. 27, No. 6, June 1986

(2.6), is given by

I=1t,../2, (5.1)

where data is collected for physical time ¢ in the interval
0 <t <t,,,- Thus, only a finite portion of the medium can be
probed, namely, that portion for 0 <z < L, where L is given
in Part I, Eq. (2.6), with / as in Eq. (5.1) above.

In this case it seems intuitively clear that nonunique
solutions (4,B) should exist, provided the data correspond
to a physical reflection kernel. The intuition here is that a
single function of s (for 0 <s<2) cannot be used to recon-
struct two independent functions 4(x), B(x) forO<x < 1.

If it is known a priori that the medium is nondissipative
so that B =0, then Eq. (2.1) can be used in an inversion
algorithm to recover 4 (x). This has been shown in Refs. 2
and 12. More generally, if the conductivity o(z) is known,
then Eq. (2.1) can be used to recover the permittivity €(z) or
vice versa. Such problems have been considered in Refs. 2, 3,
and 13. Integral equation methods for solving problems of
this latter variety have been considered by Bolomey et al.'*
and Tijhuis."’ It has also been shown by Corones et al.>*'?
that if the a priori information about conductivity (or per-
mittivity) is incorrect, then the resulting reconstruction can
degrade somewhat dramatically.

The question now addressed is, “What profiles pairs
(4,B) [or (e,0)] produce the same one-sided reflection
data, R * (0,1,5), for 0 < s <2?” A partial answer to this ques-
tion will be given by considering media with “small” profile
functions 4 and B. In this case the explicit dependence of the
refiection data on 4,8 can be given asymptoticaily.

To carry this out, set y =1 in Eq. (2.1) and again use
the directional derivative nature of that equation to obtain
for0<s<2(1 —x),

R*(x,1,5) =1 [B(x+5/2) —A(x +5/2)]

X + 5/2
+ {B(x")R *(x',1,s + 2(x — x"))

+1[AX) +B)I(RT*R™)

(x',1,s + 2(x — x'))}dx'. (5.2)

This integrated form of Eq. (2.1) is well suited to the study
of the direct problem, while Eq. (4.1) is better suited to the
inverse problem. Now define a sequence of iterates given by

R,(x,1,s) =} [B(x +5/2) —A(x +s/2)],
R, (x1,5) =} (B(x +/2) — A (x +5/2))

x + 5/2

+ {B(x)R, (x',1,s + 2(x — x"))

X

+1[4A(x") + B(x)](R, *R,)

(x',1,s + 2(x — x"))}dx', (5.3)
where n = 1,2,3,... . Define A by

A= JSup {|4(x)|,|B(x)|}.

<X <

For small A it follows that the reflection data, R * (0,1,5), are
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asymptotic to R,(0,1,s), with
R +(O,1,S) ~R2(0,I,S)

1 s s /2 I\ ot
= (B (—) —A (—) 14 B(x")dx
4 2 2 )
+ 0(4?%),A—0. (5.4)

Thus, two profile pairs, (4,, B,) and (4,, B,), produce the
same reflection data (asymptotically) for 0 <s <2 if

(Bo(x) — Ap(x)) (1 +f Bo(x')dx')
(1]

= (B,(x) —Al(x))(l +f B,(x’)dx’). (5.5)
0

Notice that it follows from Eq. (5.5) that 4, = 4, if and only

if B,=B,.

It is interesting to consider Eq. (5.5) for the special case
involving a homogeneous, dissipative medium. Thus, as-
sume that both €(z) and o(z) are constants denoted by € and
o, respectively. Then 4y,(x)=0and By(x) = — B = —lo/
€, where Bis small. An equivalent, nondissipative scatterer is
then obtained from Eq. (5.5) by setting B, (x)==0 and solv-
ing for A, (x) [with corresponding permittivity €, (z) ]. This
yields

A (x)=B8(1—-Fx), 0<x<], (5.6)
and so, from Eqgs. (3.5) and (3.6),
I [ , Bx' )
zZ(x) = f exp[ — Bx (l — ——)]dx R (5.7)
Vet o 2
€.(z(x)) =€eexp [2Bx(1 — Bx/2)]. (5.8)

Notice from Eq. (5.8) that €,(2) is an increasing function of
z, while Eq. (5.7) shows that the depth L, of this equivalent
medium has decreased from the original depth L, to

L =L, J: exp [ — Bx' (1 -—é;—’)] dx'.

These conclusions are in agreement with the numerical re-
sults given in example 1 of Ref. 2, which suggest that equiva-
lent scatterers that are obtained by decreasing o result in an
increasing permittivity profile and a more shaliow medium.

(5.9)

VI. SUMMARY AND CONCLUSIONS

In Sec. III a new time domain inversion procedure for
lossy media is developed. The algorithm uses the set of data
given by (3.1). With the concept of “extension of data” de-
veloped in Part I, this set of data can be used to derive the
entire time trace of the scattering kernels. However, data
from only one round trip are explicitly used in the algorithm.
The possibility of using longer time traces is not addressed in
this paper.

At first sight it may seem a little surprising that three
functions of time (R * and T) have to be given in order to
obtain the two unknown functions 4 (x) and B(x) [or €(2)
and o(z)]. It is, however, interesting to observe that other
authors*™® use similar data sets to invert lossy profiles. The
next example shows the importance of transmission data for
reliable reconstructions when data from only one round trip
are used.

Example 4: In this example it is shown that two different
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FIG. 10. Therelative permittivity and conductivity in example 4. The depth
is given in m.

media can produce virtually identical R * reflection data for
times less than one round trip through the slab, while at the
same time producing different transmission data. The two
different profiles are shown in Fig. 10 and the corresponding
scattering data are given in Fig. 11. The dotted line profile
was found by the iteration scheme presented in Sec. IV. It is
seen that reflection data are virtually identical up to one
round trip. At later times the reflection data are different as
well as their discontinuities at one round trip. The transmis-
sion data, however, are different for all times. The two pro-
files are thus equivalent in that they are indistinguishable by
just using reflection data for times less than one round trip.
Consequently, transmission data are necessary (in general)
for reliable reconstructions.

An iterative inversion scheme using only reflection data
for one round trip is presented in Sec. IV. The limitations of
this inversion algorithm are illustrated by the example in this
section. However, sufficient conditions for convergence of
the iteration scheme are derived in the Appendix. Notice
that this scheme is much more computer intensive than that
of Sec. III, with one step of the iteration taking as long as the
entire inversion procedure when transmission data are also
available.

The effect of using reflection data from one side only is
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FIG. 11. The physical scattering kernels R * (0,1,s) and T'(0,1,s) for exam-
ple4. Two round trips are shown. The solid (dotted) lines correspond to the
solid (dotted) line profiles in Fig. 10.

discussed in Sec. V. It is shown that for weakly scattering
media (in which only the lowest-order multiple scattering
effects are important), an entire family of media can be gen-
erated that produce the same one-sided reflection data for
one round trip in travel time. In particular, this implies that
for a semi-infinite medium, it is impossible to determine both
€(z) and o(z) from reflection data using normal incidence.
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APPENDIX: CONVERGENCE OF THE ITERATION
PROCEDURE

This appendix shows an analysis of the iteration proce-
dure given in Sec. IV. In particular, it is shown that the
condition in Eq. (4.11) guarantees the convergence of the
iterates, the uniqueness of the solution and the continuous
dependence of the solution on the data F *.

To begin, suppose the reflection data are bounded by a
constant f over one round trip in the slab, i.e.,

|[F*(s)|<f, O<s<2. (A1)

Does it follow that all the iterates R F, given in Egs. (4.5)
and (4.6), are uniformly bounded? Assume there is a con-
stant b such that, for all »,

|R ¥ (x,1,5)|<b, 0<x<1, O0<s<2(l—x),
IR (0,ps)|<b, 0<y<l, 0<s<2y. (A2
In this case, it follows that
|4, (x) + B, (x)| =4|R ;7 (0,x,0)|<4,
(A3)

|B, (x)|<4b,
from Eqs. (4.7). Consequently, from Eq. (4.5) it is seen that
IR (x%,1,8)|[<f+ 4b%x + 2b°x(s + x)
<Sf+4b% 4207, (A4)
for 0<x<1,0 <5 <2(1 — x). Similarly, it can be shown that
|R 71 (0, 3,8)|< f+4b%+2b3, (AS5)

for 0<y<1, 0 <s < 2y. In order to satisfy the uniform bound
on the iterates given in Eq. (A2), it therefore suffices to
require that

[+ 4b> 4+ 2b7<b. (A6)
The object is to now choose the largest value of fsuch that a

positive b exists which satisfies Eq. (A6) and therefore Eq.
(A2). This occurs when

8b+6b%=1 (A7)
or

b=by= (22 — 4)/6=0.115 07, (A8)
and consequently

f=fo= (11422 — 50)/27=0.059 06. (A9)

Having shown that it is possible for the iterates to re-
main uniformly bounded, it now must be demonstrated that
the iterates actually converge. This follows from the contrac-
tion mapping principle, or equivalently from a comparison
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of successive iterates. To see this, assume
|F£(s)|<fi<fo O0<s5<2,
so that

IR F(x,1,9)],[R (0,5 |<b, <bo

(A10)

in the appropriate triangular regions. Define for n = 1,2,...
i |

(with R - =0)
c, = sup [IR}(x,1s)—R,,(xL1s)]
(x, y,5)

IR, (0,y5) —R,;_,(0,95)] (All)

with arguments x, y,s in the relevant domains. Now from Eq.
(4.5) it follows that

R (ols) =R (x,l,s>l<f IB,(R+ =R ) +R; (B, —B,_\)
(4]

+2Rn_(0rx'10+)[Rn+ *Rn+ _Rn+——1 *Rn+—l]

+2[R,;7(0X,07)—R ",

where
k=8b,+6b% <1, (Al13)

this last inequality following from the fact that b, <b,. [In
Eq. (A12) the = denotes convolution in s and the suppressed
arguments in B, and the R ™ iterates are x' and
(x',1,s + 2(x — x')), respectively.] Similarly, it can be
shown that

IR 7% 1(0,3,8) — R 7 (0,.5)|<ke,,
and consequently

cn +1 <kc n
Hence, the iteration converges since k < 1. Standard argu-
ments now show that if Eq. (A 10) is satisfied, then the iter-
ation converges to a unique limit as long as the initial iterates
R i are bounded by b, < b,.

Finally, to show continuous dependence on the scatter-
ing data, suppose two sets of reflection data F * and F *
both satisfy Eq. (A10) and

|F £ (s) —F = (s)| <e.
Denote the corresponding iterates by R * and R x. All of
these iterates are uniformly bounded by some b, < b,. Define

d,= sup [|R;(x1s5)—R,](x1s5)]
(x, y,5)

IR, (0,y,5) — R (0, 9)]], (Al4)
with x, y,s in the appropriate domains. Using Eq. (4.5) with
each set of data then yields [in a manner similar to that in
which Eq. (A12) was derived]

IR (x1,) —R 7 (x,15)| <€ + kd,,
where k is given by Eq. (A13). Consequently, it can be
shown that

d,, <€+kd,.
Since d, < € it follows from (A15) that

n—1

d,<e ¥ ki<
j=o

(Al5)

€
1-k

b
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(0x',0")](R,_, *R " |)|dx'<ke,

(A12)

for n = 1,2,... . Hence,
|d(x) — A(x)| <4€/(1 — k),
|B(x) —B(x)| <4e/(1—k),

where k < 1. This established the continuous dependence of
A and B on the scattering data.
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