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Given an electric network E• which has M meshes and P node-pairs, its electric dual El will have P meshes 
and M node-pairs and its classical mechanical analog M! will have M+ 1 nodes, M independent node-pairs, 
and P independent node cycles. A second mechanical system M•, the classical analog of El, will have M 
cycles and P node-pairs. If, for example, M= 2, P= 3, the systems E• and M•, analogs in the Firestone or 
"mobility" method, will be governed by two mesh equations, expressing that the algebraic sum of the 
voltages or velocities around any loop is zero; the systems Ei and Mj-• also Firestone analogs, will satisfy 
two node equations, expressing that the algebraic sum of the currents or forces leaving any node is zero. 
These four sets of equations are identical, interchanging symbols suitably. The consideration of the four 
systems, Ev, E6 My, Mf, forming a complete set, shows the advantages of the Firestone over the classical 
system of analogies and suggests a systematic use of duality in mechanical as well as in electrical systems. 

1. INTRODUCTION 

HE purpose of this paper is to present a new way 
of introducing the "mobility" system of electro- 

mechanical analogies advocated in 1933 by Dr. F. A. 
Firestone2 Along the way we shall hit upon an interest- 
ing method of analyzing a mechanical system, first 
suggested by Dr. Firestone •,2 and recently developed 
by Dr. H. M. Trent? Our idea is to bring together two 
types of transformation much employed in system 
analysis and synthesis, electromechanical analogy and 
duality, and to make complete use of their possibilities. 
We shall assume that the reader is familiar with the 

"classical" system of analogy (force--emf, velocity-- 
current) and with duality in electric networks (exchange 
of current and voltage, exchange of series and parallel 
connections), but not with Dr. Firestone's system. 
The symbols used will be for the most part those recom- 
mended jointly by the ASME and the AIEE. 

2. THE FUNDAMENTAL FOUR-SYSTEMS SET 

Consider an electric system E• and the mechanical 
system Mi which is its classical analog. As simple 
examples we choose a series circuit (L, R, S) containing 
a voltage generator v(t) (Fig. 1), and its mechanical 
analog (M, D, K), acted upon by a force f(t) (Fig. 2). 
The justification for this correspondence is that the 
differential equations for the two systems are identical, 
with only a change in symbols (L-M, i-v, etc.): 

di 

L--+ Ri-b Sq = v (t), (1) 
dt 

dv 
M--+ Dv+ Kx= f(t). (2) 

dt 

The electric system E• and the mechanical system 
Mi are thus two distinct examples of realization of 

• F. A. Firestone, J. Acoust. Soc. Am. 4, 249 (1933). 
• F. A. Firestone, J. Appl. Phys. 9, 373 (1938). 
a H. M. Trent, "An Alternative Formulation of the Laws of 

Mechanics" (Naval Research Lab., September, 1950); Am. Soc. 
Mech. Eng. Paper No. 51-A30, (November, 1951). 

one and the same mathematical equation. Inductance 
L in example Ev is the analog of mass M in example 
Mr, etc. 

Consider next the same electric system E• and 
another electric system E•, corresponding to each 
other by duality. Here system E• will consist of a current 
generator i(t) in parallel with three branches C, G(= R -•) 
and I'(=L -•) (Fig. 3.). The justification for this second 
type of correspondence is that the differential equations 
for the two systems are identical, with only a change 
in symbols (L-C, i-v, etc.): 

Ld•+ Ri+ S f idt=v(t), O) 
f C--+Gv+I' vdt=i(t). (3) 

dt 

The two electric systems Ev, E• and the mechanical 
system Mf are now three distinct examples of realiza- 
tion of one and the same mathematical equation. We 
can arrange their symbols in the following way: 

E• 

The horizontal double arrow is for "classical analogy": 
the vertical double arrow is for "duality." Obviously 
a fourth system is missing (a fourth realization of the 
same equation!). This mechanical system M• should 
be the classical analog of E•, and should correspond to 
M/by (mechanical) duality. We don't know yet what 
this system is, but it is easy to write its differential 
equation, deriving it from Eq. (2) in the same way 
Eq. (3) can be derived from Eq. (1). We obtain 

K dt D M 

System M• must then consist of three mechanical 
elements K, D, M in series, through which the same 
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• L ? R 

Fro. 1. A series elec- 
tric circuit •.•. 

force fit) will be acting; the sum of the three relative 
velocities df/Kdt, fiD, ,ffdt/M, must equal the velocity 
v(t) imposed at some point of the system. The system 
shown on Fig. 4 satisfies these conditions. It contains a 
mass M, a dashpot of viscous resistance D and a spring 
of stiffness K in series, and a crank-and-rod velocity 
generator, also in series. (In all our drawings we shall 
assume that no solid friction is present anywhere, and 
a viscous resistance will always be explicitly represented 
by a dashpot.) 

The set of four systems E• E•, Ms, M, is obviously 
a complete set (like two blue and red triangles and two 
blue and red circles). Until we had this complete set 
before our eyes we could not have a good understanding 
of the possibilities of the two transformations, analogy 
and duality. 

3. A NEW ANALYSIS OF MECHANICAL SYSTEMS 

Equations (1) and (3) for the electrical systems are 
the simplest examples of Kirchhoff's Laws. Kirchhoff's 
voltage law states that the algebraic sum of the voltages 
around any closed circuit or mesh must be zero. 
System E, has only one mesh and one unknown current 
i(t) (Fig. 1). In general there will be in an electric 
network a certain number M of independent meshes, 
and their equations will determine the M unknown 
mesh currents. 

Kirchhoff's current law states that the algebraic 
sum of the currents leaving any node must be zero. 
System E• has two nodes, A and the ground g (Fig. 3) 
(points at the same potential constitute a single node). 
Nodes A and g provide the same equation (3); the only 
unknown is the voltage across the •ode-pair Ag. In 
general there will be in an electric network a certain 
number P of independent node-pairs, and their equa- 
tions will determine the unknown voltages across the 
P node-pairs. 

Consider now the mechanical system Ms (Fig. 2). 
We may say that all the points in a mechanical system 
which are rigidly connected to each other constitute a 
single node. This system then has two nodes, the 
massless horizontal connecting rod AA and the ground 
gg. Equation (2) expresses that the algebraic sum of 
the forces applied to node A is zero. From the stand- 
point of classical dynamics (--Dr), (--Kx), and f(t) 
are applied forces, while --M(dv/dt) is an inertial or 
d'Alembert force. In general there will be in a mechan- 
ical system a certain number P of mobile nodes, in 
addition to the "fixed" ground g, and thus P independ- 

ent node-pairs. In this paper we confine ourselves to 
the simple case where every mobile node in the system 
is defined in space by a single coordinate, for the moment 
a translational coordinate x. The configuration of the 
system will then be defined at any time by the values 
of P coordinates, and the P equations of the system 
will express the Newton-d'Alembert law that at every 
mobile node the algebraic sum of the applied forces 
and of the inertial force (if present) must be zero. These 
P equations will determine the unknown velocities of 
the mobile nodes with regard to ground. 

The analysis of system M• (Fig. 4) brings a surprise. 
Every term in Eq. (4) is a velocity. The equation 
expresses that the sum of the relative velocities of 
node A with regard to node B (across the spring), of 
B to C (across the dashpot), and of C (the mass) to the 
wall gg (which is here the reference system and thus 
serves the role of "ground") is equal to the velocity 
imposed to node A with regard to gg. Thus, if we consider 
the closed loop (gABCg), Eq. (4) expresses the correct 
ff unfamiliar statement that the algebraic sum of the 
relative velocities of every node in the loop with regard 
to the one on the right must be zero2 .• 

The generalization of this is obvious on the basis of 
what we know of duality and analogy. In such mechan- 
ical systems as will be considered in this paper there 
will be a certain number M of independent loops, and 
their equations (Zv= 0 around each loop) will determine 
M unknown forces, F•, F•,... Fu, the force F} 
acting through all the elements connected in series 
around the kth loop. 

It is well known that an electric network can be 

analyzed either on a mesh basis (21v=0, mesh currents 
unknown) or on a node-pair basis (2;i=0, voltages 
across node-pairs unknown). In most cases one of these 
methods will lead to fewer equations than the other. 
It appears that a mechanical system of the type 
considered here can be analyzed either on a node-pair 
basis (2;f=0, relative velocities unknown), or on a loop 
basis (Zv = 0, forces unknown). We may call for short 
the Newtori-d'Alembert equations 2:f= 0 the dynamical 
or the force equations, and the new equations 2•v=0 
the k/nemat/c or the velocity equations of the system. 

This new, circuital formulation of the laws of 
mechanics, in contrast with the classical, nodal formula- 
tion, has been emphasized in a recent paper by Dr. 

//////lift/Ill/1/Ill//////////////////////IX 

Fro. 2. A mechanical system M!, the "classical" analog of the 
electric circuit E, in Fig. 1. AA is a rigid massless rod constrained 
to remain horizontal. D is a dashpot. 
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H. M. Trent, using a different approach from that of 
the present paper." 

4. A PHILOSOPHICAL ASIDE 

The reader may wonder how it is possible to derive 
the dynamical behavior of a system from kinematic 
equations. This question arises becanse we are accus- 
tomed in dynamics to a mistaken emphasis on forces, 
traceable to a metaphysical attitude current in New- 
ton's times. From this emphasis oa force considered 
as the "cause" of motion, there followed in electricity 
an emphasis on electromotive force considered as the 
"cause" of the current flow. To one without such 

preconceptions, it should be clear that in Ohm's law 
E=IR, as well as in Newton's law f=ma, the general 
gas law PV=nRT, or any natural law whatsoever, 
there is no cause and no effect, there are only variable 
physical quantifies permanently connected by a 
mathematical equation. For instance, whenever any 
two of the quantities E, I, R are known at any time t, 
Ohm's law allows us to find the third one; if I and R 
happen to be known, it would make little sense to call 
them the "cause" of E, and call E their "effect." The 

electric circuit Ei, cor- 
responding by duality G F •".-, 
to the series circuit E• 

in Fig. 1. I__[ 

same remark applies throughout the field of classical 
physics. 

In the analysis of electric circuits we make use of 
three such laws or relations, which are (using p for 
short either for d/dr or for j•o in the alternating steady- 
state) 

•= q/C= i/Cp, v= Ri, v = Lpi. (5) 

Similarly in the analysis of mechanical systems we 
make use of three relations, relative to a spring, a 
dashpot, and a mass: 

f=Kx=Kv/p, f=Do, f=Ma=Mpv. (6) 

Each one of these relations is characteristic of a 

single mechanical element, and relates the force tkrougk 
the element to the velocity across it. It is basically 
indifferent (when K, D, and M are given) whether we 
solve them for the force or for the velocity and combine 
these in the dynamical or in the kinematic equations. 
Forces and velocities will be connected in either case. 

5. THE •MOBILITY" SYSTEM OF 
ELECTROMECHANICAL ANALOGIES 

A remark forces itself upon us at this stage of the 
argument. Any one of the four systems E•, Ei, M.t, M, 

Fro. 4. A mechanical system Mo, the classical analog of the 
electric circuit E/ in Fig. 3. The dashpot casing and the mass 
glide without friction on the plane gg'. 

which make up the complete set can be described 
equally well by node equations or by mesh equations, 
and these equations are identical for the four systems 
if we disregard the changes in symbols. Let us assume, 
for e.xample, that the electric network Ev has two meshes 
and three node-pairs. Then it will be most simply 
described by two mesh equations, Ev=0 (mesh currents 
unknown). Then Ei, which corresponds to Eo by duality, 
will be most simply described by the same two equa- 
tions, which are now node equations, Y.i=0 (voltages 
across node-pairs unknown). Then M/, the classical 
analog of E•, .will be most simply described by the 
same two equations, which are here Zf= 0 for every node 
(relative velocities unknown); and M,, the dual of 
Mr, will be most simply described by the same two 
equations, which are here loop equations, 
(forces unknown). (Let the reader check this on the 
systems of Fig. 6, and on the corresponding equations.) 

Of course, the four systems are basically equivalent; 
they are just four examples of realization of the same 
set of equations. However, if on a less abstract plane 
we ask ourselves which of the two mechanical systems 
M/, M,, most "resembles" the electrical system F_•, 
it is clear that M, is the unequivocal answer, since E, 
and M• both have two meshes and three node-pairs 
and are described by the same two mesh equations. 
Similarly Ei and Mf are most alike, since they both 
have two node-pairs and three meshes and are described 
by the same two node-pair equations. The classical 
analogy makes the meshes of E, correspond to the 
node-pairs of M•, an awkward situation due to the 
topological innocence of our forebears. The only 
electromechanical analogy suited to this enlightened 
age is that between Eo and M•, and between E• and M•; 
and that is the one axtvocated by Dr. Firestone (who 
calls it the "mobility" system, references 1, 2). 

We, therefore, adopt this analogy, and in consequence 
present the array of our four systems or examples in 
the new and better form: 
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• K 0 M 

.•///////////////////////////% I 
ONE LOOP: gASCg 

I f t 

(1•) 

ONE NODE A, PLUS GROUND 
K 

-I*Mpv +Ov•--•-v : 0 

ONE MESH : õASCg 

ONE NODE A, PLUS 6ROUN[• 
I-' 

-•. +Cpv +Ov • •-v = 0 

FIO. 5. Four systems• two mechanical, M• Mr, two electrical, 
E,, El, forming a complete set. Two systems in the same row 
correspond by the Firestone system of analogy; two systems in 
the same column correspond by duality. 

The horizontal double arrows are for electromechan- 

ical analogy (Firestone, of course); the vertical ones 
for duality, either between electrical or between me- 
chanical systems, a topological transformation exchang- 
ing node-pairs and meshes. The order of rows or columns 
in the array is indifferent. Dotted diagonals indicate 
"classical" analogy. It is clear that classical analogy 
is doing two things at a time: exchanging node-pairs 
and meshes and exchanging mechanical and electrical 
quantities (going back to the triangles and circles 
quoted in Sec. 2, it makes a blue triangle the analog of 
a red circle). 

We submit that any one interested,in the analysis or 
synthesis of electrical and mechanical systems should 
always as a matter of routine divide his sheet of paper 
into four quarters and put down in each one the diagram 

ß J. 

TWO LOOPS; f• ,f• UNKNOWN TWO MESHES; t• ,i2UNKNOWN 

(•) V •11 t I + C;IP 
(2) •pp (ia-'•,} '(•-• + •-),,- 0 

TWO NOOE$*G•D,; v A,',,• UNKNOWN 

(A} -•, *C•pv,•*.•-(v,•-ve} =0 

Fro. 6. Four examples of a one-section low-pass filter. 
(Arrows f•, f2 should point downwards.) 

and equations of one of the examples of the complete 
set. There may be constractional reasons why in a given 
case M/should be preferred to M, or vice-versa, and 
the same for Ei, E,. The display of the complete set 
enables one to choose the most convenient realization. 

We shall immediately follow our own advice and 
bring together the examples of Figs. 1 to 4 (Fig. 5). 
We,are now using the same graphical symbols for alter- 
nating constant-velocity and constant-force generators 
as for constant-voltage and constant-current generators, 
a circle and an oblong, respectively, with two terminals 
each; this makes mechanical diagrams very close 
copies of their electrical analogs. The same symbol v is 
used for velocity and voltage, which happens to fit the 
Firestone "mobility" system of analogy. 

6. CORRESPONDENCE BETWEEN MECHANICAL AND 

ELECTRICAL QUANTITIES 

There are now four sets of mechanical and electrical 
quantities to be considered, which correspond two by 
two either horizontally (by "analogy") or vertically 
(by duality). We accordingly divide our paper into 

FIG. 7. 

,• f 

(b) 

(a) An ideal 1:1 transformer, closed on a capacitor with 
one plate grounded; (b) its mechanical analog. 

four quarters. In those on the left we put mechanical 
quantities, in those on the right electrical quantities. 
When two mechanical elements correspond to each 
other by duality we place them symmetrically with 
regard to the horizontal (mirror) line. We do the same 
for electrical quantities (see, for instance, the pair 
velocity-force, the pair capacity-inductance, etc.). We 
thus obtain the following complete correspondence 
scheme: 

We note that coordinate and momentum are dual, 
as also their analogs magnetic flux and electric charge. 
Duality consists essentially, rather than in the exchange 
of, and i (or v and f) as in elementary presentations, 
in the exchange of the coordinate and momentum of 
each particle. It is actually the simplest example of a 
transformation which is of importance in analytical 
dynamics 4 and in modem physics. 

7. LOW-PASS FILTER 

We shall give now the four "examples" of a one- 
section low-pass filter, a simple system defined by two 

4 H. Goldstein, Classical Mechanics (Addison-Wesley Press, Inc., 
Cambridge, 1950), p. 245. 
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TAnLE I. Correspondence scheme between mechanical and 
electrical quantities, and between "duals." 

velocity v 

force fM { voltage current 

Imass l'capacity C viscosity coeff. D conductance G 
[ stiffness K [ recipr. inductance P: L -a 
f momentum p = My ] electric charge • q= Cv [ coordinate I x= K-if [ magnetic flux [ 4,= Li 
momentum • electric charge 

__e iiiiiln: 
. magnetic flux 

[ reclpr. mass M -a susceptance S = C -1 
I recipr. risc. coeff. D -I R 
[ compliance K -a e L 
j velocity v v 
• force f 

equations, as further application of the preceding 
remarks (Fig. 6). It will be seen that all four sets of 
two equations are identical. 

It is interesting to observe that by adding the force 
equations (A) and (B) of system M/we obtain 

-fq-M•pvA+ M2pvB+ D•-- O. 

This can be considered as the equation Z f= 0 relative to 
"ground." It thus appears that in establishing the P 
force equations of a mechanical system, the ground 
can be substituted for any one of the P other nodes in 
the system, as we know to be the case in electricity 
(communication of Dr. Trent). 

8. SPECIAL CASE OF A MASS 

The point-masses in a dynamical system require a 
different treatment from that of the other five basic 
mechanidal and electrical elements. 

A spring and a dashpot have two ends (nodes, 
terminals) and in the two equations. 

f= Kv/p, f= Dr, (6') 

7o,/;//•////?///)///////?/, •o• 
ONE NODE-PAIR v UNKNOWN 

A If • A Mi 

ONE LOOP (gABg) I UNKNOWN 

M•p+D, M2p+ p 

ONE NODE-PAIR. v UNKNOWN 

• t2• •'C2 
ONE MESH * UNKNOWN 

c,p,o, 

Fro. 8. Four systems forming a complete set, one of which requires 
the adjunction of an ideal 1:1 transformer. 

-% 

FIG. 

TWO LOOPS, q• ,q2UNKNOWN 

(gBg) d•- * I (•2-%,) •'g2 • 0 

TWO NODES • OR O; (.g, .L,OB UNKNOWN TWO NODES" GRD; v,,Ve UNKNOWN 

(A) - q, .JpCOa +. -• t(.,3•- L.O6) : 0 
(s) •2(c%-%) + o'c%: o is) •-(%-%) + 0% , o 

9. Four systems, two rotational, M,o, Me, t•vo electrical, 
E•, E6 forming a complete set. 

the symbol v represents the relative velocity of the two 
ends at time t (with suitable sign conventions); its 
value is therefore independent of the reference system. 
A point-mass or particle, however, constitutes a single 
node, and the "fundamental equation of dynamics," 

f= Ma = Mpv = Mp•x, (6") 

holds only when x is the coordinate of that particle or 
node in an "inertial" reference system. It would not 
be true, for instance, if x represented the distance of 
the particle in question to some other particle, itself 
in oscillatory motion with regard to the laboratory 
floor or walls (which are usually a satisfactory inertial 
reference system). In order to remind ourselves of this 
very important point, we shall follow a suggestion of 
Dr. Trent and draw an interrupted line from each 
mass-point or particle to ground, in the direction of 
its coordinate X. 

It follows that in the strict analog of a given mechan- 
ical system, every capacitor should have one of its 
plates connected to ground. The two equations. 

f=Mpv, i=Cpv (7) 

will then represent equivalent physical situations, , 
and v representing the velocity of a particle and the 
voltage of a specific capacitor plate, both with regard 
to a ground permanently at rest. 

On a given electric diagram it may happen that 
neither plate of a capacitor can be grounded. If however 
it is necessary to do so, one can replace each capacitor 
by one winding of an ideal 1: ! transformer, close the 
other winding on the capacitor, and ground one of 
the plates (Fig. 7(a)). This will bring no change in the 
equations of the system. It is then the arrangement, 
the mechanical analog of which we want to find. 

The mechanical arrangement on Fig. 7(b) answers 
the question. It consists of three massless, rigid bars, 
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la3, 264, and ab. Bars 13 and 24 have the same length, 
and a, b are their middle points. All hinges are friction- 
less. Node 4 or g is fixed with regard to the ground or 
wails; node 3 is the mass M to which force f is to be 
applied. Nodes 1, 2 can have independent but small 
vertical displacements, hence bar ab remains vertical. 
The forces acting on all four.nodes are equal, and the 
velocity of 2 with regard to 1 is equal to the (absolute) 
velocity of 3 with regard to g, choosing positive direc- 
tions as indicated. 5.6 

Figure 8 shows four "examples" of a simple system, 
one of which contains a mechanical 1:1 transformer. 

It should be noticed that this difficulty is not special 
to the Firestone type of mechanical-electrical analogy. 
In the classical analogy it is not possible to draw the 
system Mo, corresponding to El, without making use of 
a 1:1 mechanical transformer. However, the difficulty 
is harder to analyze than in the Firestone system 
because of the complication resulting from the inter- 
change of node-pairs and meshes. 

9. MECHANICAL ROTATIONAL SYSTEMS 

To avoid lengthy repetition of most of the above 
material, the treatment of rotational systems w/ll be 
explained on the four examples of a single system 
(Fig. 9). Particles free to move on a line are now 
replaced by particles free to rotate around an axis, 
that is, free to move on a c/rcumference centered on 
the axis. Such a particle A is defined by the angle of its 
radius vector OA with a fixed direction Og which serves 
as reference system or "ground," and by a moment of 
inertia JA (which replaces the mass). Several particles, 
rigidly connected to a single shaft or sleeve, constitute 
a single node. (Thus, a whole disk or flywheel is one node, 
with a specific moment of inertia J; the coordinate of 
the node is the variable angle of any radius OB or OA, 
painted on the flywheel, with the fixed direction Og.) 

One can form with the distinct mobile d[rections 

OA, OB . .., and the "ground" Og, as many independ- 
ent loops (gAB... g) as there are independent 
meshes in the analog electric network. The analog of 
Kirchhoff's voltage laws is that Zo• must be zero around 
every loop, where o0 is the angular velocity of every 

• H. F. Olson, DynamicalAnalogies (D. Van Nostrand Company, 
Inc., New York, 1943). 

6 H. M. Trent, Prtwtleal Aspects ofE lectromechanlcal Analogies, 
N.R.L. Engineering Colloquinm, June 26, 1947 (unpublished 
memorandum). 

direction in a loop with regard to the one on the right. 
These are the M kinematic equations of the system. 

There will be in the rotational system as many 
independent mobile nodes as there are independent 
node-pairs in the analog electric network. Several 
torques q• may be acting on the same node, as well as 
an inertial or d'Alembert torque (--JO). The analog of 
Kirchhoff's current laws is that 2q must be zero for 
every mobile node. These are the P dynamical equations 
of the system. 

The equations in Fig. 9 will make these condensed 
explanations clear. 

lO. CONCLUSION 

The above presentation of electromechanical anal- 
ogies emphasizes the role of duality in the analysis of 
mechanical as well as of electrical systems. This point 
of view enables one to carry over to a broad class of 
mechanical systems the results of the research done on 
the mesh and node equations of electric networks by a 
number of workers, notably by Mr. Gabriel Kron. ? 

The Firestone or "mobility" system of analogies is 
usually presented in the following way: First it is shown 
to be a "possible" system, just as workable as the 
classical one; then one remarks that electrical circuits 
derived on the mobility basis resemble their mechanical 
analogs very closely, which is obviously an advantage. 
No explanation is given of why it should be so, nor do 
we know whether a third type of analogy might not be 
possible and perhaps be preferable to the two others. 

Once we realize that mechanical systems can be 
analyzed, just like electric networks, on either a mesh 
or a node-pair basis, we can apply the notion.of duality 
to mechanical systems, and it follows that two electric 
and two mechanical systems, dual two by two, form in 
a sense a complete set. The Firestone electromechanical 
analogy is then most naturally defined as the one in 
which an electric node corresponds to a mechanical 
node, an electric mesh to a mechanical loop. The 
consideration of a complete set of four systems is 
believed to be original with the present paper. 

It should be noted that we have only covered a 
certain class of mechanical systems, that in which the 
displacement of every particle is defined by one coor- 
dinate only. If mechanical particles with two or three 
coordinates are considered, entirely new possibilities 
appear, as the example of a gyro plainly shows. 

? G. Kron, Tensor Analysis of Networks (John Wiley & Sons, Inc., 
New York, 1939). 


