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Close inspection of Eq. (9) showed that only one 
value of k'a, namely 

k'a = 0 

satisfies it. This indicates that in the limit, as the wall 
thickness of the hollow tube approaches zero, the only 
possible mode of torsional wave propagation is the 
zeroth mode, as would be expected. 

For completeness, Fig. 1 shows the values of the 
characteristic numbers k'a plotted agsinst the ratio 
of the tube inner radii to tube outer radii for the cases 

calculated. This shows that torsional wave phase 
velocities increase with decreasing wall thickness of 
tubes for all modes except the primary, and also increase 
with the higher modes of motion. 

The values presented in Tables I through IV were 
calculated by use of various tables of Bessel functions 
which are readily available, but particular use was made 
of the Bureau of Standards n and the Royal Society '• 
tables for larger values of the arguments than are 
commonly tabulated. The tabular values presented are 
calculated to the nearest 0.001 units, to which they are 
believed accurate. 

n Tables of Bessd-Clifford Functions of Orders Zero and One 
(U.S. Dept. of Commerce, Natl. Bur. Standards Appl. Math. 
Series, February, 1953), No. 28. 

,2 L. Fox, A Short Table for Bessd Functions of Integer Orders 
and Large Arguments (Royal Society Shorter Mathematical 
Tables No. 3, Cambridge lJniversity Press, 1954). 
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A study is presented of the propagation of axisymmetric waves through compressible, inviscid fluid 
contained in a cylindrical, elastic shell. The dependence of the phase velocity as a function of frequency 
on four dimensionless parameters of the system is discussed and illustrated graphically. 

1. INTRODUCTION 

N analysis is presented of the problem of the propagation of pressure waves through inviscid 
fluid contained in a cylindrical, elastic shell. The 
essential character of the phenomenon is the interaction 
of the compressible fluid and the elastic shell in the 
transmission of waves along the axis. The study is 
restricted to waves which have axial symmetry and 
purely sinusoidal variation along the axis. 

The motion of the tube is described by means of 
equations developed by Lin and Morgan I and the 
velocity-frequency curves obtained in this reference 
for waves traveling in an empty tube are used to 
represent certain limiting positions of the dispersion 
curves for the coupled system. 

The equations of motion for the thin-walled tube 
take account of the effects of transverse shear and 

rotatory inertia which may be expected to be of 
importance at high frequencies. 

To facilitate the analysis of the phenomenon and to 
gain a clearer understanding thereof the two limiting 
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under Contract Nonr 562(07) with Brown University. 

t Formerly Research Associate in Applied Mathematics, 
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' T. C. Lin and G. W. Morgan, I- AppL Mech. Trans. Am. Soc. 
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cases for which the tube is either rigid or "infinitely 
flexible" (i.e., the tube is absent and the fluid column 
has a free boundary), respectively, are examined first. 
Attention is then devoted to waves with very small 
frequencies when only two modes are found to exist. 
The nature of the modes and their dependence on the 
physical parameters of the system are investigated. 
Finally, the general case of fluid in an elastic shell is 
studied for a wide range of frequency. In dimensionless 
form the velocity-frequency relation depends on the 
four dimensionless parameters h/a, the ratio of shell 
wall-thickness to shell radius; p/m, the ratio of fluid 
density to solid density; cs/q,, the ratio of the sound 
speed in the fluid to the speed of longitudinal waves 
in an infinite elastic solid, and the Poisson's ratio v. 

It is seen that all modes except two are intermediate 
between the limiting cases of a rigid tube and an 
infinitely flexible tube over most or all of the frequency 
range. Over the remainder of the range (if it exists) 
each mode resembles an empty tube mode. All these 
modes have minimum cut-off frequencies. The two 
exceptional modes are the two which exist at all fre- 
quencies and they may be considered to correspond to 
the 1st empty tube mode and the longitudinal sound 
wave propagating through fluid in a rigid tube with 
uniform velocity over each cross section. This "corre- 
spondence" is not one-to-one, the motions of the 
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general system being the result of coupling of the fluid 
and the solid motions. 

Dispersion curves are computed and plotted for one 
set of values of the dimensionless parameters corre- 
sponding to water contained in a brass tube. Curves for 
two other sets of values are drawn; these are not 
computed, however, their shape being predicted 
approximately on the basis of their correspondence to 
the dispersion curves for the limiting cases. 

Work on certain aspects of this problem has been 
carried on by a number of investigators 2-a usually for 
relatively low frequencies, or with attention directed 
toward the lowest mode only, or without allowing for 
the influence of Poisson's ratio. A recent study by 
Thomson 7 extends to high frequencies, but differs from 
the present one in two respects which are discussed in 
detail later on. The first difference arises in the formula- 

tion of the equations of motion for the tube, particularly 
the inclusion in the present paper of transverse shear 
and rotatory inertia, the former being of importance 
at high frequencies. The second difference concerns the 
results of the analyses, those obtained here differing 
from those of Thomson for all values of the phase 
velocity greater than approximately 2½z in the example 
for which computations are carried out. This difference 
will be seen to arise primarily from Thomson's erroneous 
conclusion that only one mode exists at very small 
frequendes. An investigation by Biot a of the propaga- 
tion of waves in a cylindrical bore through an elastic 
material of infinite extent filled with fluid affords an 

interesting comparison with the present analysis. 

2. FLUID MOTIOH 

Consider a circular tube filled with compressible, 
inviscid fluid. Let z, r, and 0 be the cyhndrical co- 
ordinates with the x axis along the axis of the tube. 
The thickness h of the tube wall is assumed to be small 

compared with the mean wall radius a. For axially 
symmetric vibrations the pressure p in the fluid is 
independent of 0 and satisfies the wave equation 

o2p lOOp 02p 1 
--=•71--+--+- --I, (2.1) 

where t is the time and ½y is the speed of sound in the 
fluid. ½z is related to the bulk modulus Ki and the 
density 0 of the fluid by the equation 

cfi= K ff o. (2.2) 

s H. Lamb, Mere. Proc. Manchester Lit. Phil. Soc. 42, 9 (1898). 
a Fay, Brown, and Fortier, J. Acoust. Soc. Am. 19, 850 (1947). 
4 W. Jacobi, J. Acoust. Soc. Am. 21, 120 (1949). 
s p.M. Morse, Vibration and Sound (McGraw-Hill Book 

Company, Inc., New York, 1948), p. 305. 
s M. L. Baron and H. H. Bleich, J. Appl. Mech., Trans. Am. 

Soc. Mech. Engrs. 21, No. 2, 178 (1954). 
7 W. T. Thomson, "Transmission of pressure waves in liquid 

filled tubes" Proc. First U.S. Natl. Congr. Appl. Mech., 927 
(Chicago, 1951). 

s M, A. Blot, J. Appl. Phys. 23, 997 (1952). 

The components of the displacement of the fluid, 
(u,w) in the (x,r) directions are related to the pressure 
p by the linearized, hydrodynamic equations 

0% Op 
p---+--=O, 
Ot • Ox 

Oho op 
o ' .+--=o. 

ot • Or 

(2.3) 

The component of the displacement in the 0 direction 
is zero because of symmetry. 

For plane waves propagating in the x direction p, u 
and w may be assumed in the form 

r ? i•1 
(2.4) 

where oJ is the circular frequency and c is the phase 
velocity. The phase angle •r/2 is introduced into the 
expression for u for convenience. Substituting the 
first of Eqs. (2.4) into Eq. (2.1) and applying the 
condition of regularity at r=0 to the solution of the 
resulting ordinary differential equation, one obtains 

P(r)= pdo(kr), (2.5) 
where 

1 1 

and p0 is an arbitrary constant which denotes the 
pressure at the axis of the tube. Substitution of Eqs. 
(2.4) and (2.5) into Eq. (2.3) yields 

p0 
U(r) =--Jo(kr), (2.7) 

pok 
W(0 = ----J: (•), (2.8) 

where J0 and Jx are Bessel functions of the first kind. 
Eqs. (2.4), (2.5), and (2.8) give 

-- = -- (2.9) 
w W(r) k J•(kr)' 

So far the three parameters k, c, and ,., are related by 
Eq. (2.6) only. In order to find a relation between 
any two of the parameters, another equation is required. 
This is obtained from the boundary conditions imposed 
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on the fluid motion and will be discussed in the next 
section. 

3. BOUNDARY CONDITIONS 

Before discussing the boundary conditions which 
must be applied to the motion of the fluid in an elastic 
tube, it is useful to consider two extreme cases. One is 
that of a rigid tube and the other is that of an infinitely 
flexible tube, i.e., a cylinder of fluid with a free surface. 
The results for these simple cases will serve as a guide 
for the more complicated case of an elastic tube. 

So far as the fluid is concerned, a measure of the 
rigidity of the tube wall is supplied by the ratio p/w 
at the inner surface of the wall, or, for small disturbances 
(within linear theory) and for small h/a, at the surface 
r= a. For a rigid tube, 

It follows from Eq. (2.9) that 

ka=an, where J•(a,)=0, n=0, 1, 2, ---. (3.2) 

The root k=0 for the denominator of the right-hand 
side of Eq. (2.9) is included in Eqs. (3.2), since a0=0 
and a•0. Elimination of k between Eqs. (3.2) and (2.6) 
yields the characteristic equation relating c and co for 
the propagation of pressure waves through fluid 
contained in a rigid tube: 

c? (3.3) 
To each value of a• there corresponds one mode. For an 
unattenuated wave both c and co are real. It follows 

from Eq. (3.3) that 

& •_co,•--= , (3.4) 

where coTn is the cut-off frequency for the nth mode of 
vibrations in a rigid tube. Hence the nth mode exists 
only at frequencies higher than 

Similarly, for an infinitely flexible tube, 

It follows from Eq. (2.9) that 

k.=0n, where 70(n)=0, 

The characteristic equation is obtained from Eqs. 
(3.6) and (2.6) by eliminating •: 

1 I 0. • 
..... . (3.t) 

For an unattenuated wave one has the cut-off frequency 
for vibrations of a free-boundary fluid column 

c?OVa 

below which the nth mode does not exist. 

The variation of c/c• with coa/ci as given by Eqs. 
(3.3) and (3.7) is shown in Fig. 1 for the first few values 
of oa and 0•- Except for the 0th mode, which has a 
constant phase velocity c=ci and exists at all fre- 
quencies, all modes begin at their cut-off frequencies 
o•,• or coin, respectively, and have phase velocities 
which decrease monotonically from c= oo to c=c• as 
co increases from co,• or coi• to infinity. 

We now turn to the case of an elastic tube. The 

boundary conditions to be imposed on the motion of 
a fluid in a thin elastic tube have been considered by 
various investigators? -4.* Usually the assumptions 
made are such as to restrict the analyses to waves 
whose length is greater than, or at least of the order 
of, the radius of the tube. As the frequency is increased 
(or the wavelength is decreased) two effects become 
increasingly important. These are the inertia connected 
with the rotation of the elements of the tube wall, 
and the influence of shear strain on the bending terms, 
the latter being the more important. These factors 
have been neglected in previous treatments of the 
problem. Since we are interested in a wide range of 
frequencies, we shall make use of the analysis given in 
reference 1 where both of these factors are taken into 
account. 

Approximate equations governing the motion of the 
tube are [-from Eqs. (8), (9), and (28), reference 1-] 

h a O•a EIP 

0x 

(3.9) 

where p,, E, and v are the density, Young's modulus, 
and Poisson's ratio, respectively, of the tube material, 
V is the transverse shear force, K is a constant, a 
little less than one, introduced to improve the approxi- 
mate expression for V, p, is the fluid pressure on the 
wall, and •, •, a are defined by the approximate 
relations 

= (x,O + (x,O, 
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ut and wt denoting the axial and radial displacement, 
respectively, of a point on the wall. If we look for 
solutions in the form of traveling waves with circular 
frequency •o and phase velocity ½, then the following 
relation may be derived from Eqs. (3.9): 

h \pt* 
1----]--= 1--oo *•---- 

2a / wt* 1-- c*a 

•*•(1 -No *•) 
-• (3.11) 

where 

aoo E 

c• re(l- •) 

• ap• 

• 2 

•= 123 •' n= (1-- •)K 

½ 

(3.12) 

and N is a constant "tracer," which is equal to one, 
and which is introduced to indicate the terms which are 

contributed by rotatory inertia. Setting N=0 is 
tantamount to neglecting this effect. Similarly, the 
influence of transverse shear is associated with the 

constant n and may be neglected by setting 7-0. 
For small disturbances and for small h/a' we may 

apply the boundary conditions for the fluid motion at 

r= a and hence set 

P(a) exp[?-c(X-ct)]= p• 
W (a) exp[i---½(x-ct) ]=zv•. 

(3.13) 

Making use of the relation (2.9) for I/W, introducing 
the dimensionless expressions defined by Eqs. (3.12), 
and neglecting the ratio h/2a on the left side of Eq. 
(3.11), the following characteristic equation is obtained 
from application of the boundary conditions 

1 • •*•(1-•re •) 
1---+ 

•,2 o,,•(l_d•) •[•*•+•*•(1-N•)] 

-- , (3.14) 
kaJ•(ka) 

where 

d=oa/o,n. 0.1s) 

The parameter k is related to c and •o by Eq. (2.6)• 
which, on using Eqs. (3.12), may be written as 

1 1 
kaa•=oo•(------/, (3.16) 

where 

ß •'---c?/•. (3.17) 

Elimination of ka between Eqs. (3.14) and (3.16) 
yields 

and 

/ 1 I xt r I 1 1 \tl' 
,,-,*l-----I I110.,*l-----I l 

%*: "•/ L Xc *• •/J 

(3.18) 

da_<-• • (3.19) 

where I0 and Ix are Bessel functions of imaginary 
argument. Equation (3.18) or (3.19) gives the relation 
between ½* and w* in terms of the four independent 
parameters a, •, % and v, the parameter n being a 
function of e given by Eq. (3.12) in which K is a known 
constant. 

4. CASE OF LOW FREQUENCIES 

It is of interest to study the vibrations when 
This corresponds to the case of long waves. On neglect- 
ing second and higher powers of o•* with respect to 1, 

Eqs. (3.18) and (3.19) may be reduced to a quadratic 
in c *•: 

(1+ 23•)**.- (1- ,%-?+ 2.•-?)c *• 
+,,(1-•)=0, (4.1) 

The discriminant of Eq. (4.1) is 

a 2= (t-- •--•?+2d-?)%8•,', (4.2) 

which is always positive since the parameters a, ?, 
and v are all real. The two roots of Eq. (4.1) may 
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easily be shown to be positive. They are 

(1 - 

2 (1-1-2d• 2 ) 

2 ( • + 2•.7 •-) 

(4.3) 

Hence, when co*•((1 the waves are unattenuated and 
there are in general two distinct modes. These coincide 
in the limiting case 72=1--•,•' and a--O, since then 
A = 0. In general A •_ 0, so that ct *•_• ½•.*• and it may be 
shown that c•*-•_• when -r•_ I, c•*-'•_• 2 when ?•_•1, 
c•'2_• • for all •. Approximate expressions for the 
phase velocities may be derived for certain ranges of 
the parameters ct and % They are when a-•=0(1), 
'•-•(• 1: 

½•*"--• 1 -- •-k 2•,1ot¾ ', 

, E! •K•a \ 
c [-'--•--/1 q-2•, 1, (4.4a) p•\ E/• / 

• ! 2,•¾\ 
•:*-•-r't 1-1•--• ) , 

(4.4b) 
K! 

p ', Ehl 

when a•((l• •))1: 

1+2• •' 
(4.s•) 

•( .•) (4.sb) p• pth 

when d•>>l, V•<<I: 

•1 •2 • 1 -- • 
2•' 

(444 

c•*• • k 2•'/ 
(4.6b) 

I 

I 

• for fluid in O rigid tube 

.... !or Iluid In on infinitely flexible tube (fme 
•ndory) 

o 

o ; .• 
cf 

Fro. 1. Phase velocity vs frequency. 

when ct2))l, q•)),l: 

c• 1 
2• 

( v•p,/,.) (4.7a) E I+-- 
2 

•(1- •) 

2• k 2•/ 

Eb (4.7b) 

when • = 1 -- •, a((1: 

c• • = (•- v•) (1 +2•.), 

Ef 12Kia • '* ] (4.8a) 

mL k Eh I J 

• (•.*b) 

r [2pa• •1 
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2C 

16 

Fro. 2. ct* and c2' z.s a for v=0.3 and vanishing frequency. 

When •= 1 and a is arbitrary, Eqs. (4.3) become 
exactly 

E 

c• '2= 1, ci'- -- (4.9a) 
re(l- 

I --/fl 

1 + 2a -ø 

1',' 15h (4.9b) 

/ 2pa\ 2pa[-l+(ptk,'2pa)] 

Curves showing the velocities c•* and c.o*, as given by 
Eqs. (4.3), are shown in Fig. 2 as functions of a for 
0<a<l and of 1/a for 1 'Ca< •o, with •=0.3 and for 
various values of •. 

The Eqs. (4.4) to (4.9) together with Fig. 2 give 
insight into the dependence of the nature of the waves 
on a and q,. When T> 1.4, say, and a is very small, 
c• corresponds to a sound wave propagating through 
fluid contained in an essentially rigid tube. The same 
is true for cz when •<0.6, say. An increase in a, with 
qt held fixed, may be interpreted as being due to a 
decrease in m (from m= • for a=0) and a simultaneous 
decrease in E in such a way that E/m, and hence %, 
remain constant. As a increases the decreasing stiffness 
of the tube lowers the velocity [-Eqs. (4.5a) and 
(4.4b)-]. The decrease in the mass of the tube which 
might be expected to tend to increase the velocity has 
much less effect. This becomes plausible when one 
recalls that for very small a the tube provides pressure 

on the fluid without moving and hence without con- 
tributing to the effective inertia of the system. As 
continues to increase the c• mode represents a more 
definitely coupled motion of fluid and tube, with the 
radial motion of the tube gradually giving rise, due to 
the presence of Poisson's ratio, to axial motion also. 
For still larger a the motion is more easily interpreted 
by thinking of the increase in a as being due to an 
increase in p accompanied by a simultaneous increase 
in K/ with K//p constant. The wave propagation is 
governed primarily by the properties of the tube; 
it becomes independent of the stiffness of the fluid 
(Kt), the latter being essentially incompressible [-Eq. 
(4.7a)]. When the fluid density becomes infinite, the 
tube executes purely axial vibrations and the phase 
velocity is that of longitudinal waves in an infinite 
elastic medium. 

The wave with velocity co represents, when 
and aZ>>l, a well-known motion whose essential nature 
is an interaction of tube and fluid (see for example 
reference 9). The fluid is effectively incompressible so 
that the controlling stiffness is that of the tube, but 
the primary contribution to the inertia is derived from 
the fluid. If q,Z<<l the stiffness of the system is somewhat 
decreased by the flexibility of the fluid, Eq. (4.6b), 
the tube inertia being negligible; if •>>1, the inertia of 
the system is somewhat increased by the mass of the 
tube, Eq. (4.7b), the flexibility of the fluid being 
negligible. Comparison of Eqs. (4.7b) and (4.9b) 
shows that when aa>>l, the phase velocities for -•= 1 
and •>>1 differ only by a term of order •z/2aa. Thus, 
when 'v is near one or greater, the fluid may be treated 
as incompressible in this mode of vibration, provided 
a is sufficiently large. 

The c• wave for qeø-<<l and the ca wave, 'va>>l, corre- 
spond when a=0 to a longitudinal wave in an empty 
tube. If the increase in a is due to a simultaneous 

increase in • and K/, then it is seen that the tube 
motion becomes influenced by the stiffness and inertia 
of the fluid. Considering c•, the flexibility of the fluid 
is relatively great (½y<½•), thus causing little fluid 
motion, so that the primary effect of larger p and K½ is 
that of increasing the stiffness of the system with 
consequent increase in the velocity [Eq. (4.4a)-]. 
This tendency continues until the velocity reaches 
that of waves in an infinite elastic medium, the fluid 
then acting as a rigid core [-Eq. (4.6a)]. For the 
mode, on the other hand, the fluid stiffness is relatively 
great (•> ½•), thus causing considerable fluid motion, 
so that the influence of added inertia predominates and 
the velodty is lowered EEq. (4.5b)-]. With increased 
a the motion becomes more definitely coupled and 
approaches, when a becomes of order one, the motion 
previously discussed for 

It is of interest to study the case when Poisson's 

•G. W. Morgan and I- P. Kiely, I- Acoust. Soc. Am. 42, 
323 (1054). 
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ratio v equals zero because the consequent independence 
of the radial and axial motions of the tube simplifies 
the system. Equations (4.3) y/eld 

-l+2Mq,•[when a•_<}(l- 
c_• '2 = 1 J (4.10b) 

c•*'-'= 1 ] (4.11a) x 1 ß , ,2 •when a2_>,(1--•). (4.1lb) 
Representative curves are shown in Fig. 3. The 

c•* curves for •/> 1 are very similar to those for v•0 
(Fig. 2) as long as a is sufficiently small so that c•* is 
somewhat greater than one. For larger a the curves 
begin to deviate from those for v•0 because the tube 
vibration is purely radial when v=0 and hence, as a 
increases, the motion cannot tend to a longitudinal 
wave in the tube as it does when v•0. The velocity 
becomes one at c?=}[1-(1/ya)]. At this point the 
slope of the c•* curve is discontinuous and c•*= 1 for 
all greater a. This part of the curve represents an 
entirely different wave, viz. a longitudinal tube vibra- 
tion, which, in the absence of Poisson's ratio, is entirely 
independent of the fluid. The same vibration must 
exist also when o?<«[-1-(1/•?)]. It is represented in 
that range by the ½z* curve. Since c?&«•l-(1/-v•) -] 
when '?<_1, the c•* curves for-•_<1 trace the entire 
line c•*= 1 and the corresponding ca* branch is absent. 
The o.,* curve for y<0.9, say, is very similar to its 
counterpart for v•0 because the inertia force due to 
axial motion of the tube does not play an important 
role in this mode even when v/0. For •>1, the 
velocity ca* which starts at (1--v•) • when v•0 and 
begins to drop due to the influence of tube inertia, now 

L• 

O• Ct• O• ID 08 O• O• O• 0 

ß • '/' I 

Fro. 3. t:[* and o.* vs a for •=0 and vanishing frequency; 
½,*>_1, 

starts at one and remains constant up to •=}[1 
--(1/,2)-]. At this point it has a discontinuous slope 
and smoothly joins the corresponding c•* curve. The 
velocity decreases with increasing a and the curve 
approaches the corresponding curve for v•0. Thus, for 

o 1 q•> 1, the curves which are given by c•* when 
- (l/q•a)] and by ca* when a•_>}[1 -- (1/•)] represent 
a continuously changing mode of vibration from a 
sound wave through fluid in a rigid tube to a wave in 
which the essential features are hoop stiffness and 
fluid inertia. 

Expanding Eqs. (4.3) in power series of v, one 
obtains 

1 - •a + 
1-0(•'), (4.12) 

1 + 2Ww 2 \ 

2v'*a2'g *- \ 
(4.13) 

v 2 

c'f*= 14- 2tvot-----t-O(va). (4.14) 
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5. GENERAL VELOCITY--FREQUENCY RELATION 

The velocity-frequency relation is given by Eqs. 
(3.18) and (3.19) and involves the parameters a, ?, 
and/5 Computations have been carried out for one set 
of values of these parameters corresponding to a brass 
tube filled with water. The values are the same as those 

employed by Thomson 7 to permit comparison with his 
results. Using 

o=l.0 g/cm a, c/=1.43X10 • cm/sec, 
m=8.5 g/cm a, cp=3.59X105 cm/sec, 

h/a=•, v=0.3, 

the parameters assume the following values: 

a=0.97, '},=0.4, v=0.3, •=0.0013, 7=3.21. 

Figure 4 is a plot of the dispersion curves for the first 
few modes. As is to be expected from the results for 
small co* (Fig. 2) and from those for the limiting cases 
of a rigid and an infinitely flexible tube (free boundary) 
(Fig. 1), there exists only one mode for which 
It is called the "0" mode because it corresponds to the 
0 mode of Fig. 1 and it exists for all frequencies. 
There are an infinite number of modes with phase 
velocity c*>-•. The 1st mode exists for all frequencies, 
the higher modes exist only above certain cut-off 
frequencies. The dashed curve indicates the 0th 

1.0 

0.4 

O2 

Flo. 4. Phase velocity vs frequency for fluid in an elastic tube 
;dith 'a--0.97, //=0.0013, -z=0.40, and v--0.30. Dashed curve 
neglects rotatory inertia and transverse shear. 

mode when the transverse shear and rotatory inertia 
are neglected in formulating the equations of motion 
for the tube. The error is seen to be about 10% when 
o•* is around two, which corresponds to a wavelength of 
approximately one-half the tube radius. Since c'a<<1 
for this mode, it is evident from Eq. (3.19) that the 
terms which involve the tracer N and owe their existence 

to rotatory inertia are small, so that the correction is 
primarily the result of taking into account the trans- 
verse shear, the effect of which is represented by the 
term involving 7. The dashed curve corresponds to the 
(0) mode of Thomson2 The modes whose velocities 
are greater than ? are not perceptibly influenced by 
transverse shear and rotatory inertia. 

o 
0 I 2 3 4 

Fla. 5. Phase velocity ,s frequency; a=0.97,//--0.0013, 
-• =0.40, v-0.3. 

Figure 5 shows the 0th and the 1st, 2nd, and 3rd 
modes together with the curves for an empty tube and 
for fluid in a rigid and an infinitely flexible tube. The 
0th mode starts at c*Z-•T*-[1-2a:-•ø-/(1--v•)], CEq. 
(4.4b)-]. The motion is essentially that due to a plane 
sound wave in the fluid, but the velocity is somewhat 
reduced as a result of the flexibility of the tube wall. 
The coupling of fluid and tube vibration increases as 
o•* approaches one (the frequency of hoop vibrations 
of the empty tube). For larger o•* the coupled mode 
resembles that of flexural vibrations in an empty tube, 
but deviates from the empty tube mode for still 
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higher •o*, the velocity approaching that of a fluid 
wave in a rigid tube (c*=•t), while the velocity of the 
empty tube mode approaches the higher value 1/nl. 
Since the velocity curve for the 0 mode does not rise 
beyond % the error caused by neglecting transverse 
shear (and rotatory inertia) begins to diminish beyond 
a certain value of co*. It can be shown that if the 

physical constants of the system are such that 
> l/hi then the 0th dispersion curve continues to follow 
the curve for the empty tube as co* increases and the 
velocity approaches the asymptote 

The first mode begins at co*=0 with •*•-•. 1-v 2 
+2v2dz• 2 [-Eq. (4.4a)] and is essentially a longitudinal 
wave propagating through the tube, the velocity being 
somewhat greater than that of a wave in an empty 
tube because of the additional stiffness contributed to 

the system by the fluid. The nature of the vibration 
changes as co* approaches one, the fluid and tube 
motion becoming very definitely coupled. The velocity 
continues to decrease, the curve lying between the line 
c*=•, and the 1st free boundary curve. This continues 
up to the value of co* at which the 1st mode curve of the 
empty tube crosses the Ist mode curve of the free 
boundary vibration. At this point the 1st mode curve 
of the coupled system crosses the other two curves 
and then continues to approach ½*=% always lying 
above the 1st free boundary curve. This "crossing" 
will be discussed further in connection with the higher 
modes. It occurs beyond the range of Fig. 5 but appears 
on Fig. 6 which shows a plot for •=0.2. 

It should be noted that in the illustrative example 
of Fig. 5 the minimum velocity of the 1st empty tube 
mode (given approximately by ½,2 •[-(1-½)/3]•(h/a) 
(reference 1) lies below ½*--•. If the contrary is true 
then the 1st mode curve for the coupled system will 
tend to follow the 1st empty tube mode curve more 
closely, possibly crossing the latter at its intersections 
with the 1st free boundary curve (if more than one 
such intersection exists) until, lying above the 1st 
free boundary curve, it approaches ½*=,•. The 0 mode 
will, in this case, deviate much less from the line 
c*='• over the entire range of •o* and will never resemble 
the 1st empty tube mode (Fig. 6). 

All modes above the 1st have minimum cut-off 

frequencies o•*c• which may be found from Eq. (3.18) 
by allowing ½* to approach infinity. They are given by 

(s.l) 

Recall that for an infinitely flexible tube Jo(•*[1/• •- 
- 1/½'2-] i) --0 while for a rigid tube Jx (co*[1/•-- 1/½*•-1 t) 
=0 (Sec. 3). We can therefore identify the regions in 
Fig. 5 in which the fight-hand side of Eqs. (3.18), and 
hence -p(a)/w(a), [Eq. (2.9)-1, are positive or 
negative, respectively. They are positive in the region 
between c*=• and the 1st free boundary curve, 

O6 

Fro. 6. Phase velocity vs frequency; a•l, •=0.001, •,=0.20 
•0.3. Curves sketched, not computed; see Sec. 5. 

negative between this curve and the 1st rigid tube 
curve, then positive again, etc. Since the 1st free 
boundary cut-off frequency •oI• given by the first root 
of J0(co*/•)=0 I-Eq. (3.8),1 is about 0.96, the cut-off 
frequency o•,•* of the 2nd coupled mode cannot be less 
than this value because otherwise the dispersion curve 
would have to lie to the left of the free boundary 
curve for large c*, i.e., in a region in which the left- 
hand side of Eq. (5.1) is positive, while the fight side 
would be negative. For slightly larger •o*, Jo(o•*/,},)/ 
J•(co*/'¾) is negative and so is the right side of Eq. 
(5.1), provided co*< l. Hence the first cut-off frequency 
co• lies between those of the 1st free boundary mode and 
the second empty tube mode which has a cut-off 
frequency equal to one. 

If •*.0 were greater than one (i.e., if tt•'•>l), then 
c0%2, again lying between the cut-off frequencies of the 
1st free boundary and the 2rid empty-tube modes, 
would be greater than one (Fig. 7; •= 1.05), for in 
this region both sides of Eq. (5.1) would be positive. 
To interpret these results, note that for all free boundary 
modes the vibration with cut-off frequency represents 
a purely radial oscillation of the fluid column independ- 
ent of distance along the axis with zero pressure at 
r=a. Similarly the motion of the empty tube at the 
cut-off frequency is a pure hoop vibration. If the 
frequency for the empty tube is greater than that of 
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2.4 

2.2 

20 

7' - 1.05 

0.6 

0.4 

FIG. 7. Phase velocity es frequency; a•-l, [•0.001, 3,=1.05, 
v•0.3. Curves sketched, not computed; see Sec. 5. 

the free boundary mode, then, in the combined system, 
the tube is relatively stiff and the influence of increased 
stiffness when the fluid column is surrounded by a tube 
outweighs that of increased inertia, so that the result- 
ing frequency is greater than that of the free boundary 
mode, but less than that of the empty tube. The 
contrary argument holds when the situation is reversed. 

Since in the present numerical example (Fig. 5) a 
second change of sign of the left side of Eq. (5.1) does 
not occur until •o*>1, the cut-off frequencies for the 
higher modes (n>2) must be greater than one; hence, 
from Eq. (5.1), the dispersion curves for large 
must lie in a region in whichJo(co*/•)/J] (co*/•,)>0, i.e., 
in a region bounded by a rigid tube curve on the left 
and a free boundary curve on the right; hence 
•to*,• <•"•*x,•-• (n> 2). For the higher modes 
so that the right side of Eq. (5.1) becomes large and 
hence the co*• approach the roots of J] (co*/'r), that is, 
the cut-off frequencies for the rigid tube o•*,•_, [Eq. 
(3.4)]. This approach is the more rapid the smaller 
that is, the smaller the inertia of the fluid relative to 
that of the tube. On the contrary, when co*• is moderate, 
i.e., excluding the high modes, and o&>l, then the right 
side of Eq. (5.1) will be very small and co*c• approaches 

Certain approximate expressions for the cut-off 
frequencies may be derived from Eq. (5.1). If 
is not greater than 1, say, the Bessel functions may 

be replaced by the first few terms of their power series 
expansions. An approximate formula for co*•, may 
then be derived. It is 

Eh 2K• 

1+2o?•' (1- v•)a ' a 

co*'•,• 1 •- ½'/4) cø•x• (5.2) pth+ (pal4) 

T>2, o t a- <• say. 

The"radial velocity has no node, the distribution being 
essentially a straight line. The motion is a hoop vibra- 
tion in which the fluid behaves like a simple spring 
contributing stiffness and inertia. For small a the fre- 
quency is close to one, the frequency of hoop vibrations 
of the empty tube. For large a% • the principal contribu- 
tion to the stiffness is derived from the fluid. 

For sufficiently high modes, or for sufficiently small 
a, the Bessel functions may be expanded in power 
series about oJ*,,}-2 or co*,•. Subsequent use of the 
relations between Bessel functions of different orders 
leads to 

or 

n>_3, w*•2>l, { ,•-- <<I, 

l>n_>2, CO*r1< 1, ---- (5.3) 

where n=l defines that mode whose cut-off fre- 

quency lies between one and co*•t (Fig. 6). It is the 
mode whose c*-co* curve tends to follow the 2nd 
empty tube mode curve for c*>l. Similarly, when a 
is large and to*• not too large, the Bessel functions 
may be expanded in series about c0*•-x. This leads to 

for 

(5.4) 
Equation (5.4) applies ff co*•i,_x happens to be suffi- 
ciently close to one, as in Fig. 5 when n= 2 and a is 
of order one. 

If -/is such that m free boundary cut-off frequencies 
are less than one, m>_0, then the coupled system will 
also have ra cut-off frequencies whose magnitude is 
less than one. Vibrations whose frequency lies close to 
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a free boundary cut-off frequency are essentially 
radial oscillations of a free boundary fluid column 
modified by the stiffness and inertia of the surrounding 
tube. When to%•<l (i.e., to*l•<l) the empty tube 
constitutes a relatively stiff system compared with the 
free boundary fluid column and hence the influence of 
tube stiffness outweighs that of tube inertia so that the 
frequency of the coupled system is greater than that 
of the free boundary system. The converse is true when 
to%•> 1 (o•*i•> 1). Vibrations whose frequency lies 
close to a rigid tube cut-off frequency are essentially 
radial fluid oscillations in a rigid tube modified by the 
small flexibility and the inertia of the tube. If one 
considers the motion of the tube to be a forced vibration 

subject to the pressure p, then one expects p(a) and 
w(a) to be out of phase when •o*r•-2>l since to*= 1 is 
the frequency of natural hoop vibrations of the tube. 
Equation (2.9) shows that this requires the left side 
of Eq. (5.1) to be positive and therefore 
The reverse argument applies when to*r•-•< 1, so that 
OJ*cr , <• OJ*r r•__ 1. 

Considering now the shape of the dispersion curves 
(n >_ 2), it is seen that these intersect the free boundary 
curves at the points where the latter intersect the 2nd 
mode curve of the empty tybe. This statement holds 
for those modes whose •**•> 1; in Fig. 5 this is the 
case for n>_3. When •o*c•<l no such intersection 
occurs. The significance of the intersection points is 
that at each of these points a free boundary mode and 
the 2nd empty tube mode happen to have the same 
frequency and velocity. Since each of these motions is 
entirely independent of the other, p(a) being zero for 
both, the combined motion is a simple superposition of 
two independent motions having the same amplitude 
of w(a). 

Equation (3.18) shows that intersections of the 
dispersion curves with those of the rigid tube modes, 
for which the right side of Eq. (3.18) becomes infinite, 
must occur when ½*= 1. These intersections exist for 

all n>_2 (Fig. 5). Now c*=l represents a motion 
consisting of purely longitudinal oscillations of the 
tube, the proper pressure being applied at r = a to avoid 
all hoop strain. Hence, at their intersection points, 
the rigid tube dispersion curves and the line c*--1 
represent waves which have the same frequency and 
velocity and which involve no radial motion at r= a. 
The two motions can therefore be superposed by 
selecting a common value of p(a). 

For c*<l, each dispersion curve lies to the right of 
a rigid tube curve until it reaches the frequency at 
which the free boundary curve on its right intersects 
the 1st mode curve for the empty tube. This intersection 
was previously mentioned in discussing the 1st mode 
and it takes place for this mode provided 
At the intersection point the two independent motions 
can be superposed by selecting a common amplitude 
of w(a), to give a combined motion. These intersections 

appear in Fig. 6. Beyond the intersection all curves 
n>_ 1 approach ½*=qr. It should be borne in mind that 
in view of the approximate nature of the theory (thin 
shell formulation and no viscosity) the results may not 
be valid at these high frequencies. 

It is seen from Fig. 5 that the dispersion curves for 
n >_ 3 tend to follow the rigid tube curves over most of 
the range, except near c* = 1 where they follow the 2nd 
empty tube mode. The second mode curve tends to 
follow the 2rid empty tube mode for ½*> 1 and the 1st 
rigid tube curve for •*< 1. It is seen from Eqs. (5.3) 
and (3.18) that these tendencies are more pronounced 
when a% • is small and for higher modes. 

The above results are substantially different from 
those of Thomson. ? This is not immediately evident by 
comparison of Fig. 4 with the corresponding Fig. 3 of 
reference 7 because in the reference the plot is limited to 
the range ½*<0.8 which excludes the s-shape portion 
of the dispersion curves for n>_2 as well as the low 
frequency portion of the first mode, and it is in this 
range in which the results differ. According to reference 
7 the first mode does not exist at all frequencies, but 
has a certain lower cut-off frequency. Actually, as has 
been seen, this mode does exist at all frequencies. 
The frequency stated by Thomson to be the cut-off 
frequency for the first mode is actually the cut-off 
frequency for the second mode (•o%2•0.98 in the 
present notation, oJR/co=to**•/•,•2.48 in Thomson's 
notation); similarly Thomson's cut-off frequency for 
the second mode belongs in reality to the third. Thus, 
in the absence of the low-frequency branch of the 1st 
mode, Thornsoh's results imply that the steep portion 
of the dispersion curve for that mode (Fig. 4) joins 
the upper steep branch (½*> 1) of the 2nd mode, that 
the lower steep portion of the 2nd mode joins the upper 
steep one of the 3rd mode, and so on. This causes the 
transition region around c*= 1 in which the dispersion 
curve moves from the neighborhood of a rigid tube mode 
to the neighborhood of the next higher rigid tube mode 
to disappear altogether. The fallacy of this situation 
can also be seen from the fact that the dispersion 
curves would have to cross the line c*= 1 at points which 
are not the intersections of that line with the rigid 
tube curves, and, a lain, the intersection with the 2nd 
empty tube mode dispersion curve would not take place 
at the latter's intersectionwith the free boundary curves. 
This is impossible. 

While computations have been carried out only for 
one set of values of the parameters, (Fig. 5), the 
approximate shape of the velocity-frequency curves 
for other values can easily be predicted by means of 
the approximate formulae derived in gees. 4 and 5 
and by the reasoning exposed in this section. Figures 6 
and 7 are two representative sketches of the velocity- 
frequency diagrams to be expected when 7<<1 and 
when •> 1, respectively. The major difference between 
Figs. 5 and 6 is that, when 7 is very small, the 0 mode is 
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close to c*=7 over the entire range and some of the 
modes n > 2 (in this case one) have cut-off frequencies 
less than one. When 7> 1, Fig. 7 shows that the zero 
mode is entirely due to interaction between fluid and 
tube for small and moderate frequencies [see Eq. 
(4.9b)], and approaches the 1st empty tube mode with 
increasing o•*. In this case the 1st mode also has a 
velocity which is less than ?. It is essentially constant 
and equal to the velocity of elastic waves in an infinite 
medium. The 2nd mode tends to follow e•ther the 2nd 

empty tube mode or the free boundary mode, depending 
on the value of a. Each of the higher modes tends to 
follow a rigid tube mode, the nth mode following the 
n--2 rigid tube mode. 

It is of interest to consider the magnitude of ka 
[-Eq. (3.16)] for a given mode. This parameter deter- 
mines the shape of the radial distribution curves of the 
velocity components and the pressure. For waves 
propagating through fluid contained in a rigid tube or 
an infinitely flexible tube, ka is constant for each mode 
since it is a root of Jx or J0, respectively. Hence, for 
each of these modes, the radial distribution of pressure 
and velocity components is the same at all frequencies. 
When the 'tube is elastic, it is seen from Figs. 5 to 7, 
that ka varies within a finite range for each mode; 
hence the shape of the radial distribution curves 
changes with frequency. 

5. SUMMARY 

There exists an infinite discrete set of modes. Two of 

these, the 0 and 1st modes, exist at all frequencies, the 
0 mode having a phase velocity less than the speed of 
sound in the fluid (•), the 1st mode having a phase 
velocity greater than, or less than, the speed of sound in 
the fluid, accordingly as the latter is less than, or greater 
than, the speed of longitudinal waves in an infinite 
elastic medium consisting of the tube material (c•). 

Each of the higher modes has associated with it a 
cut-off frequency below which the mode does not exist. 
The motion at each of the cut-off frequencies is a 
purely radial vibration independent of position along 
the tube, (waves having infinite length and velocity). 
The dispersion curves tend to follow those pertaining 
either to the fluid-rigid tube system or to the empty 
tube system. 

The curves for the 2nd and higher modes tend to 
exhibit a very large change in the frequency for a 
very small change in the velocity in the neighborhood 
of c•. The shape of the curves and the significance of 
the waves they represent depend on the magnitudes 
of •/•, pa/pLk, k/a and v. 

The influence of rotatory inertia is unimportant even 
at high frequencies; that of transverse shear is of 
importance only for the 0 mode where it tends to 
reduce the phase velocity. 


