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Abstract. Global composition of several time steps of the two-step Lax-Wendroff scheme fol-
lowed by a Lax-Friedrichs step seems to enhance the best features of both, although only first order
accurate. We show this by means of some examples of one-dimensional shallow water flow over an ob-
stacle. In two dimensions we present a new version of Lax-Friedrichs and an associated second order
predictor-corrector method. Composition of these schemes is shown to be effective and efficient for
some two-dimensional Riemann problems and for Noh’s infinite strength cylindrical shock problem.
We also show comparable results for composition of the predictor-corrector scheme with a modified
second order accurate WENO scheme. That composition is second order but is more efficient and has
better symmetry properties than WENO alone. For scalar advection in two dimensions the optimal
stability of the new predictor-corrector scheme is shown using computer algebra. We also show that
the generalization of this scheme to three dimensions is unstable, but using sampling we are able to
show that the composites are sub-optimally stable.
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1. Introduction. An evolutionary tree showing the development of finite dif-
ference methods for hyperbolic systems might emerge from the “soup” of Courant-
Friedrichs-Levy and von Neumann in the form of two branches rooted in Lax-Fried-
richs and Godunov. We wish to distinguish these two methods even though in one
space dimension they both can be looked at as the same thing but on a different mesh
arrangement, as is well-known. Godunov’s idea was to start with cell averages of the
initial data, and then solve the Riemann problem at each cell endpoint. For small
enough time step the waves from one endpoint cannot reach a neighboring endpoint,
so that the Riemann problem solutions provide the fluxes at the endpoints, and the
conservation law then gives the new cell averages directly. This is a first order method
in the sense of truncation error. The Godunov branch now leads us to the second order
scheme of van Leer and his crucial introduction of limiters, to Ami Harten’s inspired
notion of total variation diminishing methods (TVD), to Roe’s approximate Riemann
solver, and to the current interest in essentially non-oscillatory (ENO) and weighted
ENO (WENO) schemes. These methods have typically been first developed for scalar
equations, then applied to systems using a field-by-field decomposition. Indeed, it
seems to us that a common, even defining, feature of the Godunov descendents is the
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need for an expansion in the eigenvectors of the gradient of the flux function. The pos-
itive schemes of [12] also use an eigenvector expansion. The ENO method also treats
space and time independently; it is basically a method of lines, solving the system of
ordinary differential equations by a Runge-Kutta technique. These methods achieve
very high quality solutions, but they are costly both because of the local eigenvector
expansions and the Runge-Kutta steps.

For the system

Ui = fx(U)
Lax-Friedrichs defines new values on a staggered dual grid as
”+1/2 _ 1 n n At n n
(1.1) Uisr)s = §[Uz' + U]+ E[f( ) = SO,

with standard notation. Then the solution on the primary grid is obtained by repeat-
ing the above step with the indices shifted by 1/2. This is simplicity itself, robust, but
inaccurate because it is formally first order accurate and excessively diffusive. The
evolutionary path from Lax-Friedrichs leads to Lax-Wendroff, which in its two-step
form simply uses the first half step of Lax-Friedrichs as a predictor to get the fluxes
centered in time, that is,

(1.2) UP = U7+ LW — RO
This too has the virtue of simplicity and it is formally second order accurate, but
unless the data is smooth it suffers from excessive oscillations.

There has been the analogue of a biological explosion of methods designed to
correct the deficiencies of these simple schemes. Anti-diffusion was proposed in [1]
to improve the resolving power of Lax-Friedrichs, but although anti-diffusion does
very well with shock type discontinuities it introduces severe staircase distortions in
smooth regions. Following von Neumann, Lax and Wendroff [18] proposed artificial
viscosity as a way to reduce oscillations in their method, and many variants of this
idea can be found. Finding a good artificial viscosity still seems to be more of an
art than a science, but this remains a reasonable approach. The self-adjusting hybrid
schemes of Harten and Zwas [7] switch from a diffusive scheme like Lax-Friedrichs
in the neighborhood of a discontinuity to a second order method like Lax-Wendroff
elsewhere. Designing the switch is as much of an art as is designing an artificial
viscosity. Another possibility is the use of a variation diminishing filter as proposed
by Engquist et al [6]. However, that filter seems to work best when used with a field-
by-field decomposition; in our experience with the shallow water equations the filter
applied to the conserved variables caused unacceptable errors in the smooth parts of
the flow. The Godunov idea without eigenvector decomposition through the use of a
simple approximate Riemann solver has been implemented in [5].

We propose here to remain in the Lax-Friedrichs species by using a global com-
position of schemes. It occurred to us that perhaps one should use a filter that 1s
consistent with the differential equations; for example, use Lax-Friedrichs as a filter
for Lax-Wendroff. This leads to the following. Let Ly be the two-step operator in
(1.2) mapping grid data at time n to the data at time n + 1, and let Lp be the cor-
responding operator defined by (1.1). Then let S; be the difference operator defined
by doing k& — 1 applications of Ly followed by one application of Lg.

Sy =LpoLwo-- oLy,
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so that
Untk = s un.

We will call such a composite scheme the LWLFk scheme.

This is not a new idea, as Len Margolin has pointed out, since some meteorological
codes compose the oscillatory second order leap-frog scheme with diffusive backward
Euler in this way. We are going to show by means of several examples that this Lax-
Wendroff Lax-Friedrichs composition works remarkably well. We will first present
some computations of one-dimensional shallow water flow over an obstacle. We then
derive a new two-dimensional Lax-Friedrichs and an associated two-step second or-
der accurate optimally stable scheme. We compute some two-dimensional Riemann
problems using composition of these methods. This composite idea also seems to
well-preserve cylindrical symmetry and accuracy in Noh’s classical infinite strength
cylindrical shock problem. Although these composites have good resolving power for
shocks, they are only first order accurate. Second order accuracy can be achieved by
composing the predictor-corrector with a second order diffusive scheme. One such is
second order WENO applied to the conserved variables rather than to the charac-
teristic variables. We do some of the same examples with this method. This works
very well on the shallow water problem and on Noh’s problem, but not as well on the
two-dimensional Riemann problems Finally, using computer algebra we analyze the
stability of the new predictor-corrector scheme for the scalar advection equation in
two or three dimensions. Unfortunately, it is unstable in three dimensions, however,
the associated schemes composed with Lax-Friedrichs are sub-optimally stable.

2. Shallow water flow over an obstacle. As is well-known the Lax-Friedrichs
(LF) scheme is too diffusive and smears out the shocks. On the other hand the
Lax-Wendroff (LW) scheme without artificial viscosity resolves steep shocks but it
is highly oscillatory close to the shocks. The problem of shallow water flow over
topography illustrates this dramatically, indeed, it was this problem that led us to
consider composite schemes in [15].

For modeling of a shallow water flow over topography in 1D the shallow water
equations [10]

hy + (hu), = 0

1
(hu): + (hu2 + g§h2) + ghzop = 0.

are used. Here h(z,t) is the thickness of the water layer, u(z,t) is the velocity of the
layer, zo(x) is the height of the bottom profile and ¢ is the gravitational constant.

For the examples presented here we take ¢ = 1 and we solve the initial-boundary
value problem on the space interval © € (A, By), Ay < 0, By > 0 with initial condi-
tions

h(z,0)+ zo(x) =1, u(x,0) = ug,
free boundary conditions
he(Az, 1) =0, uy(Ap, ) =0, hy(Bg,t) =0, wuz(Bz,t) =0,
and the bottom profile from [10]
zo(a:):{ bc(l—T) for -2 <2 <2

0 otherwise.
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For the first example here we use b, = 0.2, ug = 1 and solve it in x € (10, 10).
The results of standard Lax-Friedrichs and Lax-Wendroff schemes using 250 points
are presented in Fig. 2.1, and the oscillations LW and the diffusion of LF are very
evident.

height

-10.0 5.0 0.0 5.0 10.0

Fic. 2.1. Comparison of heights for the shallow water problem with b = 0.2,ug = 1 at t = 20
calculated by Lax-Friedrichs and Laz- Wendroff two-step schemes using 250 points.

The results of the same problem treated by the LWLF4 composite scheme are
presented in Fig. 2.2 using 250 and 2000 points. It appears quite clear that the
composite resolves the shocks better than LF but does not suffer from the oscillations
of LW. An heuristic explanation of this is that on the average per time step the first
order truncation error of Lax-Friedrichs is reduced by 1/4-th while the amplification
factor is raised to the 1/4-th power.

There are several ways to remove oscillations from the results of the LW scheme,
however, none of these is completely satisfactory. In Fig. 2.3 we present the results
of the same shallow water problem calculated by LW method with the filter proposed
by Engquist et al. [6]. The filter is applied to every component v € (h, hu) in each
grid point in which v; is a local extremum, that is when d;'d]»_ < 0 where d}", d; are
differences

(21) d;_ = Vj41 — Uy, d]_ =V — U1

So if d;'d]»_ < 0 then v; is corrected by
v; = v; + 05 sign d;'

where

. . | _
8 = min (min(|4F |, 47 ). 3 max( a7 . 1471 ).
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S 250 points
———————————— 2000 points

height
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Fic. 2.2. Comparison of heights for the shallow water problem with b = 0.2,u9 = 1 at t = 20
calculated by the composite LWLF4 scheme with 250 and 2000 points.

Further to retain conservation one of v;_1,v;41 must be corrected in the opposite
sense according to

vy =vy — 0 signd}"

where J = j + 1 for |d;'| > |d;| and J = j — 1 otherwise. The filter removes the
unwanted oscillations but it introduces quite bad behavior in other smooth parts of
the solution. We should note here that this filter is the simplest one presented in [6].

One way to decrease the extreme diffusion of the Lax-Friedrichs scheme is to use
the anti-diffusion proposed in [13]. The anti-diffusion correction which applies to all
components v € (h, hu)

v = v —oz]'—I—ozj_l

is defined in terms of forward and backward differences (2.1) by
1 . . . .
@j = 5 max (0, mm(d}"_l_lﬂgn d}", |d;'|/2, d;__1S1gIl d;')) sign d}".

Note that the anti-diffusion correction is applied only in regions where the component
v 18 monotone. It serves to cancel the diffusion introduced by the averaging in LF,
but it is limited so as to maintain positivity in the scalar case. However as can be
seen in Fig. 2.4 it introduces a familiar staircase behavior in some smooth regions of
the solution, again especially on the downstream side of the bump. In this figure we
present results of the shallow water model with b. = 0.8, ug = 0.6 at ¢t = 20 done by
the Lax-Friedrichs scheme with anti-diffusion (LFAD) and with the composite LWLF4
scheme. We present also the results of the LWLF4 scheme on a fine grid with 2000
points to show the "exact” solution. Note that the result of the composite LWLF4
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Fi1G. 2.3. Heights for the shallow water problem with b = 0.2,mg = 1 at t = 20 calculated by
Laz-Wendroff two-step scheme with the filter using 250 points.

scheme on the coarse grid is also not completely free of problems as it has a dip at
x = —2 where the profile of the bottom is not smooth.

15 15 250 points
| 2000 points
LFAD LWLF4
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Fic. 2.4.

Comparison of heights for the shallow water problem with b, = 0.8,u9g = 0.6 at

t = 20 calculated by the Laz-Friedrichs two-step scheme with anti-diffusion (LFAD )and the composite
LWLF/ scheme using 250 points for LFAD and 250 and 2000 points for LWLFJ schemes.
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3. A two-dimensional composite scheme. There are two predictor-corrector
versions of Lax-Wendroff that we know of. One is Richtmyer’s [18] staggered grid
version, but see also Wendroff [22] for an n-dimensional statement and stability anal-
ysis. The other is due to Eilon et al [4] and uses a straightforward extension of Lax-
Friedrichs to two dimensions as a predictor. Neither these nor the original formulation
are optimally stable. Of course, the Strang dimensional splittings are optimally sta-
ble, that is, the two-dimensional stability condition is just that the one-dimensional
operators should be stable. However, we would like to maintain a multi-dimensional
flavor here, so we will not consider dimensional splitting, but instead we offer an ap-
parently new version of Lax-Friedrichs and the associated predictor-corrector scheme
that is provably optimally stable for the scalar advection equation. Our experiments
with two-dimensional gas dynamics appear to show optimal stability for that system
as well. The scheme is based on the observation of Boukadida and LeRoux [2] that in
order to implement a two-dimensional Godunov method to get cell averages on the
dual grid from the averages on the primary grid one need only solve one-dimensional
Riemann problems on the edges of the dual grid, see Fig. 3.1, provided that the time
step 1s sufficiently small that the disturbance produced at the center of the cell does
not reach the edges. More precisely, for the system

Us = [o(U) + g4 (U)

we have

UiTll//;jH/z - %[Uﬁj + U + Ul + Uil
(3.1) +Qi—tx[Fi+1,j+l/2 — Fijya2] + QAA—ty[GHl/?JH = Gitiyzl;
where

1 Yi+1 pAt/2
Fig1j41/2 = m/ /0 F(U(zit1,9,1))dt dy,

Yi

and U(J:H_l, y,t) is the solution, as a function of y and ¢, of the Riemann problem
with initial data

U(xis1,y,0) = { i+ for y <yj41/2
b) ) n
1,541 fory>yj+1/2.

Similarly,

1 Tit1 At/2 .
Giti/2,541 = m/ /0 g(U(x,yj41,1))dt dz,

and U(x, Yj+1,%) is the solution, as a function of « and ¢, of the Riemann problem
with initial data

. Uliiy for x < ;4179
U(l’ayj+1’0):{ UZT’LH—' for x > x; /
1,541 i+1/2-

K3

We propose to replace the integrated exact Riemann solutions by a one-dimension-
al Lax-Friedrichs approximation, obtaining the fluxes

1 At
(3.2) Fipij412=1f <§[Ui+1,j+1 + Uig1;]+ m[g(Ui+1,j+1) - g(Ui+1,j)]) :
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i i+Lj+1
_____ I S
U2j+U2 +U2j 402
dual cell
i sy
_______________ U S e
primary cell !
U2ju2 i+1/2j-1/2

Fi1a. 3.1. Staggered grid in 2D, primary grid is shown as solid lines and staggered duwal grid as
dashed lines

and
1 At
(3.3) Gig1/2541 =49 §[Uz'+1,j+1 + Ui jp1] + m[f(Ui+1,j+1) — fUij41)] ) -
In case U i1s scalar and
(3.4) FU)=alU, ¢g(U)=0U,

these fluxes agree with the fluxes obtained from the exact Riemann solver, and, as
noted by Boukadida and LeRoux, the scheme then is just transport projection, that

AU e = (L4 N+ )i s+ (L4 N = @)U
(3.5) = N+ )i + (L= N = )5,

(3.6) A=aAl/Az, p=>bAl/Ay.
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The second order accurate predictor-corrector scheme is then
n+1 __ n
U™ = Ui

At
(3.7) + E[f(Ui+1/2,j+1/2) + F(Uig1y2,5-172) = F(Uic1y2i4172) — f(Us—12,5-1/2)]

At
+ m[g(UiH/z,jH/z) + 9(Uic1y2,j4172) — 9WUigay25-172) — 9(Uiz1/2,-1/2)]-

We show in §4 that for scalar advection (3.4) this is an optimally stable method,
that is, the stability condition is max(|Al, |p]) < 1.

We call this second order method CF, for corrected Lax-Friedrichs, and the first
order scheme consisting of two applications of ((3.1)) with (3.2)) and ((3.3) will be
denoted by LF. The composite is

(3.8) LFoCFo---0CF

and is called CFLFn, consisting of n — 1 applications of CF followed be one LF.

3.1. Three gas dynamic tests. In [19] and [12] a suite of two-dimensional
Riemann problems for an ideal gas was computed. We have chosen two to do with
the composite CFLF4. The initial data consists of a single constant state in each of
four quadrants of the z—y plane. The problem is solved in the #—y region (0,1)x(0, 1)
and the four quadrants are given by dividing this region by two lines 2 = 1/2, y = 1/2.
We will use the subscripts [l [r, ul, ur to denote lower-left, lower-right, upper-left and
upper-right quadrants respectively. These constant states are chosen so that each
pair of one-dimensional Riemann problems produces a single wave, which could be a
shock, rarefaction or slip contact discontinuity.

The Euler equations for an ideal gas in 2D are

Ui+ F(U). +G(U), =0,

where
p pu pv
v=| | oFo pu® +p g |
pv puv pve +p
pE u(pE + p) v(pE +p)

Here p is the density, u the velocity in the z-direction, v the velocity in the y direction,
E = e+ 1/2(u? 4 v?) is the total energy, e is the internal energy density, and p =
(v — 1)pe is the pressure.

Our first example is configuration 4 of [12] in which each of the waves is a
shock. The initial conditions for V' = (p, p,u,v) in the four quadrants are V;; =
(1.1,1.1,0.8939,0.8939), Vi = (0.35,0.5065,0,0.8939), V,,; = (0.35,0.5065, 0.8939, 0),
Vur = (1.1,1.1,0,0). The grid size is 400 by 400, the time steps are variable and
chosen so that

(3.9) max(|u £ e|At/Ax, v+ c|At/Ay) < 1

where u and v are the z and y components of velocity and ¢ 1s the speed of sound. We
also force LF on the last time step. The result of this example at ¢t = 0.25 calculated
by the CFLF4 method is presented in Fig. 3.2 as a contour plot of density with 30
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contour level lines. The dips on the contour plot close to the curved shocks which are
bigger for the upper-right curved shock than for the lower-right one are caused by an
overshoot at the top of the shock.

Contour plots can sometimes be misleading, so in order to see more details of the
numerical solution we present in Fig. 3.3, a surface plot of density for the represen-
tative region (z,y) € (0.75,1) x (0.25,0.5), but computed on a finer 800 by 800 grid
over the whole domain. For clarity we have plotted every fourth grid line in each
direction.

| | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fic. 3.2. Contour plot of density for the 2D Riemann problem for an ideal gas with v = 1.4
for configuration 4 dome with the CFLFJ scheme at t = 0.25, 269 time steps, Az = Ay = 1/400, 30
contours.

The second example is configuration 6 of [12] in which each of the waves is a slip
line. The initial conditions in the four quadrants are Vi = (1,1,-0.75,0.5),V;, =
(1,3,-0.75,-0.5), Viy = (1,2,0.75,0.5), V4 = (1,1,0.75,—0.5). The result of this
example at £ = 0.3 calculated by the CFLF6 method is presented in Fig. 3.4 again
with 30 contour level lines. Note that we have done nothing to enhance the resolution
of contact discontinuities.

The third example is a classic test of W. Noh [17] for an ideal gas with v =
5/3. The initial density is 1, the initial pressure is 0, and the initial velocities are
directed toward the origin with magnitude 1. The solution is an infinite strength
circularly symmetric shock reflecting from the origin; the density behind the shock is
16 (compare with the Fig. 3.6), the shock speed is 1/3 and ahead of the shock, that
is for \/2? 4+ y? > t/3, the density is (1 +¢/y/2? + y*). The computational domain is
0<z<1,0<y<1. At the boundaries # = 1 and y = 1 we used the exact density
as a function of time and radius together with the initial pressure and velocity. The
grid size is 75 by 75. Fig. 3.5 is a contour plot of density with the CFLF4 scheme at
the time ¢ = 1. In Fig. 3.6 we show the variation of density along the diagonal = y.
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15

density

0.5
0.75

F1ac. 3.3. Surface plot of density in the region (z,y) € (0.75,1) X (0.25,0.5) for the 2D Riemann
problem for an tdeal gas for configuration 4 with v = 1.4 done with the CFLF4 scheme at t = 0.25,

550 time steps, Az = Ay = 1/800

Fic. 3.4. Contour plot of density for the 2D Riemann problem for an ideal gas with v = 1.4

for configuration 6 dome with the CFLF6 scheme at t = 0.3, 244 time steps, Ax = Ay = 1/400, 30

contours.
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This i1s a difficult problem. The Lagrangian codes dealing with this problem suffer
from a very large error in the density at the center. We must admit to being pleasantly
surprised that the composite does as well as the figure shows. The central error is
quite small, and just as satisfying is the maintenance of circular symmetry.
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Fi1c. 3.5. Surface and contour plot of density for the Noh problem at time t = 1 computed by
CFLF} scheme on a 75 by 75 grid.
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0.0
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Fi1Gc. 3.6. Density profile of the Noh problem at time t = 1 computed by CFLFJ scheme and
CFCW4 2-nd order scheme (see §5) on 75 by 75 grid on the diagonal line z = y.
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4. Stability analysis for scalar advection. In this section we analyze the
stability of the predictor-corrector and composite schemes used for the 2D scalar
advection equation

(4.1) Uy = auy + buy
and for the 3D scalar advection equation
(4.2) Uy = auy + buy + cu,.

We start with the analysis of the predictor scheme for the advection equation
(3.5). Tt is a positive scheme for max(|A|, |x]) < 1, so it is stable and so also the two
step LF scheme is stable for all such A, y.

The second order predictor-corrector scheme for (4.1) is given by the predictor
(3.5) and the corrector (3.7), with (3.6) and (3.4). Using the computer algebra system
Reduce [8] with the package FIDE [14] we have found after Fourier transformation

up ;= aetiotip)
the amplification factor of this scheme is

4[tan (a/2) A + tan (8/2) u]”
[tan? (o/2) + 1]” [tan? (8/2) + 1]
[tan” (/2) tan” (3/2) (A p® — 1) + tan® (a/2) (A* — 1) + tan® (3/2) (u* — 1)]

As can easily be seen |f|? < 1iff [A| < 1 A|u| < 1 so the scheme is optimally stable.

In Fig. 4.1 we present the dependence of the effective amplification factor |f|1/”
on the angles o = 8 for the case A = pp = 1/2 and several composite CFLFn schemes.
The choice n = 4 seems to flatten out the amplification while providing sufficient
diffusion.

1fI? =

In 3D we can extend the ideas of the 2D predictor corrector schemes to get for
the scalar advection equation (4.2) the transport projection predictor

n+1/2
8“z+1/2,;+1/2 E+1/2 =

(L+ M+ )X+ Mgt j1,e41 + (1 + A+ ) (1 = T)uigt j11,k
(4.3) +(1+ ) = )L+ Tt j 41+ (L4+ 00 — ) (1 = T)uigjn

+(1 =)+ )L+ T e+ (1= D)+ p) (1 = Tuij4k
+(1 =)0 = )L+ i g1 + (1= )L = p) (1 = 7)ui j g,
)

where A, p are given by (3.6) and 7 = ¢At/Az. If we apply the predictor again for
the half step from time level n + 1/2 to n we obtain the two-step new Lax-Friedrichs
3D scheme. As in the case of two dimensions we can now construct the second order
corrector

1
n+l _ n L n+1/2 n+1/2
Uige = Uik + 4 ’\( Uir1/2,j+1/2,k+1/2 + Yit1/2,541/2,k—1/2
n+1/2 n+1/2
Uy 051/ k1/2 T Wig)2,j—1/2,k—1/2

n+1/2 n+1/2
U 12 gv1/2 k412 T Yic1)2,541/2,k—1/2
n+1/2 n+1/2 )

U 1o i—1/2k+1/2 T Y125 -1/2,k—1/2
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1.0 ——CF
rrrrrrr CFLF5
~--- CFLF4
——- CFLF3

0.8 1 —-— CFLF2
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0.0 1.0 2.0 3.0 4.0 5.0 6.0

a=p

Fic. 4.1. Dependence of the effective amplification factor per ome time step on angles o = 3
for the case A\ = p =1/2 for CF,CFLF5 CFLF4,CFLF3,CFLF2,LF schemes (in the order from top
to down in the figure as in the legend).

n+1/2 n+1/2

+p(u Uirjo41/2,k41/2 T Yig1/2,541/2,6—1/2
n+1/2 n+1/2
(4.4) FU 2412 T Yim1)2 41/2,k—1/2
n+1/2 n+1/2
Uiy -1/2k+1/2 7 Yig1/25-1/2,k—1/2
n+1/2 n+1/2
U 12 i-1/2,k+1/2 T ui—l/z,j—1/2,k—1/2)
n+1/2 n+1/2
+T(ui+1/2,j+1/2,k+1/2 1 Uiti/a o172 k41)2
n+1/2 n+1/2
U101/ 041/2 T Yic1j2,5—1/2,k41/2
n+1/2 n+1/2
Uiy 41/2k-172 7 Yig1/25-1/2,k—1/2
n+1/2 n+1/2
“Ui1j2541/2,8-1/2 " “i—1/2,j—1/2,k—1/2)

We have called this predictor-corrector scheme the corrected Lax-Friedrichs (CF)
scheme. With the use of computer algebra we have obtained the amplification factor
of this scheme as
Aprtan(a/2) tan(3/2) tan(y/2)D + AB

D2

If2=1+44

where

| |
—
Q
\
\_/

—|— ptan(5/2) + mtan(y/2)

tan® (o /2) tan®* (8/2) tan®™ (v/2) (A% p?* 2™ — 1)

"
MH
||M~
2 1M~

D = (/2 + L(tan(8/2)° + D(tants/27 + 1

This formula is quite complicated and hard to analyze. However we have succeeded
to do the algebraic analysis for the one special case p =7 = A,y = 7/2 for which the
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amplification factor is

fn
(tan(a/2)% + 1)2(tan(3/2)2 + 1)2

P =1+
where
Foo = OGS 5+ 87 + N DAY — (20585 + 265 + 263 + V)] (ta + 8 + 1)
(26345 4 234+ 13 F 12y 12 £ 2015 ot 2ty F b, 13
i+t 4+ 1A (L + £y + 1)N
tq = tan(a/2)
ty = tan(5/2)
The quantifier elimination? program QEPCAD [9] has proved that the logical formula
Vta th fn S 0

is equivalent to the formula A = 0. This shows that for the special case 1=y =A#0
and v = 7/2 the absolute value of the amplification factor is greater than one and
so the scheme is unstable. So the scheme is unstable for 7 = ¢ = A # 0 and most
probably unconditionally unstable. Numerical sampling has shown that it is unstable
for all non-zero values of A, i, 7.

The predictor scheme (4.3) is stable as it is a positive scheme if max(|A|, |u], |7]) <
1, so also the two step Lax-Friedrichs scheme 1s stable.

The composite schemes CFLFn are constructed as in 2D (3.8) and consist of
n — 1 CF steps and one LF step. For composite schemes the amplification factor
is too complicated to be analyzed algebraically. We have analyzed the stability by
numerical sampling and we have found that for small n the stability region of the
composite scheme is quite a large subset of the cube |A] < 1,|p] < 1,|7] £ 1, see the
Fig. 4.2 for the stability region of CFLF2 for positive A, u, 7 (the stability region is
between the plotted surface and the plane 7 =0 for 0 <A < 1,0 < < 1).

For several small n we have search the maximal r, so that the CFLFn scheme
is stable for all |A| < 7y, || < rn,|7] < rn. rp has been calculated by numerical
sampling and its values are given in the Table 4.1.

To get a better insight into the stability properties of the composite schemes we
have also considered the dependence of the effective amplification factor|f|1/” (i.e. the
amplification factor per one time step) on the angles «, 3,7. In Fig. 4.3 we present
this dependence for the case « = f = v and A = p = 7 = 0.9 for several composite
CFLFn schemes. Note that the CFLF3 scheme slightly overshoots the value one so it
is unstable for A = g = 7 = 0.9 as we have already seen from the Table 4.1.

2Quantifier elimination (QE) is the procedure which transforms the formula
Qw1 € R, Qa2 € R, -+, Qg € R, Fa1,--,2m),

where m > k, Q;,i = 1,---,k are quantifiers V (for all) or 3 (there exists) and F' is an arbitrary
logical combination of polynomial equations or inequalities in the real variables z1,-- -, 2y, into the
equivalent formula which does not contain any quantifier and contains only non-quantified variables
Tpy1, -, &m and is again a logical combination of polynomial equations and inequalities. In [20]
Tarski has proved that QE is possible and in [21] he gave the algorithm for doing QE, however, the
complexity of the algorithm was prohibitive as it cannot be bound by any finite tower of exponential
functions. In [3] Collins presented a new method for QE by the cylindrical algebraic decomposi-
tion (CAD) with double exponential complexity. Based on this Hong [9] in cooperation with others
developed the program QEPCAD (Quantifier Elimination by Partial Cylindrical Algebraic Decompo-
sition) which incorporates many important improvements of the original CAD algorithm and which
is the best QE program implemented up to now.
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0.5
lambda

Fi1G. 4.2. Stability region (between the plotted surface and the plane 7 =0 for 0 < A < 1,0 <
w<1)of the 3D CFLF2 composite scheme.

TABLE 4.1
Mazimal values of rr, so that the whole cube (—7yn,7mn)? is inside the stability region of the
CFLFn scheme in A, u, T space.

n Tn
2 0.9299
3 0.8979
4 0.8770
5 0.8602
——CF
1.25 +{ - CFLF5
---- CFLF4
——- CFLF3
—-— CFLF2
— IF
1.00 y
|fllln
075 | N i
050 Il Il Il Il Il Il
00 10 20 30 40 50 60

F1G. 4.3. Dependence of the effective amplification factor per one time step on angles o« = 3 =~
for the case A= p=71=0.9 for CF,CFLF5 CFLF4,CFLF3,CFLF2,LF schemes (in the order from
top to down in the figure as in the legend).
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5. A second order composite. It would be desirable to have a composite which
was as efficient as as LWLF or CFLF and which had at least as good resolving power
but which was second order accurate for smooth flows. We have taken a preliminary
step in this direction by using a second order diffusive WENO type scheme to replace
the Lax-Friedrichs step. We thank Guang-Shan Jiang for graciously giving us the
WENO code and for assisting in its implementation. We have modified this code to
eliminate the eigenvector decomposition and we just use the WENO procedure on the
conserved variables, an idea which is not recommended by the author of the code.
Details of the full WENO method are in [11].

For the system

Uy = fx(U)
WENO is a method of lines, solving the system of ordinary differential equations

1

Uy = —(Fig1y2 — Fic1y2) = R

by a Runge-Kutta method, in our case it 1s just Heun’s method. The numerical fluxes
are obtained as follows. First, let

1
dfiﬁ.uz = §[fi+1 — i+ alUip = Uy)]
_ 1
dfitrys = glfivr = fi = a(Uips = Ui)],

and

Cr =si iy, —dfiZy)

Ci-l-—l—l = 52—+1(df:|-3/2 - dfz'-l-—|-1/2)’

where the s* are certain diagonal weight matrices defined below. Then

1 _
Fit1/2 = §(fz’+1 + fi) — (C{:q +C7).
The weights are, for each component, given by

ty=[107° + (df_ )°)
to = [107° + (df )T
_ ta
s, = ———————,

g 2(2t1 + t2)

and
= 1070+ (A )P
ty = [10—6 + (df,"_‘l_l/z)z]z

+ t2
S, = .
T2t + 1)

For a two-dimensional problem each dimension is treated in this way.
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For the time advance the procedure is
U=0U"+AtR(U™)
1 . .
=2 (" + 0 + Atr(D7))

We choose « to be twice the maximum of |u & ¢| taken over the grid, and instead

of (3.9) we use
(5.1) max(|u £ c|]At/Ax + |v £+ c|At/Ay) < 1/4

This choice is dictated by non-optimal stability of WENO and by some numerical
experimentation. The one dimensional problem below was not sensitive to these
values, but this choice worked best for Noh’s problem.

The composites are LWCWn in one dimension, CFCWn in two, where CW stands
for component-wise WENO.

For the first shallow water problem we compare CW with 250 points with the
exact solution got by LWLF4 with 2000 points, see Fig. 5.1. CW 1is considerably
better than LF (see Fig. 2.1) as it resolves shocks and their heights quite well.

1.5 CW 250 points
———————————— LWLF4 2000 points

height

05 - b

0.0 1 1 1
-10.0 -5.0 0.0 5.0 10.0

Fi1c. 5.1. Comparison of heights for the shallow water problem with b = 0.2,ug = 1 at t = 20
calculated by component-wise WENQO on 250 points and exact solution by LWLF4 on 2000 points.

Next we compare the composites LWLF4 and LWCW4 for the same case with
250 points, see Fig. 5.2. Composition works again quite well. LWCW4 gives steeper
shocks and resolves slightly better the heights of the shocks than LWLF4, however
it has overshoots on the shock. A small overshoot appears also when LWCW4 is
computed on the fine grid with 2000 points.

We have repeated with the CFCW4 scheme the computation of 2D Riemann
problems for ideal gas dynamics done in §3.1 with the CFLF4 scheme. The results as
contour plots are presented in Fig. 6.1 for the configuration 4 and in Fig. 6.2 for the
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15 —— — — ——— LWCW4 250 points
---- LWLF4 250 points

height

05 - b

0.0
-10.0 -5.0 0.0 5.0 10.0

Fic. 5.2. Comparison of heights for the shallow water problem with b = 0.2,u9 = 1 at t = 20
calculated by LWCW, and LWLF4 on 250 points.

configuration 6. We have used again 400 by 400 grid and CFL limit 1 for CF steps
and 1/4 for CW steps. The CFCW4 results are noisier than CFLF4 results and they
have also overshoot on the curved shock for the configuration 4.

For Noh’s problem the results of the CFCW4 scheme are as good or even slightly
better than the results obtained in §3.1 by the CFLF4 scheme. The symmetry of the
solution is again nice as shown on the surface plot in Fig. 3.5 for CFLF4 scheme.
The comparison of CFCW4 and CFLF4 schemes is shown in Fig. 3.6 which shows the
variation of the density along the diagonal @ = y. As seen in this figure the CFCW4
scheme resolves slightly better the value 16 of the density behind the shock. The
computation has been done again on the 75 by 75 grid.

6. Comments. We have proposed and tested some new descendents of the Lax-
Friedrichs difference scheme obtained by globally composing a second order accurate
oscillatory scheme with either a first order or second order diffusive scheme. The
oscillatory passes seem to contain sufficient solution information which is revealed by
the filtering diffusive passes. The resulting schemes are robust and show excellent
resolution of both discontinuous and smooth solutions of hyperbolic systems in one
and two dimensions, although the second order composite was noisier for the two-
dimensional Riemann problem. We have found that three oscillatory steps followed
by one diffusive step seems optimal in most cases. We showed the optimal stability
of a variant of Lax-Friedrichs and a new second-order accurate scheme for constant
coefficient scalar advection. For the gas dynamic equations our numerical results
using (3.9) as the stability condition indicate that these schemes remain optimally
stable, but a theoretical justification of this i1s lacking. Note that the Lax-Friedrichs
variant surely has positive matrix coefficients in the linear case if At is small enough
and is therefore Lo-stable by a theorem of Friedrichs ([16]), but for At only restricted
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by the CFL condition in each dimension, each coefficient is a symmetric product of
positive matrices which is not necessarily positive. We have not tried to make a
serious comparison of computational efficiency for these methods, but because they
consist of very simple difference schemes not using an eigenvector decomposition or
a precise Riemann solver they are quite fast. For example, the predictor- corrector
and component-wise WENO (CWENO) composite was about 10 times faster then
CWENO alone (not shown) on configuration 4 because of (5.1). In three dimensions
a natural extension of the predictor-corrector scheme is unstable, but the composite
with the first order diffusive step is sub-optimally stable.

Fi1G. 6.1. Contour plot of density for the 2D Riemann problem for an ideal gas for configuration
4 done with the CFCW/ scheme at t = 0.25, 356 time steps, Az = Ay = 1/400
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Addendum. One of the referees raised several important points that have been
addressed in the body of the paper. That referee also wondered about the accuracy of
the composite schemes on a smooth problem. We have computed the periodic solution

given by [11]

u,v,p constants

plz,y,t) =14 0.2sin(w(z + y — t(u + v))),
of the Euler equations for ideal gas. Here is a table showing the L; errors and ratios.

TABLE 6.1
Ly errors and errors ratios for the smooth problem for LF, CFLF/, CFCWJ/, CF schemes.

Ratios are ratios of the error with given Az with the error with half space step, which 1s shown on

the following line.

Aw LF CFLF4 CFCW4 CF

error ratio error ratio error ratio error ratio
004 | 151072 2.00 | 4510~ 225 | 3.410~% 3.92 | 3.610~% 4.01
002 | 7610™% 197 | 2010~ 199 | 8710™° 4.00 | 9.110~° 4.00
0.01 | 3810~% 198 | 1.010~% 205 | 2110~° 3.95 | 2.310°  4.00
0.005 | 1.9103 4.910* 5.5 10~ 5.7 10~

The table shows that CFLF4 is first order, but more accurate than LF, while
CFCW1 is second order having for this smooth problem the same accuracy as CF

alone.



