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Abstract� Global composition of several time steps of the two�step Lax�Wendro� scheme fol�
lowed by a Lax�Friedrichs step seems to enhance the best features of both� although only �rst order
accurate� We show this by means of some examples of one�dimensional shallow water �ow over an ob�
stacle� In two dimensions we present a new version of Lax�Friedrichs and an associated second order
predictor�corrector method� Composition of these schemes is shown to be e�ective and e�cient for
some two�dimensional Riemann problems and for Noh�s in�nite strength cylindrical shock problem�
We also show comparable results for composition of the predictor�corrector scheme with a modi�ed
second order accurateWENO scheme� That composition is second order but is more e�cient and has
better symmetry properties than WENO alone� For scalar advection in two dimensions the optimal
stability of the new predictor�corrector scheme is shown using computer algebra� We also show that
the generalization of this scheme to three dimensions is unstable� but using sampling we are able to
show that the composites are sub�optimally stable�
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�� Introduction� An evolutionary tree showing the development of �nite dif�
ference methods for hyperbolic systems might emerge from the �soup� of Courant�
Friedrichs�Levy and von Neumann in the form of two branches rooted in Lax�Fried�
richs and Godunov� We wish to distinguish these two methods even though in one
space dimension they both can be looked at as the same thing but on a di�erent mesh
arrangement� as is well�known� Godunov�s idea was to start with cell averages of the
initial data� and then solve the Riemann problem at each cell endpoint� For small
enough time step the waves from one endpoint cannot reach a neighboring endpoint�
so that the Riemann problem solutions provide the 	uxes at the endpoints� and the
conservation law then gives the new cell averages directly� This is a �rst order method
in the sense of truncation error� The Godunov branch now leads us to the second order
scheme of van Leer and his crucial introduction of limiters� to Ami Harten�s inspired
notion of total variation diminishing methods 
TVD�� to Roe�s approximate Riemann
solver� and to the current interest in essentially non�oscillatory 
ENO� and weighted
ENO 
WENO� schemes� These methods have typically been �rst developed for scalar
equations� then applied to systems using a �eld�by��eld decomposition� Indeed� it
seems to us that a common� even de�ning� feature of the Godunov descendents is the
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need for an expansion in the eigenvectors of the gradient of the 	ux function� The pos�
itive schemes of ��� also use an eigenvector expansion� The ENO method also treats
space and time independently� it is basically a method of lines� solving the system of
ordinary di�erential equations by a Runge�Kutta technique� These methods achieve
very high quality solutions� but they are costly both because of the local eigenvector
expansions and the Runge�Kutta steps�

For the system

Ut � fx
U �

Lax�Friedrichs de�nes new values on a staggered dual grid as

U
n����
i���� �

�

�
Un

i � Un
i��� �

�t

��x
f
Un

i���� f
Un
i ���
����

with standard notation� Then the solution on the primary grid is obtained by repeat�
ing the above step with the indices shifted by ���� This is simplicity itself� robust� but
inaccurate because it is formally �rst order accurate and excessively di�usive� The
evolutionary path from Lax�Friedrichs leads to Lax�Wendro�� which in its two�step
form simply uses the �rst half step of Lax�Friedrichs as a predictor to get the 	uxes
centered in time� that is�

Un��
i � Un

i �
�t

�x
f
U

n����
i���� � � f
U

n����
i���� ���
����

This too has the virtue of simplicity and it is formally second order accurate� but
unless the data is smooth it su�ers from excessive oscillations�

There has been the analogue of a biological explosion of methods designed to
correct the de�ciencies of these simple schemes� Anti�di�usion was proposed in ��
to improve the resolving power of Lax�Friedrichs� but although anti�di�usion does
very well with shock type discontinuities it introduces severe staircase distortions in
smooth regions� Following von Neumann� Lax and Wendro� ��� proposed arti�cial
viscosity as a way to reduce oscillations in their method� and many variants of this
idea can be found� Finding a good arti�cial viscosity still seems to be more of an
art than a science� but this remains a reasonable approach� The self�adjusting hybrid
schemes of Harten and Zwas �� switch from a di�usive scheme like Lax�Friedrichs
in the neighborhood of a discontinuity to a second order method like Lax�Wendro�
elsewhere� Designing the switch is as much of an art as is designing an arti�cial
viscosity� Another possibility is the use of a variation diminishing �lter as proposed
by Engquist et al ��� However� that �lter seems to work best when used with a �eld�
by��eld decomposition� in our experience with the shallow water equations the �lter
applied to the conserved variables caused unacceptable errors in the smooth parts of
the 	ow� The Godunov idea without eigenvector decomposition through the use of a
simple approximate Riemann solver has been implemented in ���

We propose here to remain in the Lax�Friedrichs species by using a global com�
position of schemes� It occurred to us that perhaps one should use a �lter that is
consistent with the di�erential equations� for example� use Lax�Friedrichs as a �lter
for Lax�Wendro�� This leads to the following� Let LW be the two�step operator in

���� mapping grid data at time n to the data at time n � �� and let LF be the cor�
responding operator de�ned by 
����� Then let Sk be the di�erence operator de�ned
by doing k � � applications of LW followed by one application of LF �

Sk � LF � LW � � � � � LW �
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so that

Un�k � SkU
n�

We will call such a composite scheme the LWLFk scheme�
This is not a new idea� as Len Margolin has pointed out� since some meteorological

codes compose the oscillatory second order leap�frog scheme with di�usive backward
Euler in this way� We are going to show by means of several examples that this Lax�
Wendro� Lax�Friedrichs composition works remarkably well� We will �rst present
some computations of one�dimensional shallow water 	ow over an obstacle� We then
derive a new two�dimensional Lax�Friedrichs and an associated two�step second or�
der accurate optimally stable scheme� We compute some two�dimensional Riemann
problems using composition of these methods� This composite idea also seems to
well�preserve cylindrical symmetry and accuracy in Noh�s classical in�nite strength
cylindrical shock problem� Although these composites have good resolving power for
shocks� they are only �rst order accurate� Second order accuracy can be achieved by
composing the predictor�corrector with a second order di�usive scheme� One such is
second order WENO applied to the conserved variables rather than to the charac�
teristic variables� We do some of the same examples with this method� This works
very well on the shallow water problem and on Noh�s problem� but not as well on the
two�dimensional Riemann problems Finally� using computer algebra we analyze the
stability of the new predictor�corrector scheme for the scalar advection equation in
two or three dimensions� Unfortunately� it is unstable in three dimensions� however�
the associated schemes composed with Lax�Friedrichs are sub�optimally stable�

�� Shallow water �ow over an obstacle� As is well�known the Lax�Friedrichs

LF� scheme is too di�usive and smears out the shocks� On the other hand the
Lax�Wendro� 
LW� scheme without arti�cial viscosity resolves steep shocks but it
is highly oscillatory close to the shocks� The problem of shallow water 	ow over
topography illustrates this dramatically� indeed� it was this problem that led us to
consider composite schemes in ����

For modeling of a shallow water 	ow over topography in �D the shallow water
equations ���

ht � 
hu�x � �


hu�t �

�
hu� � g

�

�
h�
�
x

� ghz�x � ��

are used� Here h
x� t� is the thickness of the water layer� u
x� t� is the velocity of the
layer� z�
x� is the height of the bottom pro�le and g is the gravitational constant�

For the examples presented here we take g � � and we solve the initial�boundary
value problem on the space interval x � 
Ax� Bx�� Ax � �� Bx � � with initial condi�
tions

h
x� �� � z�
x� � �� u
x� �� � u��

free boundary conditions

hx
Ax� t� � �� ux
Ax� t� � �� hx
Bx� t� � �� ux
Bx� t� � ��

and the bottom pro�le from ���

z�
x� �

�
bc

�
�� x�

�

�
for �� � x � �

� otherwise�
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For the �rst example here we use bc � ���� u� � � and solve it in x � 
���� ����
The results of standard Lax�Friedrichs and Lax�Wendro� schemes using ��� points
are presented in Fig� ���� and the oscillations LW and the di�usion of LF are very
evident�
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Fig� ���� Comparison of heights for the shallow water problem with bc � �	�u� � � at t � 	
calculated by Lax�Friedrichs and Lax�Wendro� two�step schemes using ��� points�

The results of the same problem treated by the LWLF� composite scheme are
presented in Fig� ��� using ��� and ���� points� It appears quite clear that the
composite resolves the shocks better than LF but does not su�er from the oscillations
of LW� An heuristic explanation of this is that on the average per time step the �rst
order truncation error of Lax�Friedrichs is reduced by ����th while the ampli�cation
factor is raised to the ����th power�

There are several ways to remove oscillations from the results of the LW scheme�
however� none of these is completely satisfactory� In Fig� ��� we present the results
of the same shallow water problem calculated by LW method with the �lter proposed
by Engquist et al� ��� The �lter is applied to every component v � 
h� hu� in each
grid point in which vj is a local extremum� that is when d�j d

�

j � � where d�j � d
�

j are
di�erences

d�j � vj�� � vj� d�j � vj � vj��
����

So if d�j d
�

j � � then vj is corrected by

vj � vj � �j sign d
�
j

where

�j � min

�
min
jd�j j� jd

�

j j��
�

�
max
jd�j j� jd

�

j j�

�
�
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Fig� ���� Comparison of heights for the shallow water problem with bc � �	� u� � � at t � 	
calculated by the composite LWLF� scheme with ��� and ���� points�

Further to retain conservation one of vj��� vj�� must be corrected in the opposite
sense according to

vJ � vJ � �j sign d
�
j

where J � j � � for jd�j j � jd�j j and J � j � � otherwise� The �lter removes the
unwanted oscillations but it introduces quite bad behavior in other smooth parts of
the solution� We should note here that this �lter is the simplest one presented in ���

One way to decrease the extreme di�usion of the Lax�Friedrichs scheme is to use
the anti�di�usion proposed in ���� The anti�di�usion correction which applies to all
components v � 
h� hu�

vj � vj � �j � �j��

is de�ned in terms of forward and backward di�erences 
���� by

�j �
�

�
max

�
��min
d�j��signd

�
j � jd

�
j j��� d

�
j��signd

�
j �
�
sign d�j �

Note that the anti�di�usion correction is applied only in regions where the component
v is monotone� It serves to cancel the di�usion introduced by the averaging in LF�
but it is limited so as to maintain positivity in the scalar case� However as can be
seen in Fig� ��� it introduces a familiar staircase behavior in some smooth regions of
the solution� again especially on the downstream side of the bump� In this �gure we
present results of the shallow water model with bc � ���� u� � ��� at t � �� done by
the Lax�Friedrichs scheme with anti�di�usion 
LFAD� and with the composite LWLF�
scheme� We present also the results of the LWLF� scheme on a �ne grid with ����
points to show the �exact� solution� Note that the result of the composite LWLF�
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Fig� ���� Heights for the shallow water problem with bc � �	�m� � � at t � 	 calculated by
Lax�Wendro� two�step scheme with the �lter using ��� points�

scheme on the coarse grid is also not completely free of problems as it has a dip at
x � �� where the pro�le of the bottom is not smooth�
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Fig� ���� Comparison of heights for the shallow water problem with bc � ��� u� � �� at
t � 	 calculated by the Lax�Friedrichs two�step scheme with anti�di�usion 	LFAD
and the composite
LWLF� scheme using ��� points for LFAD and ��� and ���� points for LWLF� schemes�
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�� A two�dimensional composite scheme� There are two predictor�corrector
versions of Lax�Wendro� that we know of� One is Richtmyer�s ��� staggered grid
version� but see also Wendro� ��� for an n�dimensional statement and stability anal�
ysis� The other is due to Eilon et al �� and uses a straightforward extension of Lax�
Friedrichs to two dimensions as a predictor� Neither these nor the original formulation
are optimally stable� Of course� the Strang dimensional splittings are optimally sta�
ble� that is� the two�dimensional stability condition is just that the one�dimensional
operators should be stable� However� we would like to maintain a multi�dimensional
	avor here� so we will not consider dimensional splitting� but instead we o�er an ap�
parently new version of Lax�Friedrichs and the associated predictor�corrector scheme
that is provably optimally stable for the scalar advection equation� Our experiments
with two�dimensional gas dynamics appear to show optimal stability for that system
as well� The scheme is based on the observation of Boukadida and LeRoux �� that in
order to implement a two�dimensional Godunov method to get cell averages on the
dual grid from the averages on the primary grid one need only solve one�dimensional
Riemann problems on the edges of the dual grid� see Fig� ���� provided that the time
step is su�ciently small that the disturbance produced at the center of the cell does
not reach the edges� More precisely� for the system

Ut � fx
U � � gy
U �

we have

U
n����
i�����j���� �

�

�
Un

i�j � Un
i���j � Un

i�j�� � Un
i���j���

�
�t

��x
Fi���j����� Fi�j����� �

�t

��y
Gi�����j��� Gi�����j��
����

where

Fi���j���� �
�

�t�y

Z yj��

yj

Z �t��

�

f
 �U 
xi��� y� t��dt dy�

and �U 
xi��� y� t� is the solution� as a function of y and t� of the Riemann problem
with initial data

�U 
xi��� y� �� �

�
Un
i���j for y � yj����

Un
i���j�� for y � yj�����

Similarly�

Gi�����j�� �
�

�t�x

Z xi��

xi

Z �t��

�
g
 �U 
x� yj��� t��dt dx�

and �U 
x� yj��� t� is the solution� as a function of x and t� of the Riemann problem
with initial data

�U 
x� yj��� �� �

�
Un
i�j�� for x � xi����

Un
i���j�� for x � xi�����

We propose to replace the integrated exact Riemann solutions by a one�dimension�
al Lax�Friedrichs approximation� obtaining the 	uxes

Fi���j���� � f

�
�

�
Ui���j�� � Ui���j � �

�t

��y
g
Ui���j��� � g
Ui���j��

�
�
����
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Fig� ���� Staggered grid in �D� primary grid is shown as solid lines and staggered dual grid as
dashed lines

and

Gi�����j�� � g

�
�

�
Ui���j�� � Ui�j��� �

�t

��x
f
Ui���j���� f
Ui�j����

�
�
����

In case U is scalar and

f
U � � aU� g
U � � bU�
����

these 	uxes agree with the 	uxes obtained from the exact Riemann solver� and� as
noted by Boukadida and LeRoux� the scheme then is just transport projection� that
is�

�Un����
i�����j���� � 
� � ��
� � 	�Ui���j�� � 
� � ��
� � 	�Ui���j

�
� � ��
� � 	�Ui�j�� � 
�� ��
� � 	�Ui�j �
����

where

� � a�t��x� 	 � b�t��y�
����
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The second order accurate predictor�corrector scheme is then

Un��
i�j � Un

i�j

�
�t

��x
f
Ui�����j����� � f
Ui�����j����� � f
Ui�����j������ f
Ui�����j������
����

�
�t

��y
g
Ui�����j����� � g
Ui�����j����� � g
Ui�����j������ g
Ui�����j�������

We show in x� that for scalar advection 
���� this is an optimally stable method�
that is� the stability condition is max
j�j� j	j� � ��

We call this second order method CF� for corrected Lax�Friedrichs� and the �rst
order scheme consisting of two applications of 

����� with 
����� and 

���� will be
denoted by LF� The composite is

LF �CF � � � � �CF
����

and is called CFLFn� consisting of n� � applications of CF followed be one LF�

���� Three gas dynamic tests� In ��� and ��� a suite of two�dimensional
Riemann problems for an ideal gas was computed� We have chosen two to do with
the composite CFLF�� The initial data consists of a single constant state in each of
four quadrants of the x�y plane� The problem is solved in the x�y region 
�� ���
�� ��
and the four quadrants are given by dividing this region by two lines x � ���� y � ����
We will use the subscripts ll� lr� ul� ur to denote lower�left� lower�right� upper�left and
upper�right quadrants respectively� These constant states are chosen so that each
pair of one�dimensional Riemann problems produces a single wave� which could be a
shock� rarefaction or slip contact discontinuity�

The Euler equations for an ideal gas in �D are

Ut � F 
U �x � G
U �y � ��

where

U �

	
BB





u

v

E

�
CCA � F �

	
BB



u

u� � p

uv
u

E � p�

�
CCA � G �

	
BB



v

uv

v� � p
v

E � p�

�
CCA �

Here 
 is the density� u the velocity in the x�direction� v the velocity in the y direction�
E � e � ���
u� � v�� is the total energy� e is the internal energy density� and p �

� � ��
e is the pressure�

Our �rst example is con�guration � of ��� in which each of the waves is a
shock� The initial conditions for V � 
p� 
� u� v� in the four quadrants are Vll �

���� ���� ��������������� Vlr � 
����� ����������������� Vul � 
����� ������� ������� ���
Vur � 
���� ���� �� ��� The grid size is ��� by ���� the time steps are variable and
chosen so that

max
ju� cj�t��x� jv� cj�t��y� � �
����

where u and v are the x and y components of velocity and c is the speed of sound� We
also force LF on the last time step� The result of this example at t � ���� calculated
by the CFLF� method is presented in Fig� ��� as a contour plot of density with ��
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contour level lines� The dips on the contour plot close to the curved shocks which are
bigger for the upper�right curved shock than for the lower�right one are caused by an
overshoot at the top of the shock�

Contour plots can sometimes be misleading� so in order to see more details of the
numerical solution we present in Fig� ���� a surface plot of density for the represen�
tative region 
x� y� � 
����� ��� 
����� ����� but computed on a �ner ��� by ��� grid
over the whole domain� For clarity we have plotted every fourth grid line in each
direction�
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Fig� ���� Contour plot of density for the �D Riemann problem for an ideal gas with � � ���
for con�guration � done with the CFLF� scheme at t � �	�� �� time steps� �x � �y � ���� ��
contours�

The second example is con�guration � of ��� in which each of the waves is a slip
line� The initial conditions in the four quadrants are Vll � 
�� �������� ����� Vlr �

�� �������������� Vul � 
�� �� ����� ����� Vur � 
�� �� ����������� The result of this
example at t � ��� calculated by the CFLF� method is presented in Fig� ��� again
with �� contour level lines� Note that we have done nothing to enhance the resolution
of contact discontinuities�

The third example is a classic test of W� Noh ��� for an ideal gas with � �
���� The initial density is �� the initial pressure is �� and the initial velocities are
directed toward the origin with magnitude �� The solution is an in�nite strength
circularly symmetric shock re	ecting from the origin� the density behind the shock is
�� 
compare with the Fig� ����� the shock speed is ��� and ahead of the shock� that

is for
p
x� � y� � t��� the density is 
�� t�

p
x� � y��� The computational domain is

� � x � �� � � y � �� At the boundaries x � � and y � � we used the exact density
as a function of time and radius together with the initial pressure and velocity� The
grid size is �� by ��� Fig� ��� is a contour plot of density with the CFLF� scheme at
the time t � �� In Fig� ��� we show the variation of density along the diagonal x � y�
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Fig� ���� Surface plot of density in the region �x� y� � ����������	����� for the �D Riemann
problem for an ideal gas for con�guration � with � � ��� done with the CFLF� scheme at t � �	��
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Fig� ���� Contour plot of density for the �D Riemann problem for an ideal gas with � � ���
for con�guration � done with the CFLF� scheme at t � �
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This is a di�cult problem� The Lagrangian codes dealing with this problem su�er
from a very large error in the density at the center� We must admit to being pleasantly
surprised that the composite does as well as the �gure shows� The central error is
quite small� and just as satisfying is the maintenance of circular symmetry�
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Fig� ���� Surface and contour plot of density for the Noh problem at time t � � computed by
CFLF� scheme on a �� by �� grid�
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CFCW� ��nd order scheme 	see x�
 on �� by �� grid on the diagonal line x � y�
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�� Stability analysis for scalar advection� In this section we analyze the
stability of the predictor�corrector and composite schemes used for the �D scalar
advection equation

ut � aux � buy
����

and for the �D scalar advection equation

ut � aux � buy � cuz�
����

We start with the analysis of the predictor scheme for the advection equation

����� It is a positive scheme for max
j�j� j	j� � �� so it is stable and so also the two
step LF scheme is stable for all such �� 	�

The second order predictor�corrector scheme for 
���� is given by the predictor

���� and the corrector 
����� with 
���� and 
����� Using the computer algebra system
Reduce �� with the package FIDE ��� we have found after Fourier transformation

ui�j � �ue��i��j��

the ampli�cation factor of this scheme is

jf j� � � �
� tan 
����� � tan 
���� 	���

tan� 
���� � �
� �

tan� 
���� � �
��

tan� 
���� tan� 
���� 
��	� � �� � tan� 
���� 
�� � �� � tan� 
���� 
	� � ��


As can easily be seen jf j� � � i� j�j � � � j	j � � so the scheme is optimally stable�
In Fig� ��� we present the dependence of the e�ective ampli�cation factor jf j��n

on the angles � � � for the case � � 	 � ��� and several composite CFLFn schemes�
The choice n � � seems to 	atten out the ampli�cation while providing su�cient
di�usion�

In �D we can extend the ideas of the �D predictor corrector schemes to get for
the scalar advection equation 
���� the transport projection predictor

�u
n����
i�����j�����k���� �


� � ��
� � 	�
� �  �ui���j���k��� 
� � ��
� � 	�
��  �ui���j���k

�
� � ��
� � 	�
� �  �ui���j�k�� � 
� � ��
�� 	�
��  �ui���j�k
����

�
� � ��
� � 	�
� �  �ui�j���k��� 
�� ��
� � 	�
� �  �ui�j���k

�
� � ��
� � 	�
� �  �ui�j�k�� � 
�� ��
�� 	�
��  �ui�j�k�

where �� 	 are given by 
���� and  � c�t��z� If we apply the predictor again for
the half step from time level n� ��� to n we obtain the two�step new Lax�Friedrichs
�D scheme� As in the case of two dimensions we can now construct the second order
corrector

un��i�j�k � uni�j�k �
�

�

h
�
u

n����
i�����j�����k����� u

n����
i�����j�����k����

�un����i�����j�����k����� u
n����
i�����j�����k����

�u
n����
i�����j�����k����� u

n����
i�����j�����k����

�u
n����
i�����j�����k����� u

n����
i�����j�����k�����



�� R� LISKA AND B� WENDROFF

0.0 1.0 2.0 3.0 4.0 5.0 6.0
α = β

0.0

0.2

0.4

0.6

0.8

1.0

|f|
1/n

CF
CFLF5
CFLF4
CFLF3
CFLF2
LF

Fig� ���� Dependence of the e�ective ampli�cation factor per one time step on angles � � �
for the case � � � � ��	 for CF�CFLF��CFLF��CFLF��CFLF��LF schemes 	in the order from top
to down in the �gure as in the legend
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We have called this predictor�corrector scheme the corrected Lax�Friedrichs 
CF�
scheme� With the use of computer algebra we have obtained the ampli�cation factor
of this scheme as

jf j� � � � �A
�	 tan
���� tan
���� tan
����D �AB

D�

where

A � � tan
���� � 	 tan
���� �  tan
����

B �
�X

j	�

�X
k	�

�X
m	�

tan�j
���� tan�k
���� tan�m
����
��j	�k�m � ��

D � 
tan
����� � ��
tan
����� � ��
tan
����� � ��

This formula is quite complicated and hard to analyze� However we have succeeded
to do the algebraic analysis for the one special case 	 �  � �� � � ��� for which the
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ampli�cation factor is

jf j� � � �
fn


tan
����� � ���
tan
����� � ���

where

fn � 
t�at
�
b � t�a � t�b � ��t�at

�
b��

� � 
�t�at
�
b � �t�a � �t�b � ���
ta � tb � ��

�
�t
at


b � �t
atb � t
a � t�atb � t�a � �tat



b � tat

�
b � �tatb � ta � t
b

�t�b � tb � �����
ta � tb � ����

ta � tan
����

tb � tan
����

The quanti�er elimination� program QEPCAD �� has proved that the logical formula

	ta 	tb fn � �

is equivalent to the formula � � �� This shows that for the special case  � 	 � � 
� �
and � � ��� the absolute value of the ampli�cation factor is greater than one and
so the scheme is unstable� So the scheme is unstable for  � 	 � � 
� � and most
probably unconditionally unstable� Numerical sampling has shown that it is unstable
for all non�zero values of �� 	�  �

The predictor scheme 
���� is stable as it is a positive scheme if max
j�j� j	j� j j��
�� so also the two step Lax�Friedrichs scheme is stable�

The composite schemes CFLFn are constructed as in �D 
���� and consist of
n � � CF steps and one LF step� For composite schemes the ampli�cation factor
is too complicated to be analyzed algebraically� We have analyzed the stability by
numerical sampling and we have found that for small n the stability region of the
composite scheme is quite a large subset of the cube j�j � �� j	j � �� j j � �� see the
Fig� ��� for the stability region of CFLF� for positive �� 	�  
the stability region is
between the plotted surface and the plane  � � for � � � � �� � � 	 � ���

For several small n we have search the maximal rn so that the CFLFn scheme
is stable for all j�j � rn� j	j � rn� j j � rn� rn has been calculated by numerical
sampling and its values are given in the Table ����

To get a better insight into the stability properties of the composite schemes we
have also considered the dependence of the e�ective ampli�cation factorjf j��n 
i�e� the
ampli�cation factor per one time step� on the angles �� �� �� In Fig� ��� we present
this dependence for the case � � � � � and � � 	 �  � ��� for several composite
CFLFn schemes� Note that the CFLF� scheme slightly overshoots the value one so it
is unstable for � � 	 �  � ��� as we have already seen from the Table ����

�Quanti�er elimination �QE� is the procedure which transforms the formula

Q�x� � R� Q�x� � R� � � � �Qkxk � R� F �x�� � � � � xm��

where m � k� Qi� i � �� � � � � k are quanti�ers � �for all� or � �there exists� and F is an arbitrary
logical combination of polynomial equations or inequalities in the real variables x�� � � � � xm� into the
equivalent formula which does not contain any quanti�er and contains only non�quanti�ed variables
xk��� � � � � xm and is again a logical combination of polynomial equations and inequalities� In �	�
Tarski has proved that QE is possible and in �	�� he gave the algorithm for doing QE� however� the
complexity of the algorithmwas prohibitive as it cannot be bound by any �nite tower of exponential
functions� In �
� Collins presented a new method for QE by the cylindrical algebraic decomposi�
tion �CAD� with double exponential complexity� Based on this Hong ��� in cooperation with others
developed the programQEPCAD �Quanti�er Elimination by Partial Cylindrical Algebraic Decompo�
sition� which incorporates many important improvements of the original CAD algorithm and which
is the best QE program implemented up to now�
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Table ���

Maximal values of rn so that the whole cube �	rn� rn�� is inside the stability region of the
CFLFn scheme in ���� 	 space�

n rn
	 ��	��
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� ����
� ���	
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Fig� ���� Dependence of the e�ective ampli�cation factor per one time step on angles � � � � �
for the case � � � � 	 � �� for CF�CFLF��CFLF��CFLF��CFLF��LF schemes 	in the order from
top to down in the �gure as in the legend
�
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�� A second order composite� It would be desirable to have a composite which
was as e�cient as as LWLF or CFLF and which had at least as good resolving power
but which was second order accurate for smooth 	ows� We have taken a preliminary
step in this direction by using a second order di�usive WENO type scheme to replace
the Lax�Friedrichs step� We thank Guang�Shan Jiang for graciously giving us the
WENO code and for assisting in its implementation� We have modi�ed this code to
eliminate the eigenvector decomposition and we just use the WENO procedure on the
conserved variables� an idea which is not recommended by the author of the code�
Details of the full WENO method are in ����

For the system

Ut � fx
U �

WENO is a method of lines� solving the system of ordinary di�erential equations

Ut �
�

�x

Fi���� � Fi����� � Ri

by a Runge�Kutta method� in our case it is just Heun�s method� The numerical 	uxes
are obtained as follows� First� let

df�i���� �
�

�
fi�� � fi � �
Ui�� � Ui��

df�
i���� �

�

�
fi�� � fi � �
Ui�� � Ui���

and

C�i � s�i 
df
�

i���� � df�
i�����

C�
i�� � s�i��
df

�
i�
�� � df�i������

where the s� are certain diagonal weight matrices de�ned below� Then

Fi���� �
�

�

fi�� � fi�� 
C�

i�� �C�i ��

The weights are� for each component� given by

t� � ���� � 
df�i�����
���

t� � ���� � 
df�
i����

����

s�i �
t�

�
�t� � t��
�

and

t� � ����� 
df�
i�
���

���

t� � ����� 
df�i�����
���

s�i�� �
t�

�
�t� � t��
�

For a two�dimensional problem each dimension is treated in this way�
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For the time advance the procedure is

�U � Un ��tR
Un�

Un�� �
�

�

�
Un � �U ��tR
 �U�

�
We choose � to be twice the maximum of ju� cj taken over the grid� and instead

of 
���� we use

max
ju� cj�t��x� jv � cj�t��y� � ���
����

This choice is dictated by non�optimal stability of WENO and by some numerical
experimentation� The one dimensional problem below was not sensitive to these
values� but this choice worked best for Noh�s problem�

The composites are LWCWn in one dimension� CFCWn in two� where CW stands
for component�wise WENO�

For the �rst shallow water problem we compare CW with ��� points with the
exact solution got by LWLF� with ���� points� see Fig� ���� CW is considerably
better than LF 
see Fig� ���� as it resolves shocks and their heights quite well�
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LWLF4 2000 points

Fig� ���� Comparison of heights for the shallow water problem with bc � �	�u� � � at t � 	
calculated by component�wise WENO on ��� points and exact solution by LWLF� on ���� points�

Next we compare the composites LWLF� and LWCW� for the same case with
��� points� see Fig� ���� Composition works again quite well� LWCW� gives steeper
shocks and resolves slightly better the heights of the shocks than LWLF�� however
it has overshoots on the shock� A small overshoot appears also when LWCW� is
computed on the �ne grid with ���� points�

We have repeated with the CFCW� scheme the computation of �D Riemann
problems for ideal gas dynamics done in x��� with the CFLF� scheme� The results as
contour plots are presented in Fig� ��� for the con�guration � and in Fig� ��� for the
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Fig� ���� Comparison of heights for the shallow water problem with bc � �	� u� � � at t � 	
calculated by LWCW� and LWLF� on ��� points�

con�guration �� We have used again ��� by ��� grid and CFL limit � for CF steps
and ��� for CW steps� The CFCW� results are noisier than CFLF� results and they
have also overshoot on the curved shock for the con�guration ��

For Noh�s problem the results of the CFCW� scheme are as good or even slightly
better than the results obtained in x��� by the CFLF� scheme� The symmetry of the
solution is again nice as shown on the surface plot in Fig� ��� for CFLF� scheme�
The comparison of CFCW� and CFLF� schemes is shown in Fig� ��� which shows the
variation of the density along the diagonal x � y� As seen in this �gure the CFCW�
scheme resolves slightly better the value �� of the density behind the shock� The
computation has been done again on the �� by �� grid�

	� Comments� We have proposed and tested some new descendents of the Lax�
Friedrichs di�erence scheme obtained by globally composing a second order accurate
oscillatory scheme with either a �rst order or second order di�usive scheme� The
oscillatory passes seem to contain su�cient solution information which is revealed by
the �ltering di�usive passes� The resulting schemes are robust and show excellent
resolution of both discontinuous and smooth solutions of hyperbolic systems in one
and two dimensions� although the second order composite was noisier for the two�
dimensional Riemann problem� We have found that three oscillatory steps followed
by one di�usive step seems optimal in most cases� We showed the optimal stability
of a variant of Lax�Friedrichs and a new second�order accurate scheme for constant
coe�cient scalar advection� For the gas dynamic equations our numerical results
using 
���� as the stability condition indicate that these schemes remain optimally
stable� but a theoretical justi�cation of this is lacking� Note that the Lax�Friedrichs
variant surely has positive matrix coe�cients in the linear case if �t is small enough
and is therefore L��stable by a theorem of Friedrichs 
����� but for �t only restricted



�� R� LISKA AND B� WENDROFF

by the CFL condition in each dimension� each coe�cient is a symmetric product of
positive matrices which is not necessarily positive� We have not tried to make a
serious comparison of computational e�ciency for these methods� but because they
consist of very simple di�erence schemes not using an eigenvector decomposition or
a precise Riemann solver they are quite fast� For example� the predictor� corrector
and component�wise WENO 
CWENO� composite was about �� times faster then
CWENO alone 
not shown� on con�guration � because of 
����� In three dimensions
a natural extension of the predictor�corrector scheme is unstable� but the composite
with the �rst order di�usive step is sub�optimally stable�
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Fig� ���� Contour plot of density for the �D Riemann problem for an ideal gas for con�guration
� done with the CFCW� scheme at t � �	�� ��� time steps� �x � �y � ���
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Addendum� One of the referees raised several important points that have been
addressed in the body of the paper� That referee also wondered about the accuracy of
the composite schemes on a smooth problem� We have computed the periodic solution
given by ���



x� y� t� � � � ��� sin
�
x� y � t
u� v���� u� v� p constants

of the Euler equations for ideal gas� Here is a table showing the L� errors and ratios�

Table ���

L� errors and errors ratios for the smooth problem for LF� CFLF�� CFCW�� CF schemes�
Ratios are ratios of the error with given �x with the error with half space step� which is shown on
the following line�

�x LF CFLF� CFCW� CF
error ratio error ratio error ratio error ratio

�� ��� ��� 	� ��� ��� 	�	� 
�� ��� 
��	 
�� ��� ���
�	 ��� ��� ���� 	� ��� ���� ��� ��� �� ��� ��� ��
�� 
�� ��� ���� �� ��� 	�� 	�� ��� 
��� 	�
 ��� ��
�� ��� ��� ��� ��� ��� ��� ��� ���

The table shows that CFLF� is �rst order� but more accurate than LF� while
CFCW� is second order having for this smooth problem the same accuracy as CF
alone�


