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Abstract

The oscillations of a centered second order finite difference scheme and the excessive diffusion of a first order
centered scheme can be overcome by global composition of the two, that is by performing cycles consisting
of several time steps of the second order method followed by one step of the diffusive method. We show the
effectiveness of this approach on some test problems in two and three dimensions.

1 Introduction

For a system of conservation laws Uy = f,(U), it is well known that the Lax-Wendroff (LW) finite difference scheme
produces oscillations behind shock waves while the Lax-Friedrichs (LF) method is excessively diffusive, smearing
out the shocks more than is usually acceptable. Simple two-step versions of both schemes are defined as follows.
For both schemes the first half step defines new values on a staggered dual grid as

. A
UL = LUP + U]+ e (U2 — FUD) M

i+1/2
The second half step of the LF scheme is given by the same formula (1) shifted by 1/2 in the index i and operates
from the time level n 4+ 1/2 to the level n + 1. The second half step of the LW scheme however corrects from the
time level n to the time level n + 1 using the fluxes from the time level n + 1/2,

Ut = U 4+ FUETE) — FOER. 2)

To demonstrate the properties of these schemes we use the shallow water equations [1]
ht + (hu)x =0

1
(hu)t + (hUQ + g§h2> +ghzo. = 0,
z

where h(z,t) is the thickness of the water layer, u(z, t) is the velocity of the layer, zo(z) is the height of the bottom
and g is the gravitational constant. The bottom profile zo(z) = max(0,b.(1 — 2?/4)) is used here. The initial
conditions are h(x,0) + zo(x) = 1,u(x,0) = up. The oscillations and excessive diffusion phenomena are evident in
Fig. 1(a), where the height of the 1D shallow water flow over topography calculated by LF and LW schemes is
presented for a problem on z € (—10,10) with b, = 0.3,u¢ = 1, ¢ = 1, the solution is plotted at ¢t = 20.

We have found an effective way to overcome this behavior of the two methods is to compose them. Thus, the
composite scheme is defined by global composition of several LW steps followed by one LF step. If we denote by
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Figure 1: Height of a 1D shallow water flow calculated by (a) LW and LF schemes with 250 points and (b) by
composite LWLF4 scheme with 250 and 2500 points.

Ly the operator defined by the LW scheme (1),(2) and by Lp the operator defined by the LF scheme (1), then
difference operator Sy defined by k — 1 applications of Ly followed by one application of Lp

Sk:LFOLWOLWO---OLw, (3)

defines the composite scheme which we call LWLFk. The operator S; operates from time level n to n + k,
Untk = S, U™. The results of the same problem done by the composite LWLF4 scheme with 250 and 2500 points
presented in Fig. 1(b) show that the composite scheme eliminates the drawbacks of both LW and LF schemes.
The solution is not oscillatory and the shock heights and speeds are resolved well. The solution with 2500 points
is presented as a good approximation of the exact solution.

The LW scheme is second order while LF is only first order accurate which implies that the composite scheme
is also only first order, however with a smaller coefficient of the leading error term. For more details of composite
schemes see [2]. Other 1D shallow water problems are treated by composite schemes in [3].

Our goal here is to show that this idea of composing schemes is also effective in higher dimensions. In [2] we
developed a new version of Lax-Friedrichs in two dimensions that is used as a predictor for Lax-Wendroff. In the
remainder of the paper we review this method and present a modification necessary to use it in three dimensions.
We then show the results of some two and three dimensional test problems.

Our approach requires neither eigenvector decomposition nor Riemann solvers and thus the method is fast.
Recently the interest in such decomposition-free and Riemann-solver-free methods has been renewed [4, 5, 6].

2 Treating 2D

The basic idea of the new version of 2D Lax-Friedrichs, which is derived in [2], is based on the observation of
Boukadida and LeRoux [7] that in order to implement a two-dimensional Godunov method to get cell averages on
the dual grid from the averages on the primary grid one need only solve one-dimensional Riemann problems on the
edges of the dual grid. The first half step of the new LF is, for the system of 2D conservation laws

Ut = fz(U) + gy(U)) (4)
given by
n+1/2 1
Ui++1//2,j+1/2 = Z[Uﬁj + inHJ + UZT,LJ'H + UinH,jJrl] (5)
At At
+E[Fi+l,j+l/2 — Fyji12] + E[Gi+l/2,j+l = Giy1/2,]s



n + 1/4, giving

1 At
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Giy1291 = 9 E[Ui+1,j+1 + U]+ m[f(UiJrl,jJrl) = U401 ) -

The second half step of the LF scheme going from the dual to the primary mesh is given by the same formulas
shifted by 1/2 in the indices i, j.

The corresponding second order accurate predictor-corrector scheme, which we call corrected Lax-Friedrichs
(CF), is then

yrtl = pgnr.
i i
At n+1/2 n+t1/2 n+1/2 n+1/2
+2A£U[f(U )+f(U )_f(U )_f(Ui71/2,j71/2)]

i+1/2,j+1/2 i+1/2,j—1/2 i—1/2,j+1/2
At

n+1/2 n+1/2 n+1/2 n+1/2
+m[«g(Ui+1/2,j+1/2) + 9T o ay2) = 9Wikijajoaya) = 9WU Ty 1 p0)]

where the predictor half-step is defined by the LF half step (5).
One could also average U™1/2 before applying f or g.

it o= Uy
At 1 a1y n+1/2 1 ng1/2 nt+1/2
+ E[f(i(Ui+1/27j+1/2 + Ui+1/2,j—1/2) - f(i(Ui_1/27j+1/2 + Ui—1/2,j—1/2)]
At 1 a1y 112 1 o nt1y2 +1/2
+ A_y[g(g(UZH/ij+1/2 + Uin71/27j+1/2) - Q(E(Ugl/zj—lﬂ + Uinfl/2,jfl/2)]

We have tried this idea, but it does not work well for the 2D shallow water shock focusing example in [8].

The composite schemes are constructed the same way as in 1D (3) and are denoted by CFLFk. For more
details see [2] where we have shown that both the LF and CF schemes are optimally stable for the scalar advection
equation (4) with f(U) = aU, g(U) = bU, i.e. their stability condition is max(|aAt/Az|,|[bAt/Az|) < 1, which is
also the stability condition of the composite schemes in that case. No stability analysis is available for systems,
but our experience indicates that the composite schemes are stable if

max(|a;|At/ Az, |G| At/ Ax) < 1,

where a; and 3; are eigenvalues of z and y flux Jacobian matrices. The time interval At is adaptively determined
from this stability condition after each time step.

The presented 2D LF, CF and composite schemes can be generalized also to trapezoidal meshes [8].

The composite schemes proved to work well on several 2D Euler gas dynamics tests [2] and on 2D shallow water
equations [8]. Here we present the solution of two Riemann problems for 2D ideal gas Euler equations (2D analog
of (16) with density p velocities u, v, total energy E and pressure p for gas with v = 1.4) from [9, 10].

The problems are solved in the z — y region (0,1) x (0,1). The region is divided by two lines z = 1/2,y = 1/2
into four quadrants. The initial data consists of a single constant state in each of the four quadrants. We will use
the subscripts I1, Ir, ul, ur to denote lower-left, lower-right, upper-left and upper-right quadrants respectively. These
constant states are chosen so that each pair of quadrants defines a one-dimensional Riemann problem producing a
single wave, which could be a shock, rarefaction or slip contact discontinuity. The first example is the configuration
3 from [10] with initial conditions for V' = (p,p,u,v) in the four quadrants Vj;; = (0.029,0.138,1.206,1.206),
Vir = (0.3,0.5323,0,1.206), V,; = (0.3,0.5323,1.206,0), V.., = (1.5,1.5,0,0). For this configuration four backward
moving shocks are produced. The contour map of density at t = 0.3 for this problem solved on 400 x 400 mesh
by the CFLF8 scheme is presented in Fig. 2(a). The second example is the configuration 12 from [10] with
initial conditions Vj; = (1,0.8,0,0), V. = (1,1,0,0.7276), V,;, = (1,1,0.7276,0), V., = (0.4,0.5313,0,0). For this
configuration two forward moving shocks and two standing slip contact discontinuities are produced. The contour
map of density at ¢ = 0.25 for this problem solved on 400 x 400 mesh by the CFLF8 scheme is presented in Fig.
2(b).

The shocks and other structures are resolved well. There is an overshoot at the curved shocks in Fig. 2(b).
Results are similar to those published in [9, 10].
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Figure 2: Contour plot of density for configuration 3 (a) and configuration 12 (b) with CFL limit 1.0

In [2] we have also experimented with a second order diffusive WENO [11] scheme replacing the LF step in
the composite schemes. We do not use the eigenvector decomposition as in [11] and apply the WENO procedure
directly to the conserved variables. We call such scheme component-wise WENO (CW) and the composite is then
CFCWk.

3 Extending to 3D
In this section we develop and analyze the new LF and CF schemes in 3D for a 3D system of conservation laws
U= f(U) + gy(U) + h.(U). (6)

The schemes are again two-step with predictor and corrector and their construction is based on similar ideas as in
2D.

3.1 LF Scheme in 3D

The LF predictor working from the original to the dual grid is derived by integrating the 3D system (6) over the
whole 3D grid cell and over the time interval with length At/2.
The predictor is given by

+1/2 — 1
Uin+1/2,j+1/2,k+1/2 = §(Ui,j,k + Uitr5k + Uik + Uik

+Uij+tkt1 + Uirr gk + Uigr jesr + Ui+1,j+1,k+1)
1 At

+§A—x(Fi+1,j+1/2,k+1/2 - Fi7]'+1/27k+1/2) @
1At

+§A_y(Gi+1/2,j+1,k+1/2 = Git1/2,k+1/2)
1At

tIA: (Hitv1/2,j41/2041 = Hivayo,j11/28)

where the fluxes F, G, H has to be derived. We will derive the flux H; /5 j11/2,& given by

9 (A2
Hivip2 4172 = E/o h(U(%i41/2,Yjr1/25 285 ))dE. (8)
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+A_x/ [fU(Tit1,Yj41/25 28, 8) — F(U(Ti, Y12, 2k, 8))]ds
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where

1
Uit1/2,j+1/2,k = Z(Ui,j,k + Uit1,jk + Uiji1,k + Ui1,j+1,1)-

In the next step we approximate U and U by the 1D LF scheme (for corresponding 1D Riemann problems)

_ S
U(xi,Yj1/2,2k,8) = Ujjriop + A—y(g(Ui,jH,k) = 9(Uijr))

S
UZit1/2,Y5>2k,8) = Ug1/ojp + A_x(f(UiJrl,j,k) — fUijk))s

where

1 1
Uit1/2,56 = 5Wirrjn + Uign),  Uijrioe = 5Uijrsk + Uijin)-

Now we need to approximate the integrals in (8) and (9). In the integrals appearing in (9)
t —
/ f(U(miayj+l/27Zk78))dS
0

t
s
R / fWijrry2k + A_(Q(Ui,jJrl,k) = 9(Uijk)))ds
0 Y
we do a Taylor expansion of the function f inside the integral to obtain

t
S
~ /0 [f Ui j41/2.6) + f{,j+1/2A—y(y(Ui,j+1,k) —9(Uij))]ds

thz! j+1/2
= tfUsgapoe) + =55 20 Uis10) = 9(Ui))

Note here that f' = f(u), is the derivative of f(u) with respect to u which is a tensor for a system (6).
Substituting these approximations into the z flux (8) we obtain

At/? 1 t2 1 t2
Hif12,541/2,1 & A, h\Uiti/2,j+1/2,6 + s Xy + EXQ + vy tY: + mYQ dt, (10)

where we have used the notation

X1 = fUigrj+1/2.8) = FWUijr1/2.k)

Xo = fiy1j0120Witrr16) = 9Uisin) = fiji1/29Wige1k) = 9(Ui k)
Vi = gWUitr2,541.6) — 9WUis1/2,5k)

Yoo = givipo i (FUikgi1k) = FUig1,6)) = Giga o (FUit1,k) — 9(Uijk)-

Approximating the flux (10) we first do Taylor expansion (we have to include second order Taylor term as it includes
a term of the order > which we want to keep, higher order terms are neglected)

2 [AU2 (1 2 1 2
Hivip2 51120 = At s h(Uit1)2,j41/2,%) + R Ar tXl+mX2 +A_y tY1+mY2

hll
+7t2XY12] dt,
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In the last formula we collect the Taylor term of h and obtain

At [ 1 At 1 At
Hivv/2 417200 = h <Ui+1/2,j+1/2,k + T [E <X1 + @)Q) + Ay <Y1 + GA—mY2>}>

A 11
—APXY? (= - —
3 ! <12 16)

Finally substituting for X7, X2, XY7,Y7,Y5 and Taylor collecting the functions f and g the final form of the z flux
H (8)

At 1 At
Hivip24126 &= h (Ui+1/2,j+1/2,k + {A_:n {f (Ui+1,j+1/2,k + @(Q(Uiﬂ,ﬂl,k) - Q(Ui+1,j,k))>

At
—f (Ui,j+1/2,k + @(Q(Ui,gﬂrl,k) - g(Ui,j,k))>]

1 At
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At
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is obtained. We are deriving the first order LF scheme so we neglect the last second order term proportional to h”.
The derivation of the z and y fluxes F' and G is the same. Thus the fluxes at the center of the faces are given
by the LF approximation of a corresponding 2D Riemann problem, that is,

Fijriprre = E(Um‘,k + Uik + Uigerr + Uijrii)
+i§_;(g(Ui,j+l,k+l/2) — 9Wijnr1/2))
+i§—z(h(Ui7]’+1/2,k+l) - h(Ui7j+1/27k))}
Git1/2,jk+1/2 = ¢ E(Um‘,k +Uirjk + Uijrs + Uirr k) an
+i%(f(Ui+Lj,k+l/2) ~ fWijiksrs2))
+i§—z(h(Ui+1/27j7k+1) - h(Ui+1/27j7k))]
Hitvpp 120 = N E(Um‘,k +Uijrrk + Uisr,jp + Uira k)
A 0 agn) = F Ui )
+i§—;(g(Ui+1/27j+1,k) - g(Ui+1/2J7’“))} ’
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Uitrjojn = 5Wigk +Uirrgn) + € (fUisix) = fUijr))
1 At
Uijyi/20 = E(Ui,j,k + Uijs1k) + CA_x(g(Ui,jJrl,k) —9(Uijk))
1 At
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with C = 1/6 as derived above. We included here the constant C' instead of 1/6 as we will need to vary this
parameter later. The LF corrector is the same as the predictor (7) with primary and dual grids exchanged.
With C = 1/6, for scalar advection (6) with

fU)=aU, ¢gU)=bU, hU)=cU (12)

the LF half step is the transport projection scheme with coefficients (1 + A)(1 & u)(1 + 7), where A, u, 7 are the
CFL numbers
A =alAt/Az, p=D0At/Az, T =cAt/Az.

For max(|A|,|u],|7]) <1 the LF half step is a positive scheme and so it is optimally stable.

3.2 CF Scheme in 3D

The CF predictor is again the same as the LF predictor (7), however, for stability reasons we will vary the constant
C. The CF corrector is a standard centered correction from time level n to time level n + 1 with fluxes on the
staggered grid at time level n + 1/2,

bk = Ul %(Fi“/ka = Fic1y2,5k) (13)
+§_;(Gi,j+1/2,k —Gijo1jan) + i—i(HMkH/Q — Hyjp1/2),
where

Fivipge = Z[f(UZJrll/é?jfl/lk*l/ﬂ + f(Uirfﬁll//;j+1/2,kfl/2)
+f(UiTjr+11//2?j—1/2,k+1/2) + f(UiTrll/Q?Hl/lkﬂ/Q)],

Gijti/2k = i[g(UﬁT/é?jH/g,k,l/z) + g(Uirril//Q?j+l/2,k71/2)
+g(U:—+11//2?j+1/2,k+1/2) + g(UiTll/;Hl/lkﬂ/Q)],

Hijpv12 = i[h(U;l—tl/é?j—l/27k+1/2) + h(U;_‘Sl/é?j_l/MH/Q)
R (U o)+ RUSS A ok

The composite schemes are again defined the same as in 1D and 2D by (3).

3.3 Analysis of CF Scheme in 3D

We perform the analysis for the scalar advection (6) with (12). In [2] it was shown that for scalar advection with
C =1/6 in the predictor the CF scheme is unconditionally unstable (composite schemes are sub-optimally stable).

The modified equation [12, 13, 14] of the CF scheme (with C' = 1/6) for scalar advection is for the special case
a=b=c Az =Ay=Az,\=pu=r1

Ut - Ux+Uy+Uz

Az? ! 1 A2
+T (]- - A ) g(Uzzz + Uyyy + Uzzz) + E(Uzzy + Uzzz + U:tyy + Uyyz + U:tzz + Uyzz) + ?Uzyz

Az? 1
_TxA |:(]. - A2) <§(U$III + Uyyyy + Uzzzz) + Uzzzy + Uzzzz + Uzyyy + Uyyyz + Uzzzz + UyZZZ

2 —3)\?

+Uzzyy + UIIZZ + Uyyzz) + 2

(U:tzyz + U:tyyz + Uzyzz)



limited [15, 16, 17, 18]. For a 2-nd order 1D difference scheme with modified equation u; = u; + C3Uzer + C4ULz 2z
the stability condition would be ¢4 < 0. If we generalize this as a heuristic clue to the coefficients of fourth order
spatial derivatives in the modified equation of the 3D CF scheme above we would obtain the stability condition
2 —3)2 < 0. However as we said above the scheme is unconditionally unstable and the outlined modified equation
analysis might only lead us to suspicion that instability is related to the “worst” fourth order terms of the modified
equation with coefficient 2 — 3\2.

The modified equation approach suggests that the instability is caused by terms Uyuy:, Usyyz, Usy=> which come
from flux terms of the form f(g(h(w))) (with arbitrary ordered f, g, h), which leads us to variations of the constant C.
The predictor with C' = 0 has for scalar advection the coefficients (1£\)(12u)(1£7)£Au7, which do not include the
term Au7 which is related to stability. Note that also in [19] a correction terms proportional t0 Uygyz, Uzyyzs Usyzz
are included to improve the stability. The standard Fourier stability analysis using U; ; x = ue'(?@+75+k7) gives for
the CF scheme (with C' = 0 in the predictor) the amplification factor

(Mo + pty + Tt.)?
(1+12)2(1+7)2(1 + t2)?
[(Mtapity + MaTte + ptytte)® + N2 + p2t; + 7262 — (L +£2)(L+ ) (1 +¢2) + 1],

|GCF|2 = 1+4

(14)

where t, = tan(a/2),t, = tan(8/2),t. = tan(y/2). The CF scheme is sub-optimally stable with quite a big
stability region shown in Fig. 3(a). For the case A = yu = 7 the von Neumann stability condition derived from the
amplification factor (14) is

Vit VtpVte A (taty + tote +tote)® + N2 (2 + 85 +t2) + 1 — (L+2)(1 +¢7)(1 +¢2) < 0.

We have proved, by using the quantifier elimination approach [20, 21, 22], that the above stability condition is
equivalent to
27A% — 180\ + 402 —1 <0 (15)

which is the stability condition for A = p = 7. The stability region includes the cube max(|Al, |ul,|7]) < 0.8545
where the size of the cube is given by one root of (15).

=
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e
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(a)

Figure 3: Stability regions of: (a) 3D CF scheme, (b) FLF and FCF simpler schemes. Stability regions are below
the plotted surfaces in the A, u, 7 space.

3.4 Simpler Schemes

A simpler 3D LF scheme can be obtained by using the simple fluxes

1
Fijv1/2k412 = Z[f(Ui,j,k) + f(Uij1e) + fFWUigrs1) + F(Uijr1k+1)]



Tt/ Tl /4 4L21\Vt7],lcl I NT e Ly L/ T JNT G L) T TN e, Ly L

1
Hizrpojrrjon = 7hWUijk) + MUijrrk) + hUisrjn) + h(Uis j41.1)]

4
in (7) instead of (11), as proposed in [23]. Of course, schemes using these fluxes are faster so we call the corre-
sponding schemes fast LF (FLF) and fast CF (FCF). Composites are again constructed as in (3).
The amplification factor of the FLF predictor (and so also of the FLF scheme) for scalar advection is

(Mg +pty +7t)2 — (L +2) (1 +t)(1 +t2) + 1
2

larrr)? =1+
(1+12)2(1+¢3)2(1 +¢2)

)

where we use the same notation as in (14). The amplification factor of the FCF scheme is
larcr|> =1+ 4(Mte + pty + 7te)*(larrr|® — 1).

So both FLF and FCF schemes have the same stability condition. The FLF and FCF schemes are faster, but they
have a more restrictive stability condition than LF and CF schemes. The stability region of the FLF and CFC
schemes in the A, u, 7 space is shown in Fig. 3(b).

For the special case A = 4 = 7 the von Neumann stability condition for FLF and FCF schemes is

ViVt A2(tq +ty +1)° — (1 +2) A +t)(1+2)+1<0

and the quantifier elimination approach [20, 21, 22] proved that the schemes are stable for [A| < 1/v/3 ~ 0.577.
Their stability domain includes the box (—1/+/3,1/v/3)% in the , u, T space. Note, however, that using the adaptive
time step based on the worst-case point of the computational domain we often can compute with a higher CFL
limit as in section 4.2.

For our problems these simpler composite schemes worked very well producing results close to the CFLFn
composites.

4 Numerical Results in 3D

We present here two 3D examples using the Euler equations for an ideal gas

p pu pu pw
pu qu +p puv puw

pU + pUv + pv? +p + pUW =0 (16)
pw puaw pow pw? +p

E J, uw(E+p) /, v(E+p) /, w(E+p) ),

with density p velocity (u,v,w), energy E and pressure p = (y — 1)[E — 1/2p(u? + v* + w?)].

4.1 Noh’s Problem in 3D

The first example is Noh’s problem [24] for an ideal gas with v = 5/3. The initial density is 1,the velocity points
to the origin and has magnitude 1 and the pressure is zero. The exact solution of this problem is a spherical shock
moving with velocity v = 1/3 from the origin. The pre-shock values for r > vt (r is the distance from the origin,
r = /22 +y?+22) are p- = (1 + t/r)?, while pressure and velocity have their initial values. The post shock
values for r < vt are constants p* = 64, (u,v,w)™ =0,p" = 64/3.

In Fig. 4 we present numerical results for Noh’s problem at ¢t = 1 solved in the cube (0,0.5)% by the CFLF8
scheme with CFL limit 0.8 with symmetric boundary conditions on the inner faces £ = 0,y = 0,z = 0 and exact
boundary conditions on the outer faces z = 0.5,y = 0.5,z = 0.5 (we might use free boundary conditions on outer
faces but then we would need either to compute on a larger domain or only up to a smaller time). The convergence
to the exact solution is shown on Fig. 4(a). Fig. 4(b) shows that the spherical symmetry of the numerical solution
is well preserved.
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Figure 4: Density of Noh’s problem at t = 1 computed by CFLF8 scheme: (a) convergence test done on 20%, 40*, 80°
points compared with exact solution, plotted are values on the diagonal z = y = z, (b) 3D view of spherical
symmetry solution using 40° cells

4.2 Spherical Riemann Problem between Two Walls

This example comes from [25, 19]. An ideal gas with v = 1.4 is located in the slab 0 < z < 1 with two boundary
walls at z = 0 and z = 1. The initial density is 1 everywhere, initial pressure is 5 inside the sphere centered at
(0,0,0.4) with radius 0.2 and 1 outside the sphere and the gas is initially at rest. The initial data result in an
outward moving shock and a contact discontinuity and an inward moving rarefaction wave which reflects from
the sphere center as the second shock wave. After reflecting from the walls quite a complex structure of waves is
obtained. The problem is solved in the box (z,y,z) € (0,1.5)? x (0,1) with reflecting boundary conditions at the
walls, symmetric boundary conditions on the inner faces x = 0,y = 0 and free boundary conditions on the outer
faces z = 1.5,y = 1.5. In Fig. 5 we present results of the FCFFLF8 scheme on the mesh of 300 x 300 x 200 points
with CFL limit 0.8 at time ¢ = 0.7. The contour plot of pressure at the y = 0 face is presented in Fig. 5(a) and a
scatter plot of pressure versus the distance from the z axis at the plane z = 0.4 is presented in Fig. 5(b).
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0\ A \\m 0.8 ‘ :
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(a) (b)

Figure 5: (a) Contour plot of pressure at the y = 0 face, (b) Scatter plot of pressure versus the distance from the
z axis at the plane z = 0.4.
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The composite schemes are simple, require neither eigenvector decomposition nor Riemann solvers, and thus they
are fast. They work well for a variety of problems, so it seems that they are also robust. Note also that they are
ideally suited for parallelization and vectorization; actually, the computation on the large 300 x 300 x 200 mesh
presented in the section 4.2 has been done on a vector computer.

We have been also experimenting with using the component-wise WENO [2, 11] scheme (CW) in the composites
instead of the LF scheme. For Noh’s problem we have obtained better convergence both in 2D and 3D, however
for the 3D spherical Riemann problem the CFCW composites are unstable. For 2D Riemann problems the CFCW
composites are noisier than CFLF composites [2].

As concerns speed, the CW scheme is about 10 time slower than the CFLF composites on the same grid. The
FCF 3D scheme is about 2 times faster than the CF scheme. For the smooth radial 3D problem from [25, 19] the
FCF scheme is about 15 times faster than the CLAWPACK [25, 19] code on the same grid, however, CLAWPACK
produces more accurate results.

The composite schemes also work well on trapezoidal meshes [8] and probably can be generalized to other types
of grids.

To conclude we do not claim that the composite schemes are the best ones, however they are simple, fast, work
remarkably well for many problems and can provide a very simple way to get a feeling for the solution of a problem
before investing a lot of time in developing a more elaborate method.
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