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Abstract

The oscillations of a centered second order �nite di�erence scheme and the excessive di�usion of a �rst order

centered scheme can be overcome by global composition of the two� that is by performing cycles consisting

of several time steps of the second order method followed by one step of the di�usive method� We show the

e�ectiveness of this approach on some test problems in two and three dimensions�

� Introduction

For a system of conservation laws Ut � fx�U�� it is well known that the Lax�Wendro� �LW� �nite di�erence scheme
produces oscillations behind shock waves while the Lax�Friedrichs �LF� method is excessively di�usive� smearing
out the shocks more than is usually acceptable� Simple two�step versions of both schemes are de�ned as follows�
For both schemes the �rst half step de�nes new values on a staggered dual grid as
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The second half step of the LF scheme is given by the same formula �	� shifted by 	�
 in the index i and operates
from the time level n � 	�
 to the level n � 	� The second half step of the LW scheme however corrects from the
time level n to the time level n � 	 using the �uxes from the time level n � 	�
�
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To demonstrate the properties of these schemes we use the shallow water equations �	
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where h�x� t� is the thickness of the water layer� u�x� t� is the velocity of the layer� z��x� is the height of the bottom
and g is the gravitational constant� The bottom pro�le z��x� � max��� bc�	 � x����� is used here� The initial
conditions are h�x� �� � z��x� � 	� u�x� �� � u�� The oscillations and excessive di�usion phenomena are evident in
Fig� 	�a�� where the height of the 	D shallow water �ow over topography calculated by LF and LW schemes is
presented for a problem on x � ��	�� 	�� with bc � ���� u� � 	� g � 	� the solution is plotted at t � 
��

We have found an e�ective way to overcome this behavior of the two methods is to compose them� Thus� the
composite scheme is de�ned by global composition of several LW steps followed by one LF step� If we denote by
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Figure 	� Height of a 	D shallow water �ow calculated by �a� LW and LF schemes with 
�� points and �b� by
composite LWLF� scheme with 
�� and 
��� points�

LW the operator de�ned by the LW scheme �	���
� and by LF the operator de�ned by the LF scheme �	�� then
di�erence operator Sk de�ned by k � 	 applications of LW followed by one application of LF

Sk � LF � LW � LW � � � � � LW � ���

de�nes the composite scheme which we call LWLFk� The operator Sk operates from time level n to n � k�
Un�k � SkU

n� The results of the same problem done by the composite LWLF� scheme with 
�� and 
��� points
presented in Fig� 	�b� show that the composite scheme eliminates the drawbacks of both LW and LF schemes�
The solution is not oscillatory and the shock heights and speeds are resolved well� The solution with 
��� points
is presented as a good approximation of the exact solution�

The LW scheme is second order while LF is only �rst order accurate which implies that the composite scheme
is also only �rst order� however with a smaller coe�cient of the leading error term� For more details of composite
schemes see �
� Other 	D shallow water problems are treated by composite schemes in ���

Our goal here is to show that this idea of composing schemes is also e�ective in higher dimensions� In �
 we
developed a new version of Lax�Friedrichs in two dimensions that is used as a predictor for Lax�Wendro�� In the
remainder of the paper we review this method and present a modi�cation necessary to use it in three dimensions�
We then show the results of some two and three dimensional test problems�

Our approach requires neither eigenvector decomposition nor Riemann solvers and thus the method is fast�
Recently the interest in such decomposition�free and Riemann�solver�free methods has been renewed ��� �� ��

� Treating �D

The basic idea of the new version of 
D Lax�Friedrichs� which is derived in �
� is based on the observation of
Boukadida and LeRoux �� that in order to implement a two�dimensional Godunov method to get cell averages on
the dual grid from the averages on the primary grid one need only solve one�dimensional Riemann problems on the
edges of the dual grid� The �rst half step of the new LF is� for the system of 
D conservation laws

Ut � fx�U� � gy�U�� ���

given by
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The second half step of the LF scheme going from the dual to the primary mesh is given by the same formulas
shifted by 	�
 in the indices i� j�

The corresponding second order accurate predictor�corrector scheme� which we call corrected Lax�Friedrichs
�CF�� is then
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where the predictor half�step is de�ned by the LF half step ����
One could also average Un���� before applying f or g�
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We have tried this idea� but it does not work well for the 
D shallow water shock focusing example in ���
The composite schemes are constructed the same way as in 	D ��� and are denoted by CFLFk� For more

details see �
 where we have shown that both the LF and CF schemes are optimally stable for the scalar advection
equation ��� with f�U� � aU� g�U� � bU � i�e� their stability condition is max�ja�t��xj� jb�t��xj� � 	� which is
also the stability condition of the composite schemes in that case� No stability analysis is available for systems�
but our experience indicates that the composite schemes are stable if

max�j�ij�t��x� j�j j�t��x� � 	�

where �i and �j are eigenvalues of x and y �ux Jacobian matrices� The time interval �t is adaptively determined
from this stability condition after each time step�

The presented 
D LF� CF and composite schemes can be generalized also to trapezoidal meshes ���
The composite schemes proved to work well on several 
D Euler gas dynamics tests �
 and on 
D shallow water

equations ��� Here we present the solution of two Riemann problems for 
D ideal gas Euler equations �
D analog
of �	�� with density � velocities u� v� total energy E and pressure p for gas with � � 	��� from ��� 	��

The problems are solved in the x� y region ��� 	�� ��� 	�� The region is divided by two lines x � 	�
� y � 	�

into four quadrants� The initial data consists of a single constant state in each of the four quadrants� We will use
the subscripts ll� lr� ul� ur to denote lower�left� lower�right� upper�left and upper�right quadrants respectively� These
constant states are chosen so that each pair of quadrants de�nes a one�dimensional Riemann problem producing a
single wave� which could be a shock� rarefaction or slip contact discontinuity� The �rst example is the con�guration
� from �	� with initial conditions for V � �p� �� u� v� in the four quadrants Vll � ����
�� ��	��� 	�
��� 	�
����
Vlr � ����� ����
�� �� 	�
���� Vul � ����� ����
�� 	�
��� ��� Vur � �	��� 	��� �� ��� For this con�guration four backward
moving shocks are produced� The contour map of density at t � ��� for this problem solved on ���� ��� mesh
by the CFLF� scheme is presented in Fig� 
�a�� The second example is the con�guration 	
 from �	� with
initial conditions Vll � �	� ���� �� ��� Vlr � �	� 	� �� ���
���� Vul � �	� 	� ���
��� ��� Vur � ����� ����	�� �� ��� For this
con�guration two forward moving shocks and two standing slip contact discontinuities are produced� The contour
map of density at t � ��
� for this problem solved on ���� ��� mesh by the CFLF� scheme is presented in Fig�

�b��

The shocks and other structures are resolved well� There is an overshoot at the curved shocks in Fig� 
�b��
Results are similar to those published in ��� 	��
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Figure 
� Contour plot of density for con�guration � �a� and con�guration 	
 �b� with CFL limit 	��

In �
 we have also experimented with a second order di�usive WENO �		 scheme replacing the LF step in
the composite schemes� We do not use the eigenvector decomposition as in �		 and apply the WENO procedure
directly to the conserved variables� We call such scheme component�wise WENO �CW� and the composite is then
CFCWk�

� Extending to �D

In this section we develop and analyze the new LF and CF schemes in �D for a �D system of conservation laws

Ut � fx�U� � gy�U� � hz�U�� ���

The schemes are again two�step with predictor and corrector and their construction is based on similar ideas as in

D�

��� LF Scheme in �D

The LF predictor working from the original to the dual grid is derived by integrating the �D system ��� over the
whole �D grid cell and over the time interval with length �t�
�

The predictor is given by
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where the �uxes F�G�H has to be derived� We will derive the �ux Hi�����j�����k given by
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In the next step we approximate �U and �U by the 	D LF scheme �for corresponding 	D Riemann problems�
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Now we need to approximate the integrals in ��� and ���� In the integrals appearing in ���
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we do a Taylor expansion of the function f inside the integral to obtain

�
Z t

�

�f�Ui�j�����k� � f �i�j����
s

�y
�g�Ui�j���k�� g�Ui�j�k��ds

� tf�Ui�j�����k� �
t�f �i�j����


�y
�g�Ui�j���k�� g�Ui�j�k���

Note here that f � � f�u�u is the derivative of f�u� with respect to u which is a tensor for a system ����
Substituting these approximations into the z �ux ��� we obtain
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where we have used the notation
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Approximating the �ux �	�� we �rst do Taylor expansion �we have to include second order Taylor term as it includes
a term of the order t� which we want to keep� higher order terms are neglected�
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In the last formula we collect the Taylor term of h and obtain
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Finally substituting for X�� X�� XY�� Y�� Y� and Taylor collecting the functions f and g the �nal form of the z �ux
H ���
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is obtained� We are deriving the �rst order LF scheme so we neglect the last second order term proportional to h���
The derivation of the x and y �uxes F and G is the same� Thus the �uxes at the center of the faces are given

by the LF approximation of a corresponding 
D Riemann problem� that is�

Fi�j�����k���� � f

�
	

�
�Ui�j�k � Ui�j���k � Ui�j�k�� � Ui�j���k���

�
	

�

�t

�y
�g�Ui�j���k������ g�Ui�j�k������

�
	

�

�t

�z
�h�Ui�j�����k���� h�Ui�j�����k��

�

Gi�����j�k���� � g

�
	

�
�Ui�j�k � Ui���j�k � Ui�j�k�� � Ui���j�k��� �		�

�
	

�

�t

�x
�f�Ui���j�k������ f�Ui�j�k������

�
	

�

�t

�z
�h�Ui�����j�k���� h�Ui�����j�k��

�

Hi�����j�����k � h

�
	

�
�Ui�j�k � Ui�j���k � Ui���j�k � Ui���j���k�

�
	

�

�t

�x
�f�Ui���j�����k�� f�Ui�j�����k��

�
	

�

�t

�y
�g�Ui�����j���k�� g�Ui�����j�k��

�
�

�



g g y pp p

Ui�����j�k �
	



�Ui�j�k � Ui���j�k� � C

�t

�x
�f�Ui���j�k�� f�Ui�j�k��

Ui�j�����k �
	



�Ui�j�k � Ui�j���k� � C

�t

�x
�g�Ui�j���k�� g�Ui�j�k��

Ui�j�k���� �
	



�Ui�j�k � Ui�j�k����� � C

�t

�x
�h�Ui�j�k���� h�Ui�j�k��

with C � 	�� as derived above� We included here the constant C instead of 	�� as we will need to vary this
parameter later� The LF corrector is the same as the predictor ��� with primary and dual grids exchanged�

With C � 	��� for scalar advection ��� with

f�U� � aU� g�U� � b U� h�U� � c U �	
�

the LF half step is the transport projection scheme with coe�cients �	 � ���	 � 	��	 � 
�� where �� 	� 
 are the
CFL numbers

� � a�t��x� 	 � b�t��x� 
 � c�t��x�

For max�j�j� j	j� j
 j� � 	 the LF half step is a positive scheme and so it is optimally stable�

��� CF Scheme in �D

The CF predictor is again the same as the LF predictor ���� however� for stability reasons we will vary the constant
C� The CF corrector is a standard centered correction from time level n to time level n � 	 with �uxes on the
staggered grid at time level n � 	�
�
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The composite schemes are again de�ned the same as in 	D and 
D by ����

��� Analysis of CF Scheme in �D

We perform the analysis for the scalar advection ��� with �	
�� In �
 it was shown that for scalar advection with
C � 	�� in the predictor the CF scheme is unconditionally unstable �composite schemes are sub�optimally stable��

The modi�ed equation �	
� 	�� 	� of the CF scheme �with C � 	��� for scalar advection is for the special case
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limited �	�� 	�� 	�� 	�� For a 
�nd order 	D di�erence scheme with modi�ed equation ut � ux � c�uxxx � c�uxxxx
the stability condition would be c� � �� If we generalize this as a heuristic clue to the coe�cients of fourth order
spatial derivatives in the modi�ed equation of the �D CF scheme above we would obtain the stability condition

� ��� � �� However as we said above the scheme is unconditionally unstable and the outlined modi�ed equation
analysis might only lead us to suspicion that instability is related to the �worst� fourth order terms of the modi�ed
equation with coe�cient 
� ����

The modi�ed equation approach suggests that the instability is caused by terms Uxxyz� Uxyyz� Uxyzz which come
from �ux terms of the form f�g�h�u��� �with arbitrary ordered f� g� h�� which leads us to variations of the constant C�
The predictor with C � � has for scalar advection the coe�cients �	����	�	��	�
���	
 � which do not include the
term �	
 which is related to stability� Note that also in �	� a correction terms proportional to Uxxyz� Uxyyz� Uxyzz

are included to improve the stability� The standard Fourier stability analysis using Ui�j�k � ue��i��j��k�	 gives for
the CF scheme �with C � � in the predictor� the ampli�cation factor

jaCF j� � 	 � �
��ta � 	tb � 
tc�

�

�	 � t�a���	 � t�b�
��	 � t�c�

�
�	��

�
��ta	tb � �ta
tc � 	tb
tc�

� � ��t�a � 	�t�b � 
�t�c � �	 � t�a��	 � t�b��	 � t�c� � 	
�
�

where ta � tan���
�� tb � tan���
�� tc � tan���
�� The CF scheme is sub�optimally stable with quite a big
stability region shown in Fig� ��a�� For the case � � 	 � 
 the von Neumann stability condition derived from the
ampli�cation factor �	�� is

	ta	tb	tc ���tatb � tatc � tbtc�
� � ���t�a � t�b � t�c� � 	� �	 � t�a��	 � t�b��	 � t�c� � ��

We have proved� by using the quanti�er elimination approach �
�� 
	� 

� that the above stability condition is
equivalent to


��
 � 	��� � ��� � 	 � � �	��

which is the stability condition for � � 	 � 
 � The stability region includes the cube max�j�j� j	j� j
 j� � ������
where the size of the cube is given by one root of �	���
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Figure �� Stability regions of� �a� �D CF scheme� �b� FLF and FCF simpler schemes� Stability regions are below
the plotted surfaces in the �� 	� 
 space�

��� Simpler Schemes

A simpler �D LF scheme can be obtained by using the simple �uxes

Fi�j�����k���� �
	

�
�f�Ui�j�k� � f�Ui�j���k� � f�Ui�j�k��� � f�Ui�j���k���

�



Gi�����j�k���� �
�

�g�Ui�j�k� � g�Ui���j�k� � g�Ui�j�k��� � g�Ui���j�k���

Hi�����j�����k �
	

�
�h�Ui�j�k� � h�Ui�j���k� � h�Ui���j�k� � h�Ui���j���k�

in ��� instead of �		�� as proposed in �
�� Of course� schemes using these �uxes are faster so we call the corre�
sponding schemes fast LF �FLF� and fast CF �FCF�� Composites are again constructed as in ����

The ampli�cation factor of the FLF predictor �and so also of the FLF scheme� for scalar advection is

jaFLF j� � 	 �
��ta � 	tb � 
tc�

� � �	 � t�a��	 � t�b��	 � t�c� � 	

�	 � t�a���	 � t�b�
��	 � t�c�

�
�

where we use the same notation as in �	��� The ampli�cation factor of the FCF scheme is

jaFCF j� � 	 � ���ta � 	tb � 
tc�
��jaFLF j� � 	��

So both FLF and FCF schemes have the same stability condition� The FLF and FCF schemes are faster� but they
have a more restrictive stability condition than LF and CF schemes� The stability region of the FLF and CFC
schemes in the �� 	� 
 space is shown in Fig� ��b��

For the special case � � 	 � 
 the von Neumann stability condition for FLF and FCF schemes is

	ta	tb	tc ���ta � tb � tc�
� � �	 � t�a��	 � t�b��	 � t�c� � 	 � �

and the quanti�er elimination approach �
�� 
	� 

 proved that the schemes are stable for j�j � 	�
p

� � ������
Their stability domain includes the box ��	�

p
�� 	�

p
��� in the �� 	� 
 space� Note� however� that using the adaptive

time step based on the worst�case point of the computational domain we often can compute with a higher CFL
limit as in section ��
�

For our problems these simpler composite schemes worked very well producing results close to the CFLFn
composites�

� Numerical Results in �D

We present here two �D examples using the Euler equations for an ideal gas
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with density � velocity �u� v� w�� energy E and pressure p � �� � 	��E � 	�
��u� � v� � w���

��� Noh�s Problem in �D

The �rst example is Noh�s problem �
� for an ideal gas with � � ���� The initial density is 	�the velocity points
to the origin and has magnitude 	 and the pressure is zero� The exact solution of this problem is a spherical shock
moving with velocity v � 	�� from the origin� The pre�shock values for r � vt �r is the distance from the origin�

r �
p
x� � y� � z�� are �� � �	 � t�r��� while pressure and velocity have their initial values� The post shock

values for r � vt are constants �� � ��� �u� v� w�� � �� p� � �����
In Fig� � we present numerical results for Noh�s problem at t � 	 solved in the cube ��� ����� by the CFLF�

scheme with CFL limit ��� with symmetric boundary conditions on the inner faces x � �� y � �� z � � and exact
boundary conditions on the outer faces x � ���� y � ���� z � ��� �we might use free boundary conditions on outer
faces but then we would need either to compute on a larger domain or only up to a smaller time�� The convergence
to the exact solution is shown on Fig� ��a�� Fig� ��b� shows that the spherical symmetry of the numerical solution
is well preserved�

�
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Figure �� Density of Noh�s problem at t � 	 computed by CFLF� scheme� �a� convergence test done on 
��� ���� ���

points compared with exact solution� plotted are values on the diagonal x � y � z� �b� �D view of spherical
symmetry solution using ��� cells

��� Spherical Riemann Problem between Two Walls

This example comes from �
�� 	�� An ideal gas with � � 	�� is located in the slab � � z � 	 with two boundary
walls at z � � and z � 	� The initial density is 	 everywhere� initial pressure is � inside the sphere centered at
��������� with radius ��
 and 	 outside the sphere and the gas is initially at rest� The initial data result in an
outward moving shock and a contact discontinuity and an inward moving rarefaction wave which re�ects from
the sphere center as the second shock wave� After re�ecting from the walls quite a complex structure of waves is
obtained� The problem is solved in the box �x� y� z� � ��� 	���� � ��� 	� with re�ecting boundary conditions at the
walls� symmetric boundary conditions on the inner faces x � �� y � � and free boundary conditions on the outer
faces x � 	��� y � 	��� In Fig� � we present results of the FCFFLF� scheme on the mesh of ���� ���� 
�� points
with CFL limit ��� at time t � ���� The contour plot of pressure at the y � � face is presented in Fig� ��a� and a
scatter plot of pressure versus the distance from the z axis at the plane z � ��� is presented in Fig� ��b��
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Figure �� �a� Contour plot of pressure at the y � � face� �b� Scatter plot of pressure versus the distance from the
z axis at the plane z � ����
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The composite schemes are simple� require neither eigenvector decomposition nor Riemann solvers� and thus they
are fast� They work well for a variety of problems� so it seems that they are also robust� Note also that they are
ideally suited for parallelization and vectorization actually� the computation on the large ���� ��� � 
�� mesh
presented in the section ��
 has been done on a vector computer�

We have been also experimenting with using the component�wise WENO �
� 		 scheme �CW� in the composites
instead of the LF scheme� For Noh�s problem we have obtained better convergence both in 
D and �D� however
for the �D spherical Riemann problem the CFCW composites are unstable� For 
D Riemann problems the CFCW
composites are noisier than CFLF composites �
�

As concerns speed� the CW scheme is about 	� time slower than the CFLF composites on the same grid� The
FCF �D scheme is about 
 times faster than the CF scheme� For the smooth radial �D problem from �
�� 	� the
FCF scheme is about 	� times faster than the CLAWPACK �
�� 	� code on the same grid� however� CLAWPACK
produces more accurate results�

The composite schemes also work well on trapezoidal meshes �� and probably can be generalized to other types
of grids�

To conclude we do not claim that the composite schemes are the best ones� however they are simple� fast� work
remarkably well for many problems and can provide a very simple way to get a feeling for the solution of a problem
before investing a lot of time in developing a more elaborate method�
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