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Abstract The idea of using material forces also termed
configurational forces in a computational setting is pre-
sented. The theory of material forces is briefly recast in the
terms of a non-linear elastic solid. It is shown, how in a
computational setting with finite elements (FE) the dis-
crete configurational forces are calculated once the clas-
sical field equations are solved. This post-process
calculation is performed in a way, which is consistent with
the approximation of the classical field equations. Possible
physical meanings of this configurational forces are dis-
cussed. A purely computational aspect of material forces is
pointed out, where material forces act as an indicator to
obtain softer discretizations.

Keywords Finite element method, Material force,
Eshelbian mechanics

1
Introduction
In an outstanding article Eshelby (1951) introduced the
concept of the energy–momentum tensor in continuum
mechanics of solids, although at that time Eshelby did not
use the term energy–momentum tensor, but preferred the
expression Maxwell-tensor of elasticity. The term energy–
momentum tensor was introduced later, see Eshelby
(1970). In many theories such as the theory of Eshelbian
mechanics, the concept of configurational forces or of
material forces the energy–momentum tensor appears as a
main part. Without claiming completeness we cite the
fundamental works of Maugin (1993), Kienzler and Herr-
mann (2000) and Gurtin (2000). All theories present a
general and efficient way to analyze different kinds of
material inhomogeneities. It is common to classify the
defects or inhomogeneities by their dimensionality. For
example zero dimensional (point) defects such as inter-
stitial or foreign atoms in solids can be investigated. The

analysis of one dimensional line defects includes for ex-
ample the treatment of dislocation lines. Two dimensional
defects, like interfaces or cracks, and three dimensional
inhomogeneities, like inclusions or voids, are other ap-
plications of the theory of configurational forces.

The application of material forces addressed in this
paper considers discrete material forces introduced by a
finite element (FE) discretization. As this is a relatively
new application of material forces, which goes back to the
work of Braun (1997), we will present some new examples
of this application. For more details the reader is also re-
ferred to Maugin (2000), Steinmann (2000), Steinmann,
Ackermann and Barth (2001) and Mueller, Kolling and
Gross (2002). Discrete material forces are derived in a way
consistent with the approximation of the field equations.
The relevancy of nodal material forces is explained by
concerning the change in the total potential of the discrete
system with respect to changes in the discretization. A nice
feature of discrete material forces is the fact that they can
directly be interpreted in terms of the J-integrals in linear
elastic fracture mechanics, see Steinmann (2000) and
Steinmann, Ackermann and Barth (2001), and driving
forces on interfaces, see also Mueller, Kolling and Gross
(2002).

2
Theory of material forces
The introduction of configurational forces presented here
follows the basic ideas presented in Eshelby (1951) and
Eshelby (1970). For brevity of the derivation we consider
only elastic materials, but an extension to inelastic settings
is possible and discussed in Maugin (1993). For the the-
oretical part we will restrict attention to quantities that are
defined with respect to the reference configuration, be-
cause derivations become thus more condensed. However
this is not the choice for an efficient numerical imple-
mentation, see remark in Sect. 3. For a hyper-elastic ma-
terial a strain energy function

W ¼ ŴWðF;XÞ ð1Þ
per unit volume of the reference configuration exists. It is
assumed that W depends on the deformation gradient F
and explicitly on the position X (in the reference config-
uration). The second dependency is introduced to account
for inhomogeneous materials. The first Piola–Kirchhoff
stress tensor is given by

P ¼ oŴW

oF
: ð2Þ
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In static equilibrium the Piola–Kirchhoff stress satisfies
the equilibrium conditionZ
oB0

PN dA þ
Z
B0

f dV ¼ 0 ; ð3Þ

which can be expressed in its local form by

Div P þ f ¼ 0 : ð4Þ
The vector f represents body forces (defined per unit
volume of the reference configuration). The material gra-
dient of the strain energy is thus given by

Grad W ¼ P : Grad F þ oŴW

oX

����
expl:

¼ DivðFTPÞ � FTDiv P þ oŴW

oX

����
expl:

; ð5Þ

where in (5)1 the first term in index notation of Cartesian
coordinates is given by PiJFiJ;K . The subscript expl. asso-
ciated with the second term in (5) denotes the explicit
derivative of W with respect to the position X. Rearranging
terms together with the mechanical equilibrium condition
(4) yields an equation for the material forces in the form

Div R þ g ¼ 0 ; ð6Þ
where the configurational stress tensor, the Eshelby stress
tensor or the energy-momentum tensor is given by

R ¼ W1 � FTP ð7Þ
and the configurational force

g ¼ �FTf � oŴW

oX

����
expl:

ð8Þ

is introduced to obtain a formula that resembles the
structure of equation (4). Introducing the symmetric sec-
ond Piola–Kirchhoff stress tensor S, and the symmetric
right Cauchy–Green tensor C, defined by

S ¼ F�1P and C ¼ FTF ð9Þ
respectively, (7) can be written as

R ¼ W1 � CS; thus RC ¼ CRT : ð10Þ
The last expression can be thought of as symmetry of the
energy-momentum tensor R with respect to right Cauchy-
Green tensor C. From (6) an important observation can be
made: If the body is homogeneous and no body forces are
applied, the divergence of the energy–momentum tensor
vanishes, i.e.

Div R ¼ 0 : ð11Þ
Thus within the body the energy–momentum tensor sat-
isfies a strict conservation law. On a discussion of con-
servation laws, see for example Kienzler and Herrman
(2000). This is an important property, that will be used in
the subsequent applications.

For the computational setting a FE formulation in the
actual configuration is chosen, as this formulation is more
efficient – for a detailed discussion the reader is referred to
Wriggers (2001). The formulation in the actual configu-

ration uses the Cauchy stresses, which are related to the
first and second Piola–Kirchhoff stresses through

r ¼ 1

J
PFT or r ¼ 1

J
FSFT with J ¼ det F :

ð12Þ
With this relation the energy–momentum tensor can al-
ternatively be expressed using Cauchy stresses by

R ¼ W1 � JFTrF�T : ð13Þ

3
Finite elements
As has been mentioned in the theory section the (material)
divergence of the energy–momentum is zero for a homo-
geneous body without body forces. This property is used to
check discrete solutions obtained by FE. As FE solutions are
just approximations, the non-vanishing of the divergence of
the energy-momentum tensor is an error indicator. Starting
from a weak formulation of (6) with a test function g,Z
B0

Div R þ gð Þ � g dV ¼ 0 ð14Þ

integration by parts (used to transfer derivatives to the test
function) yields:Z
oB0

ðRNÞ � g dA �
Z
B0

R : Grad g dV

þ
Z
B0

g � g dV ¼ 0 : ð15Þ

Assuming that the test function g vanishes on the
boundary oB0, the first integral in (15) is zero. This as-
sumption represents a stationary boundary – a stationary
boundary is a boundary that does not change its (material/
referential) position X.

In the following the case of 3D problems will be consid-
ered. For plane strain problems, as will be dealt with in the
example section, the reduction is straight forward and is not
explained in detail here. The classical mechanical quantities
are treated in the standard way using an iso-parametric
concept for interpolating the displacement field. After
solving the equilibrium equations the discrete FE approxi-
mation provides the displacement field u at every point. For
the configurational force balance the same concept is uti-
lized. The test function in (15) is approximated in every
element Be by node values gI and shape functions NI :

g ¼
X

I

NIgI; where g ¼
g1

g2

g3

8><
>:

9>=
>; and gI ¼

gI
1

gI
2

gI
3

8<
:

9=
; :

ð16Þ
Using a matrix notation for the gradient of the test func-
tion and the energy–momentum tensor in the following
way
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Grad g ¼

g1;1

g2;2

g3;3

g1;2

g2;1

g2;3

g3;2

g3;1

g1;3

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼
X

I

DIgI ;

where DI ¼

NI
;X1

0 0

0 NI
;X2

0

0 0 NI
;X3

NI
;X2

0 0

0 NI
;X1

0

0 NI
;X3

0

0 0 NI
;X2

0 0 NI
;X1

NI
;X3

0 0

2
6666666666666666664

3
7777777777777777775

;

R ¼

R11

R22

R33

R12

R21

R23

R32

R31

R13

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

and g ¼
g1

g2

g3

8><
>:

9>=
>; ð17Þ

yields

�
Z
Be

ðGrad gÞT � R dV þ
Z
Be

gT � g dV ¼ 0 : ð18Þ

Note that the standard Voigt-notation for symmetric ten-
sors can not be used, as the energy-momentum tensor is
not in general symmetric, see remarks in previous section.
In fact from (10) it is obvious that R is in general only
symmetric if an isotropic material is considered (i.e. C and
S have identical eigenvectors). Inserting the above ap-
proximations the relation

X
I

gIT � �
Z
Be

DIT � R dV þ
Z
Be

NIg dV

2
64

3
75 ¼ 0 ð19Þ

is obtained for the weak form (15). As the equation must
be satisfied for arbitrary node values gI, the term in square
brackets must vanish. This introduces discrete configura-
tional forces in a natural way as

GI
e ¼

GI
e1

GI
e2

GI
e3

8><
>:

9>=
>; ¼

Z
Be

NIgI dV ¼
Z
Be

DI T�R dV

¼
Z
Be

NI
;X1

R11 þ NI
;X2

R12 þ NI
;X3

R13

NI
;X1

R21 þ NI
;X2

R22 þ NI
;X3

R23

NI
;X1

R31 þ NI
;X2

R32 þ NI
;X3

R33

8><
>:

9>=
>;dV : ð20Þ

The configurational forces GI
e of all ne elements adjacent to

node K then need to be assembled to give the total con-
figurational force

GK ¼
[ne

e¼1

GI
e : ð21Þ

We emphasize again that this does not pose a new
boundary value problem, as the nodal values GK are ob-
tained purely from quantities that are already known
(strain energy, stresses and deformation measures) from
the solution of the displacement field. The calculation of
the discrete configurational forces is thus just a post-
processing procedure.

4
Examples

4.1
Material parameters
Throughout this paper we will consider a non-linear elastic
material, with an isotropic strain energy W of the Neo-
Hookean type given by

WðIC; JÞ ¼ k
2

J2 � 1

2
� ln J

� �
þ l

2
IC � 3 � 2 ln Jð Þ ;

ð22Þ
where IC ¼ tr C is the first invariant of the right Cauchy–
Green tensor C, see Wriggers (2001). The material pa-
rameters k and l represent the Lamé constants in the small
strain limit. From the strain energy the second Piola–
Kirchhoff stress can be computed by

S ¼ 2
oW

oC
¼ l 1 � C�1

� �
þ k

2
J2 � 1
� �

C�1 : ð23Þ

Using (12) the Cauchy stresses, which are used in the so-
lution of the standard field equations are given by

r ¼ l
J

B � 1ð Þ þ k
2J

J2 � 1
� �

1 ; ð24Þ

where B ¼ FFT is the left Cauchy–Green tensor. For the
computation of the tangential stiffness matrix the material
tangent is needed. For the given material the Cartesian
components of the material tangent in the reference con-
figuration are given by

CIJKL¼2
oSIJ

oCKL
¼kJ2ðC�1ÞIJðC�1ÞKL

þ2l�kðJ2�1Þ
2

ðC�1ÞIKðC�1ÞLJ þðC�1ÞILðC�1ÞJK

� �

ð25Þ
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and in the actual configuration by

cijkl ¼ kJdijdkl þ
2l � kðJ2 � 1Þ

2J
dikdlj þ dildjk

� �
:

ð26Þ
From the above equation the computational advantage of a
formulation in the actual configuration can be seen. In the
actual configuration the material tangent is not fully
populated. In addition the B-matrix is not fully populated
(see standard literature on non-linear FE for this, e.g.
Wriggers (2001)), which together allows for more efficient
implementation as less multiplications are needed to form
the element stiffness matrix.

4.2
Homogeneous block
The first example consists of a block of homogeneous
material (k ¼ 1000; l ¼ 400), which is loaded by a dis-
placement w on its top side, see Fig. 1a for a sketch of the
problem. For this 2D problem a state of plane strain is
assumed. The discrete material forces at the node points
are depicted in Fig. 1b. It is observed that large material
forces occur at the boundary. From the theoretical deri-
vation of Sect. 2 no material forces should appear in the
interior, see Eq. (11), as the block is homogeneous.
However the FE approximation introduces some spurious
material node forces that originate from the fact that the
approximation is not smooth with respect to strains (and
stresses). Therefore in the interior the numerical value of
the nodal material forces does not vanish. As material
points on the boundary are not allowed to change their
position in the reference configuration, material forces
appear as reaction forces to this constraint.

An obvious question is to ask if there exists an internal
arrangement of nodes for which the material forces vanish,
as they should from a theoretical point of view. As this
question is a finite dimensional optimization problem
(which may not be convex), we take as a first illustrative
question the following: Is it possible to find a X2-position
for the marked point in Fig. 2a and its symmetrical
partner, so that the configurational forces on this points
vanish? The considered mesh changes are also sketched in

Fig. 2a. The dependence of the material force G2 is shown
in Fig. 2b. For this node the specific position that satisfies
the demand is at X2=a � 0:3. In a further example all
interior nodes are allowed to move. The position of the
interior nodes is updated by the following rule

XK ! XK � cGK ; ð27Þ
where K represents all interior nodes. It must be men-
tioned that the constant c is to be chosen sufficiently small
to achieve convergence (to avoid ‘‘unhealthy’’ mesh dis-
tortions). The result of this updating technique is pre-
sented in Fig. 3a. It is interesting to note that the mesh
modification softens the system, as can be seen from
Fig. 3b. There the force F resulting from the displacement
of the top surface is plotted during the update process.
However, the change in reaction force is relatively small, as
one would deduce from the relative moderate mesh
modifications.

4.3
Cantilever beam with square hole
This example is a theoretical examination of the relation
between a defect, in this case a square hole, and the as-
sociated material forces. A rectangular block that is
clamped at one side and loaded by a vertical displacement
on the other side is considered, see Fig. 4a. This loading
situation resembles a cantilever beam. In Fig. 4b the
distribution of the r11-stress component is shown together
with the starting position of the hole. The stress distri-
bution is similar to the distribution of the bending stress
known from technical beam theory. As the hole is placed
in the vertical center near the neutral phase, it only slightly
disturbs the stress distribution. The resulting material
force on the hole is evaluated by

Ghole ¼
XNhole

K¼1

GK ; ð28Þ

where all Nhole material forces of nodes, which are located
on the boundary of the hole are summed up. A ‘‘kinetic
relation’’ for the motion of the hole is proposed in the
following way

Fig. 1. Homogeneous block: a sketch of
problem, b discrete material forces

55



Xnew
hole ! Xold

hole � cGhole ; ð29Þ
where we choose c such that

jXnew
hole ! Xold

holej ¼ b ¼ const : ð30Þ

This can be interpreted as a motion of the hole with
‘‘constant velocity’’. A general remark is necessary at this
point. As the physical process which allows a hole to move
through a solid body has not been specified, this example
is of purely academic/theoretical nature. If the hole is in-
terpreted as an ‘‘over’’ simplified model of a vacancy or a
void, one might think of diffusion or corrosion processes
that allow the hole to move through the body. Figure 5
shows the movement of the hole through the body. It can
be seen that the hole as an inhomogeneity is driven out of
the body by the material forces. After each position change
of the hole a new mesh is generated to avoid a deteriora-
tion of the discretization. In order to illustrate the path of
the hole the trajectory is also given in the plots of Fig. 5.
After 12 iterations the calculation is stopped as the hole
reaches the boundary and the automatic mesh generation
breaks down. If one tries different starting points, the
material forces will always try to drive the inhomogeneity
out of the body, i.e. to render the total body more ‘‘ho-
mogeneous’’. For example a slightly shifted down starting
position, will lead to a trajectory where the hole leaves the
block on the lower boundary.

4.4
Simulation of crack propagation using material forces
This 2D simulation resembles a compact-tension (CT)
specimen which is loaded by a dead displacement w, for a
sketch of the situation see Fig. 6a. A state of plane strain is

Fig. 2. Homogeneous block: a changes in
the mesh, b material force

Fig. 3. Mesh modification: a final mesh,
b change in reaction force F

Fig. 4. Cantilever beam: a boundary conditions, b distribution
of r11
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assumed. A circular hole is introduced in the specimen to
study the interaction of material forces at the crack-tip
with the material forces caused by the hole. The initial
distribution of material forces G is plotted in Fig. 6b. At
the points where the displacement boundary conditions
are applied, and at the crack-tip large material forces are
observed. In the close vicinity of the crack tip material
forces occur due to the inaccurate approximation of the
large gradients in the crack tip region. From a theoretical
point of view these forces should vanish, compare
Eq. (11). In the situation in Fig. 6b the hole is placed
relatively far from the crack tip. Crack propagation is as-
sumed to take place according to the simple rule

Xnew
crack-tip ! Xold

crack-tip � cGcrack-tip : ð31Þ
The proportionality constant c has to be chosen in an
appropiate way, i.e. the crack propagation has to be suf-
ficiently small and at the same time large enough to ensure
a proper mesh generation for the new geometry. It is
mentioned, that no threshold for crack initiation is in-
troduced, as this study is supposed to have only qualitative
character. A crack initiation value can be found for ex-
ample by considering a Griffith energy criterion, for details
see e.g. Gross (1996). It is also mentioned, that the crack
propagation is determined in size and direction by the

material forces. Another possibility to determine the
propagation direction is the criterion of maximal cir-
cumferential stress as proposed by Erdogan and Sih, see
also Gross (1996).

Being aware of all these simplifications two different
initial situations are analyzed. In the first simulation
(Fig. 7) the hole is placed relatively far away from the
crack, so that during crack propagation the crack reaches
the hole by slightly changing its direction. The simulation
is stopped just before the crack reaches the hole, because
in this situation the automatic mesh generation fails. In the
second situation the hole is moved horizontally closer to
the crack tip, see Fig. 8. Now the crack tip does not change
direction rapidly enough to reach the hole and passes the
hole. However the crack path is significantly perturbed by
the hole.

4.5
Block under constant pressure
The first 3D example is a cubic block with edge length a,
which is loaded on one quarter of its top by a pressure
dead load p0, for a sketch see Fig. 9a. The stress distri-
bution in the loading direction is given in Fig. 9b. The
contour lines of the stress are not very smooth and ex-
perience kinks at element edges. Using the updating rule
(27) the positions of the interior nodes is modified. The
modification process is depicted in Fig. 10, where a
central cut of the mesh is given. The nodes are attracted
by the point where the load is applied, as there are more
pronounced gradients in the fields. Eventually the mesh
is restructured in such a way that nodes concentrate at
areas with high gradients, while the discretization be-
comes rougher (larger elements) in not so important
regions, as the bottom support. Due to the internal re-
arrangement of the nodes the stress distribution becomes
smoother, see Fig. 9c. As in the 2D example the mesh
rearrangement results in a softening of the structure. In
Fig. 11 the increase of the lowering w of the central point
of the block is reported. This lowering increases as the
mesh is modified, as the stiffness of the discretization is
reduced.

Fig. 5. Cantilever beam: material forces
and trajectory of hole

Fig. 6. Crack propagation: a problem situation, b material forces
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Fig. 7. Crack propagation: a initial, b finial distribution of r22 in
deformed configuration, c crack path

Fig. 8. Crack propagation: a initial, b finial distribution of r22 in
deformed configuration, c crack path

Fig. 9. Block under constant pres-
sure: a sketch of the problem, b
initial distribution of r33, c distri-
bution of r33 after mesh update
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4.6
Material forces at the crack front
It is well known from linear elastic fracture mechanics that
at the crack tip material forces are related to energy release

rates or J-integrals. As a brief example we present a 3D
calculation that resembles a CT-specimen. The specimen is
loaded by a vertical displacement on the top surface. The
distribution of the stress component r33 in the load
direction is shown in Fig. 12a. As expected there is a high
stress concentration at the crack tip. At this line also large
discrete material forces appear. To visualize them a cut
along the ligament is given in Fig. 12b. If material forces
are large enough to force the crack front to move, it will
move in negative direction of the material forces, thus
leading to crack propagation. For the movement of the
crack front only the component normal to the crack front
is relevant thus resulting in a crack propagation that is
more pronounced in the middle than on the free surface.
This qualitative behavior is observed experimentally and
predicted by damage models of the Gurson type, see e.g.
Baaser and Gross (1988).

5
Conclusion
A consistent FE implementation of configurational forces
in the context of finite deformation and non-linear elas-
ticity has been presented. Discrete material forces are
obtainable by a post-processing step. Once the standard
field equations are solved the material forces can be
computed in a straightforward way consistent with the
discretization. The physical meaning of material forces
was discussed concerning changes in the reference con-
figuration (movement of a hole) and concerning fracture
mechanics problems. Despite these physical interpreta-
tions a computational application was demonstrated.
Discrete material forces were used to modify the mesh, i.e.
the node positions, in such a way, that the discretized
material force balance is satisfied. The examples showed a
reduction of the stiffness of the discretizations (FE dis-
cretizations are in general stiffer than the exact solution).
It was also observed that results for the stresses were
smoothed out across element edges.

During all the mesh modifications the topology (con-
nectivity) of the mesh remained unchanged. For future
work it seems interesting to investigate the possibility of
the use of the material force balance in an adaptive
scheme. In a homogeneous body without body forces the

Fig. 11. Change of the vertical lowering w of the central point of
the top surface, edge length a

Fig. 10. Cut of the block during mesh update: a initial mesh,
b 10 iterations, c 50 iterations, d 500 iterations

Fig. 12. Cracked Specimen: a
distribution of r33, b material
forces in the ligament
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discrete material force G could be used as an indicator,
where to refine the discretization. An advantage of the
material force is that it provides a vectorial information for
a directional refinement process. The realization of this
idea and the comparison with other error indicators is left
for future work.
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