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MAISANO Joseph

LaboratoryofElectromagnetismandAcoustics,Departementof ElectricalEngineering,
SwissFederalInstituteof Technology,CH-!015Lausanne,Switzerland

An improved transmission line model for visco-thermal lossy sound
propagation

Abstract

A transmission line model for lossy sound propagation has been obtained by
solving the state law of air and the Navier-Stokes, mass conservation, Fourier heat
equations. The series impedanceandshunt admittanceof generalsound propagation
has been establishedin order to obtainthe acousticequivalentelementsrepresenting
the visco-thermal effects. Acoustic equivalent elements are given for sound propagation
in various structures such as holes, cavities, or ductspresent in every miniaturized
transducer and in particular in integrated microphones and earphones.

1 Introduction

The main difficulty in designing electro-acoustical transducers is to express the
losses in their acoustical structures such as holes, cavities or apertures. The exactness
of the simulated characteristics of the transducer, in particular its sensitivity and its
noise, will solely depend on the precision of this modelling. This paper presents the
way to model any acoustical structure taking into account the complete visco-
thermal losses.

Classical models for sound propagation only consider reactive effects [2]. In
general a transmission line model for sound propagation is essentially represented
with an acoustic mass as series impedance and an acoustic compliance as shunt
admittance. Taking into account the losses in a non ideal fluid due to viscosity only,
the basic model can be improved and represented by figure 1. The resistor expresses
losses due to friction of the different speed layers in the fluid.

Po dz

v(z) _ v(z + dz)

-2- Po az I 12(z+dz)
l/(Z) ] rd_-J-- lC(2B+TI*)

figure 1
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2 Sound propagation equations

To improve the sound propagation model by taking into account thermal losses,
an equation representing heat conduction in the fluid is required. Thermal and
viscous losses in a general fluid are therefore described by four equations
representing properly the sound propagation. The small amplitude variations of the
acoustical variables lead to linearization of these equations.

The Lamb equation or commonly called Navier-Stokes equation represents the
movement conservation of a fluid particle

3v'- (ll+ll.).g-_-.a4divv,)+ q.l-_pv, (1)P0'-_- = -gradp' +

The conservation of energy leads to the expression of a general heat-conduction
equation or generalized Fourier equation taking into account the variation of the
density of the fluid induced by the temperature gradient

3T' _ .lapT'= Po 3p'-_ p0'Cv Ctv_'-3T (2)

The mass conservation is represented by the continuity equation

3p'+P0divv,=0 (3)3t

The state law of the fluid determines the interaction between the thermodynamical
variables of the fluid

aT' [3pToap' o_,Toap'
-37-=- Po'-37'+ Po-37 (4)

3 Line transmission model for sound propagation

The assumption of sound propagation in miniature acoustical structures allows to
consider a unidimensional sinusoidal propagation only along z axis, defined by a
complex propagation vector k. The propagation variables can then be represented
with phasor notation //

_z, t)=_q)o.e(J°x-&) (5)

where z represents the position along the propagation axis, t the time, to the

frequency, and P0 the complex phasor in z = 0 and at t = O.
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With this notation, the previous equations can be rewritten

jcoT - _,.---_-_._k2T= jo)r,a---_--_, p (1')
{aO'X--v ,._vF,O_v -

3v
jo)_p+P03_=o (2')

T= _PT° avT°
- - po 'p +-_o 'p- (Y)

3p
jo4%.v = -_-_ + (2q+q*).k2v (4')

The elimination of T and p in (1') to (4') yields

Po _' _ ,._-_ (6)j aO_._ .[1 _' ._k2._p=_ l+a,_p_ooC,T °Vpvo[ jCOPoCv jCOPoCv

If we denote the specific heat ratio [1] as

P (7)
¥ = 1 + pocv[_pcur

and the isothermal compressibility as,

l[3P / l[3P/ [3TI °_v
lc = p'_JT = cste = - p'_'rJp = cste_}p = cste = [_p.p (8)

the equations (4') and (6) can be rewritten as

- =-;_ (9)

qjOJDoCv 3v

T- L ,k2] 'P:-_zz (10)ja oCv-]
or, in a more concise manner,
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_p
.....m.-

Z'.v =- _z (11)

3v
_r'.p_= _ (12)

where _Z'is the series impedance and y' the shunt admittance of the transmission
line representation of the lossy sound propagation, with

_Z'= joJp0- (2II+ll*)._k2 (13)

jr.OPoCv-152]
_y'__

I'- )*jo 0cv'-k21 (14)
Equations (1 1) and (12), can be combined by a matrix representation as

dfp(z)l - Z'_{P(Z) /

The eigenvalues are .k and -.k with

k2 = Y'. _Z' (16)

and the eigenvectors are then

withy=l .k t" v/_Y'-c Zc =7 =T = 7 (18)

Equation (16) allows us to write the propagation phasor as

J°31°I1 jojp0Q
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which gives the fourth order equation with complex coefficients

(20)
Solving this equation yields the value of the propagation phasor as

Y+J +Ch+n*)
_k2 =

(21)
The sign in relation (21) is chosen to satisfy the isothermal case, which requires,

when ¥= 1, the propagation vector to satisfy (19), i. e.

or

k 2= - c°2P°r (23)

1+/co42n+n*)

For ¥= 1, the argument of the square root in (21) becomes

Only the minus sign in equation (21) satisfies the condition (23) and corresponds
to the physical solution of the propagation phasor.

The square root in (21) can be expressed by

The extraction of a complex square root is expressed by
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j.b

q_ + j.b = _ + V/-_ + r) (26)

where a and b are real values and r is the modulus of a + jb, defined by
r= dadadadadadadadadad_gb2

The square root (25) can then be expressed by

211+,1') -v-- - --

_-_r+ 2jco Cv] Cvl (27)4 +r)
with

= cohc 211+11' - t4
a g- (28)

and

r= --"-_--_22+40)2 211+11'+_/--¢F

(29)
The propagation phasor is then rewritten

¥+ jco_ + (2*l+rl*))-[X//-a-_ + 2jco{_((211+11')+2(___.___vv) - _-_

O0)
or

_k2= (31)
1+/co4211+11')

-6-



if we assume that

R = T._ -_ +2r (32)

The value of the square root in R varies between 0 and 1. For low frequencies
(f < 100kHz), and sound propagation in dry air under normal conditions, it is nearly
equal to unity and R = 7. For higher frequencies R gives a frequency dependence to
the acoustical components of the structures.

With the low frequency assumption, the propagation phasors then yields

O92p0 K

.k2= 7 (33)
1+jroK(2n+n*)

It is to be noted that this propagation phasor replaced in the expressions of the
series impedance (13) and shunt admittance (14) determines the equivalent circuit for
sound propagation shown in figure 1.

4 Series impedance and shunt admittance

The series impedance and the shunt admittance are then given by equations (13)
and (14).

The replacement of propagation phasor taken from (32) into these relations gives
the value of series impedance

1 i

(34)
or

(35)

with
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The impedance of the circuit represented on figure 2 is given by the next formula

j4L +L2)- L,L2
Z = · L'l (37)

1 + jCO--+
&

The identification with the coefficients of relation (35) yields

L'2: p0ll(1 + _)- _1 (39)

R'2= Po .Ix)r1+ 1)--12(1 + _)] (40)_(2n+n*)lt

L 1'

fy_ /y_ c2'

_V_ Ri,
R2 '

figure 2

figure 3

The value of shunt admittance is given by (14), and can be rewritten as

y , = j o3c'[jOlpoCv- 3,'_k21 (41)
papoCv_-_,._k_]
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After replacing the propagation phasor, the shunt admittance becomes

sox.[_----¢-g-]-o/r_(2n+n*)1 C yYR[ _R--]I (42)

-Y'= +;. [/2-,-,/(1+2Y-1_ Z 1 (1+1 Y-i_I

The extraction of the components of the shunt admittance is done in the same
manner with the value of the admittance of figure 3 given by

y,. j4C'l 4' C'2)_o_2R'1C'1C'2

1 +jo)R'lC' t (43)

The identification yields

2TI+II* R(¥-I)+ 2+ l+R--(y-1

1 (44)

C/= r. (45)

(2_+_*)/R(¥-I )+_(i+R)]-_C_J 1+R--(y-1)]

(2_+_*___[ 1_] (46)

The complete line-transmission model is finally shown by figure 4, the values of
the components being given by formulas (38) to (40) and (44) to (46).

As a means of verification, the adiabatic condition applied to the enhanced model
enables us to retrieve the classical model given in figure 1.
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L 1'dz

v(z) , ,,{_. L2' dz v(z + dz)

_J__l_i _ '_-

figure 4

With the assumption of low frequency, R = 7and the previous elements become

=_- (47)L'1

R': = Po (49)
_(2n+n*k

2q +_ *

g 1'=

(2n+n*)_ cvC/= _. (51)g
2_!+q*_/_Cv

7-1
%, 7=r. C (52)

(2n+q*)-_¥2-1

This means the effects of heat conduction only influence the shunt admittance and
the viscosity of the fluid interferes with the value of the compliances.
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5 Equivalent elements

Equivalent circuits were established for different structures present in integrated
transducers such as miniaturized microphones on silicon or earphones and especially
the holes, ducts and cavities.

The solution of the system (15) is finally, by use of the values of eigenvectors and
eigenvalues obtained in (16) and (17),

P(z)/ ] 1 lye-_ZfzlP_) (53);(z))--IYc-rc)0
where p+ and p_ are the backward and the forward waves respectively

depending on the boundary conditions.

The transfer function of such a transmission line of length L is given [4] by

Pt = ( cosh .kL Zc.sinh .loLl( _122I

(-v, ) _ yc.sinh .kL-cosh .kL )_:-v2J (54)

with _p_,_P2,¥_ and .v2 defined as on figure 5.

Vl

O O

figure 5

The total input impedance is obtained as a function of the load impedance Z - _P2
-L-- F2

by

_ZL + _Zc.tanh kL
_z,(z=0)= _Zc. (55)

_zc + _Zctanh kL

This relation can be rewritten

-Zt= -Zc' _ZL+ _Zc.tanh.kL+ _Z;tanh2.kL- _ZL.tanh2 .kL (56)
_Zc + _Zctanh .kL
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or

1 1

_Zt= Zc.tanh/eL + c°sh 2 kL 1 _ tanh kL (57)
_ZL _Zc

By using the values of the open and closed duct given by (60) and (61), it can be
rewritten,

Zt = Zt° + 1 1
- - cosh 2.kL 1 + 1 (58)

_ZL_Z,c

And yields the equivalent circuit shown by figure 6, for the input impedance of a
duct loaded by any other acoustical load.

1 :1

_v1 cosh _kL

gl J _o _ZL
g2

o 0

figure {5

If the dimensions L are smaller than the wavelength, the argument k_Lof the
hyperbolic cosine function can be neglected and yields

1
Z, = g,o + l------T- (59)

+
_ZL_Z,c

The impedance can then be represented by figure 7

Vl 2o

_al1· _Ztc _2

figure 7

It means that any acoustical structure opened on any duct can be modelled as if it
were simultaneously a closed and an open duct.
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6 Open and closed ducts

Setting some boundary conditions for a duct opened on both sides or a duct
closed on one side leads to more simple values for input impedance.

The open duct is defined with a null acoustical pressure at its end or _ZL= 0, its
input impedance, given by (55), becomes

_Zto= Zc · tanh kL or -Ztc= _Z'.L. tanh kL (60)
- - - k.L '

The closed duct is defined with a null velocity at its end, equivalent to a load
_ZL= oo. Its input impedance is therefore given by

= -Z,c /_.LZ,_ Zc · 1 or · coth kL (61)
- - tanh kL - = y--_.L '

Expressing the Taylor series for tanh _L and kL.coth kL the previous expressions
- .

can be written

((kL)2 (kL)4 )Z,o= Z'.L. 1 - -3-- + 2 '---i5- +'" (62)

and

( ('kL)2 ('kLy)3
_Z,c= y-_lL· 1 + +... (63)

When the dimensions are smaller than the wavelength, the previous assumptions
lead to

_Z,o= _Z'.L (64)

and

1 (65)Z,c= Y'.L
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7 Equivalent acoustical elements

The equivalent acoustical elements are given by transformation of the specific
impedance into acoustical impedance by multiplying this impedance by the area S of
the ducts.

The acoustical impedances are given by the next formula and can be represented
by figure 8 for the open duct or hole shown in figure 9

_Z,o= _Z'._ (66)

LI'L
S L2'L

s{y_ s

R2'_L k
S

figure 9

figure 8

Figure 10 represents the equivalent circuit for the closed duct or cavity shown in
figure 11 and given by

1 (67)
-Z'c= y'.L. S

C 2' L S-"T'-

C1,LS--__ _ S

Ri'LS _ L

figure 11
figure 10
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8 Conclusion

This research improves the classical theory of acoustical structures modelisation

by equivalent components in a scheme, taking into account visco-thermal losses and
heat transfers.

A complete model with frequency dependent components has been established for

very high frequency. For frequencies under 100 kHz, approximations are given with

constant value components.

The method for interconnecting the components of the acoustical structures was

given and it has been demonstrated that any structure is represented as if it were

simultaneously a duct and a cavity.
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9 Appendix

Thermodynamical variables

p acoustical pressure

p dynamic density

acousticalspeed

temperature

Physical constants

Po staticdensity

lc isothermalcompressibility

[3- p{aT_
P - - 'T[_} p= cste inverse of coefficient of volume expansion

o_- P{OTI
v- _[3-fi}p=c_t_ inverseofcoefficientofpressureexpansion

_, thermalconductivity

Cp specificheat at constantpressure

Cv specificheat at constantvolume

Cp
7 = -- ratio of specific heat capacities

cv

il staticviscosity

TI* bulkviscosity

10 References

[1] L. Borel, Thermodynamique et energetique, Presses Polytechniques
Romandes, Lausanne, 1984

[2] M. Rossi, Acoustics and Electroacoustics, Artech House, 1988

[3] F.E. Gardiol, Lossy Transmission Lines, Artech House, 1987

-16-


