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The analysis of the propagation of sound waves in narrow tubes has u•ually been restricted to shapes 
yielding tractable mathematical expressions. A great number of practical applications do not fall within 
these categories and await a solution. An approximate solution of su•cient accuracy for narrow tubes of 
arbitrary shapes developed in this paper has been applied to a wire-filled tube. The theoretical predictions 
check satisfactorily with the experimental results. It is believed that this study will be useful in other similar 
applications. 

I. INTRODUCTION 

HE steady state problem of the propagation of sound waves in conduits has attracted attention 

for many years. Exact solutions, however, are limited to 
the few conduit shapes described by coordinate systems 
allowing the wave eqnation to be separable. In several 
practical applications it is required to investigate the 
propagation in narrow channels of configuration not in- 
cluded among the few that yield exact solutions. The 
available approximate solutions applicable to tubes of 
arbitrary shapes neglect the losses due to thermal con- 
duction. The preponderance of these losses in narrow 
channels makes it impeiative to develop a new solution 
which considers them in the discussion. 

It was noticed by Rayleigh • that the results of 
Kirchoff's exact solution • for the propagation of sound, 
down tubes of circular sections, when dissipation is 
taken into account, could be deduced from an approxi- 
mate formula developed by Helmholtz provided some 
constants in the latter formula are altered. These 

changes are necessary to account for thermal effects 
which are neglected in Helmholtz's derivation. 

Rayleigh's observation suggests a method of de- 
termining an approximate solution applicable to narrow 
conduits of arbitrary shape. The relation which has been 
deduced in this m•nner is very simple to solve mathe- 
matically and has been found to be of reasonable accu- 
racy. The study is restricted to propagation in dry air 
and at sonic frequencies, so that dissipation of energy 
can be explained to a good degree of approximation by 
classical factors, i.e., by viscosity, radiation, and 
thermal conduction. 

II. STATEMENT OF THE PROBLEM 

The conventional one-dimensional wave equation for 
a dissipationless medium for a periodic disturbance of 
frequency c0/2•r is 

•u/dx • = -- (,.,/½)•u, (2.1) 

where u is the particle velocity and c is the velocity of 

* This research has been aided by funds made available under a 
contract with the ONR.. 

• Lord Rayleigh, Theory of Sound (Macmillan, London, 2nd 
ed. 1929), Vol. II, p. 328 if. 

• Kirchoff, Pogg. AnnMen 134, 177 (1868). 

propagation of sound. In a narrow conduit, the wgve 
front is approximately plane and the dissipation at the 
walls accounts for a large portion of the total yiscous 
losses. As a result, the previous equation can be changed 
to a new expression of the form: 

d•u/dx•= - (•o/c)2(l+•k+j4•)u, (2.2) 

where • is an accession to inertia due to the viscous drag 
and q5 is a quantity related to the viscous resistance. 
Both •b and qb are expected to depend on the frequency 
and shape of the tube. Expression (2.2) is similar only in 
form to Helmholtz's derivationJ The values of the 
parameters are, however, different. The velocity of 
propagation ½, which was taken as an invariant quantity 
in Helmholtz's formula, is now made a function of both 
the frequency and the shape of the conduit. The latter 
step is to allow for thermal effects which are closely 
associated with the evaluation of the value of c. 

From the preceding discussion it follows that the 
present study is reduced to an investigation of the de- 
pendence of the c, •, and qb functions on both the fre- 
quency and shape of the tube; these functions are 
subsequently referred to as correction terms. 

Ill. EVALUATION OF THE CORRECTION TERMS 

The dependence of the magnitude of the velocity of 
propagation c on the frequency of the vibrations is 
deduced from the thermodynamic relations for the gas. 
Using to that effect the first law of thermodynamics, it 
follows that: 

•oC•(dO/dt) = -- t•P(dv/dt)q- K•O, 

where 0 is the instantaneous excess temperature of the - 
gas above the mean To, v is the instantaneous volume of 
the gas, • is the density of the gas, P is the total pres- 
sure, K is the coefficient of thermal conductivity, and C• 
is the specific heat at constant volume. Dividing both 
sides of the equation by oC•, it is readily found that 

•O/•t= •(•s/•t)+ •WO. 0.• ) 

In the above relation v, the thermometric conductivity, 
stands for K/oC•, 18 is P/pCo, and s is the condensation. 
The solution of Eq. (3.1) will indicate the manner in 
which the temperature 0 is distributed across a section of 
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the conduit. To simplify the analysis, s is assumed to be 
constant across a section: of the tube. This approxima- 
tion is permissible, since both the pressure and the 
density of the gas are expected to vary slowly over any 
transverse section of the conduit. For a periodic time 
dependence e i'•t, (3.1) is rewritten as 

W(O/fis) =j•o/v[(O/[•s)- 13. (3.2) 

The above equation will have for solution an ex- 
pression of the form, 

(O/lSs- 1)=-F(•o/v, •, n, a, b) 

or 

O= •s(l+F), (3.3) 

where F is a function depending on the geometry of the 
conduit referred to some coordinate system (•/, 7) and a, 
b are two arbitrary constants. These two constants must 
make the function F assume the value of (--1) at the 
walls of the conduit described byf(•, 7)= 0. This special 
choice of a and b is imposed by the boundary conditions 
which require the excess temperature 0 to vanish at the 
walls. 

The average temperature fluctuation 8 across the 
conduit of sectional area S is evaluated by means of the 
relation 

O=l/s f foactn, (3.4) 
= s(A +jB). 

A and B are functions of •o/v, a and b. Combining Eq. 
(3.4) with the general gas relation, 

•P/P+•V/V= •T/T, (3.5) 

in which •P is made equal to the acoustic pressure p and 
•T to the mean fluctuation •, it is found that the result 
can be written in the form 

p = soco•A. (3.6) 

A is a function of w/v, a and b whose exact evaluation 
is not an easy matter when the boundaries assume 
complicated shapes. The difficulty of calculating A 
exactly lies chiefly in solving (3.2). The coefficient A, 
however, has been computed by Daniels a for some 
simple cases. When the results of his calculations are 
plotted against (f)«S/P (P being the perimeter of the 
conduit), it is noticed that [ A I is nearly independent of 
the shape of the conduit. The mathematical formulation 
of this remark is, 

I a l = fl[(f)•S/P']+ • (shape), (3.7) 
where •2[(f)«S/P3 is an intermediate curve (Fig. 1) 
through the set of curves calculated by Daniels and e• 
(shape) indicates a small deviation from the mean to 
suit a particular configuration. One can consequently 

a F. B. Daniels, J. Acous. Soc. Am. 19, 569 (1947). 

infer that A is approximately given by a universal rela- 
tion, when the independent variable is (f)iS/P. 

When c0=A of Eq. (3.6) is replaced by d, then c is the 
velocity of propagation of sound inside the conduit. 
Since A tends to C•/Cv= 1/w for vanishingly small 
frequencies and to unity as the frequency is raised, the 
velocity c for these two extreme cases tends,respectively, 
to Newton's value and to Laplace's value. In the former 
case the expansions of the gas are isothermal and in the 
latter, purely adiabatic. The frequency interval, in 
which the transition occurs from one state to the other, 
is determined by the geometry of the conduit (i.e., by 
the value of the ratio S/P). 

The curve of Fig. 1 plays also an important role in 
the evaluation of the • and ½ terms. For values of 
[(.f)IS/P']< 0.1 the curve predicts an isothermal state. 
It is then plausible to assume that a great fraction of the 
gas is in contact with the walls of the conduit. Friction 
then has such a "hold" on the vibrating mass that the 
inertia effect can be neglected in comparison with the 
viscous forces. The wave equation is then deduced from 
the three relations - Op/Ox= Rou; Ou/Ox= - Oo/Ot; 
p= ods, where R0 is the flow resistance per unit length. 
The above ultimately leads to: 

O=u/ Ox '• = (j Rouco / P ). (3.8) 

The correction terms are then: 

•= - 1; •= Rop/o•; d=P/o. (3.9) 

When [(f)iS/P']>O.1, the above conditions no longer 
hold. The extent of the inertia effect can be best judged 
by examining Kirchoff's exact solution x for the propaga- 
tion of sound waves between parallel walls. The mathe- 
matical analysis of this case is considerably simplified 
because of the reduction of the formulation to a one- 

dimensional dependence. The velocity distribution in a 
section at right angles to the wall has been calculated 
using Kirchoff results. The distribution is shown in 
Fig. 2. The rapidity of the alteration of the distribution 
with the frequency is worthy of notice. The clinging 
layer theory postulated in Helmholtz's solution is seen 

Fro. 1. Transition from isothermal to adiabatic state. 



484 OSMAN K. MA'WARDI 

Fro. 2. Distribution of 
the velocity between paral- 
lel walls (Kirchoff formula). 

to be very quickly reached and can be considered valid 
for a large range of frequencies. Helmholtz's values can 
then be taken for two of the correction terms, thus: 

½=(P/S)(--u/2cw0•, ,•=-j(P/S)(-u/Zop)«, (3.10) 

while c is calculated from the chart of Fig. 1 and by 
means of the relation c= c0(A) •. 

IV. INPUT IMPEDANCE OF NARROW CONDUIT 

A. Semi-Infinite Tube 

The specific input impedance Z0 of an infinitelye'long 
tube can be readily evaluated. For a time dependence of 
the form e i• the solution of the differential•Eq. (2.27is 
u = A eiv t-,% where 

m 2-- -- (c0/c)2(lq- •q- j•). 

Making use of the well-known relations, 

p= oc•s and au/ax= - as/at, 

the specific impedance is deduced to be 

Zo = Oc(--jmc/co). (4.2) 

It was shown in the preceding section'that two sets of 
formulas are to be used to determine the correction 
terms. In the first set, the frequency of the vibrations is 
so low that conditions are approximately that of a 
steady flow of air in the tube. The other case covers 
nearly all the audible frequency range. 

Using the appropriate values for the exponent m, it 
follows that for the first range of frequencies 

Zo= .all- j)(Ro/oo)/v2 (4.3) 
and for the range of frequencies satisfying.the "clinging 

$= dx Sidx Stdx $•dx 

Z 0 •t Z 0 

Fro. 3. Electrical analague of an infinitesimal length of a tube, 
in which a sound wave is propagated with losses (for isothermal 
case S• = 0; P• = •o ). 

layer" theory, 

Z0 = .c[-1 + (1 - j)(P/S)(•/2co.)•-]«. (4.4) 
The propagation of sound waves in a tube as formu- 

lated in Eq. (2.2) can be represented by an electrical 
analague, the leaky transmission line. In this manner it 
will be possible to adopt many of the techniques used in 
transmission line theory. 

The equivalent T-network representation of an infini- 
tesimal length dx of a leaky line having the characteristic 
impedance and propagation constant given by (4.1) and 
(4.2) is well known and is shown in Fig. 3. For isothermal 
changes of the gas (first case) the series arm of the 
equivalent T is: 

Z1 = 2Z0 tanh(mdx/2), 
= Rodx, 
= 2Sx per unit length 

and the shunt arm is given by: 

Z• = (Zo/sinhmdx), 
= pcyjtodx, 

(4.$) 

= (Poq-jwP1) per unit length. 

B. Tube of Finite Length 

For a tube of length l, connected at one end to a sound 
source and having the other left open to the atmosphere, 

(4.8) 

1 / co sin•/ jw cos• \ 

+ .l21 

Fro. 4. Cross section of an interstitial channel. 

or 

1/Z•= (jcodx/oc •) =jcoP• per unit length. (4.6) 

For non-isothermal changes it is similarly found for the 
series arm of the equivalent circuit: 

Z• = { (P/S) (#coo/2)lq- fio[Oq- (P/S) (•,o/2co)t'] } dx, 
= 2(S•+fioS=) per unit length, (4.7) 

and for the shunt arm: 

Z= = (pcyjw)dx. 

If d= Id[ (cos•q-j siftS), then the above expression 
can be rewritten as: 

(4.1) 
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the end conditions are closely approximated by an 
impedance of pc per unit area of channel cross section. 
The input impedance is then: 

Zi•=Zo coth(al+•+j(bl+r)), (4.9) 

where m= a+jb is the propagation constant defined by 
(4.1) and a+jr= coth-t(ac/Zo) is the hyperbolic argu- 
ment of the terminating impedance. 

V. EXPERIMENTAL VER_I•ICATION 

The preceding theoretical discussion was tested on a 
wire-filled tube. This device, formed by filling a conduit 
with straight round wires, so that sound can be tlans- 
mitted along the interstitial channels between the wires, 
has been used often as a high acoustical impedance. 4 

A wire-filled tube was constructed by inserting inside 
a tube 4.45 cm in diameter wires of 0.0457 cm radius and 

15.24 cm long. In a tightly packed tube, the section of a 
channel has the shape of a curved triangle as shown in 
Fig. 4. The theoretical number of wires wh/ch can be 
inserted inside the 4.45 cm tube to make the interstitial 

channels similar to Fig. 4, is 2300. Because bf the 
practical difficulty of preventing the wires from twisting 
as they are rammed inside the tube, only 1/160 could be 
inserted. 

An elementary numerical calculation indicates that 
the SIP ratio for the interstitial channels is 2.33X 10 -•. 
Referring to Fig. 1, it is found that the latter number 
definitely sets the character of the expansions as 
isothermal. Formula (4.3) is then to be used. 

The precalculated value of flow resistance of the whole 

wire-filled tube is 30 rayls/cm* (see Appendkx); the 
measured resistance was found to be 25' rayis/cm. The 
acoustical input impedance has been computed by 
means of the relation: 

Z=Zi,/(A X •860), 

where A is the cross-sectional area of a single interstitial 
channel and Z• is the impedance defined by expression 
(4.3). The result of the calculations is shown in Fig. 5. 
The input impedance has been measured also by a short 
tube method* and the results of the measurements have 

been plotted on the same curve of Fig. 5. The scattering 
in the measurements is mainly due to the random shape 
of the channels, some of them having a large enough 
area to produce noticeable fluctuations in the impe- 
dance. In general, agreement between theory and ex- 
periment is satisfactory, and it is hoped that the 
approximate formulas which have been developed in 
this study will be useful in other similar applications. 
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APPENDIX 

Determination of Flow Resistance 

By definition, the flow resistance is the reciprocal of the delivery 
from a pipe per unit pressure gradient. The velocity distribution 
across a section o[ the pipe, for steady laminar flow, satisfies the 
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• F. V. •unt, J'. Acous. $oc. Am. 10, 215 (105•); L. L. Beranek, •b•. 12, 3 (t0•); C. T. Morrow, •. 19, d45 (t•47). 
ß The unit r=yis h• been defined by •eraneE (]. Aeons. Soc. Am. ]9, 555, 1•47) as dyne-see cm -•. 
• O.K. Mawardi, J. Acous. Soc. Am. 2], 
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Fro. 6. Relative distribution of the velocities in a channel. 

relation: 

v•(x, y) = - lh4OPlat). 

The boundary conditions imposed on the velocity u, require u 
to vanish at the ;vails. The delivery from the pipe is evaluated 

Q- ffs •yax, (2) 
where S is the are• of the cross section. The flow resistance is then 

a0= (oplOl)/Q. 

The'formal solution of (1) is not easy because of the complex 
shape •f the boundaxles. As an alternative, the relaxation method 
of Southwell 8 has been used to evaluate the distribution of the 

velocity in the channel. The result is shown in Fig. 6, where one- 
sixth of the conduit only has been drawn. The numbers inscribed 
indicate relative velocities. The discharge as defined by (2) has 
been evaluated by numerical integration and has been found to be: 

Fla. 7. Ass•ned cross section of interstitial channels. 

GR. V. Southwell, Rdaxc•ion Methods (Oxford, Claxendon 
Press, 1946), Vol. 2. 

(r0•/1380•) per unit pressure gradient. The flow resistance of the 
wire-filled tube is then: 

(1380•/r04) X 15.24)< 1/2300=374 rayls, 

which is exceedingly high compared to the measured value of 25. 
The reason for this discrepancy is mainly due to the insufficient 
number of wires which have been packed in the tube. As the flow 
resistance of a duct approximately decreases with the square of the 
area, the change in the number of wires from 2300 to 1860 will 
appreciably decrease the flow resistance. 

As a first approximation it will be assumed that the interstitial 
channels are formed by the empty space between four wires 
touching, so that the shape of a channel is similar to that shown 
in Fig. 7. 

The accurate evaluation of the flow resistance by the relaxation 
method or other is a very tedious process; instead, an empirical 
formula due to GreenhilP is used. In this formulait is proved that 
the discharge of a viscous fluid from a pipe under steady laminar 
flow is proportional to the torsional rigidity of a homogeneous 
elastic cylinder of the same cross section. The latter rigidity has 
been found by Saint Venant (as quoted by Love s) to be expressed 
to a good approximation by replacing the section of the prism by 
an ellipse of the same area and moment of inertia I. The rigidity 
consequently is nAV4•I, where n is related to the elastic constant 
of the substance. The flow resistance given by Greenhill analogy 
formula is then: 

4(4•rall•/A •) per channel per cm. 

For a configuration similar to that shown in Fig. 4, A =0.1613ro a 
and I= 6.958)< 10-% •, the corresponding flow resistance is then: 
440 rayIs which is 15 percent off the theoretical value representing 
a satisfactory approximation. When channel shapes as indicated in 
Fig. 7 are used, then the new values are: A=0.8584r0a and 
I-0.3752ro •. Hence the flow resistance is: 

/4•X 0.3752ro• 1 

d,- .)x ls.24x ray, 
which is within 20 percent of the measured value. 

• A. G. Greenhill, Proc. Lond. Math. Soc. 15, 43 (1881). 
8 A. E. Love, Elasticity (Dover Publications, New York, 1944), 

p. 324. 


