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An exact solution for the decay of sound in a rectangular room is obtained; assuming that each 
wall is uniformly covered with absorbing material, which may differ from wall to wall. It is 
concluded, from recent experimental measurements, that the boundary conditions for the 
sound field are correctly expressed in terms of the effective normal impedance of the wall 
material. The sound is analyzed into its component normal modes of vibration, and the reverber- 
ation times and frequencies of the different normal modes are calculated as functions of the 
wall impedances and their phase angles. Curves are given for these quantities for a wide range of 
the parameters involved. The effect of the absorbing material in distorting the sound field is 
shown, and several other interesting points are brought out in the discussion: that waves 
which travel "parallel" to a wall are absorbed by the wall, but are not absorbed as much as are 
waves striking at more oblique angles; that it is sometimes possible to increase the reverberation 
time for a standing wave by decreasing a wall's effective acoustic resistance; etc. 

HE problem of the decay of sound in a room is pleasantly simple to analyze approxi- 
mately and surprisingly complicated to solve 
exactly. As long as one confines the analysis to 
first-order effects, considers only average sound 
intensities, and uses only moderately absorbing 
materials, the first-order formulas of Sabine or 
of Eyring are satisfactory. If one wishes, how- 
ever, to investigate in detail the distribution of 
sound energy in the room, particularly with very 
absorbent material present, or if one wishes to 
make careful measurements of the absorbing 
qualities of the materials, the problem becomes 
so complicated that it can be solved at present 
only for particularly simple configurations. 

One important cause of the difficulties is that 
the distribution of the sound field throughout 
the room is not only determined by the shape of 
the room; it is also distorted by the presence of 
absorbing material on the walls, and the dis- 
torting effect is greater the more absorbing the 
material. This is only too apparent to the 
experimental investigator of room acoustics, and 
it must be taken into account in any thorough- 
going theoretical analysis. 

In the present paper a start is made toward a 
detailed theoretical analysis of room acoustics. 
A particularly simple case is studied; that of a 
rectangular room with uniform coverage of 
absorbing material on each wall, with only one 
of the walls being very absorbent. The aim will 
be to take the data from a .single, relatively 

simple measurement of the absorbing property 
of a material; and to try to predict, from these 
data, what will be the acoustic properties of a 
room having the material spread uniformly over 
one or more of the walls. The theoretical results 

obtained will be correlated with experimental 
data in other • papers. The arrangement analyzed 
is too simplified to be of great use in practical 
acoustic design. Nevertheless simple cases of 
this sort must be understood in detail, and 
checked experimentally, before more complicated 
problems can be attacked. We shall see that 
even in this case the results are not always 
simple. 

THE NORMAL IMPEDANCE 

The first question to be settled is the nature 
of the property of the wall material which is 
responsible for the absorption; the physical 
quantity xvhose measurement will make it 
possible to predict the acoustic properties of the 
material under various conditions. It is not the 

purpose of this paper to make a detailed analysis 
of the mechanism of sound absorption in the 
wall material, of the nature of the work begun 
by Monna • and others. We are here interested 

•To appear in this Journal. Some preliminary experi- 
mental confirmations of the theory outlined here were 
reported by F. V. Hunt and by N. B. Bhatt at the Sym- 
posium on Absorption Coefficients at the last meeting of 
the Acoustical Society. 

• A. Monna, Physica 5, 129 (1938), Rev. d'acoustique 7, 
126 (1938). See also V. Ktihl and E. Meyer, Berl. Ber., Phys. 
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primarily in the sound field in the room, and 
need study the wall material only enough to 
determine the form of boundary condition which 
will represent the actual conditions at the wall 
adequately as far as the sound field in the room 
is concerned. The physical quantity representing 
the property of the material cannot be the usual 
absorption coefficient a, either averaged over 
angle of incidence or not. For if a is not averaged 
it depends on the angie of incidence of the wave, 
and if it is averaged it depends on the nature of 
the averaging; and in either case it depends on 
the size and shape of the room. The absorption 
coefficient is therefore not a suitable primary 
property, for its value depends on the nature of 
the incident wave, as well as on the nature of 
the material. 

Recent experimental results a have indicated 
that the proper physical quantity which measures 
the absorbing qualities of the material is the 
suhstance's normal acoustic impedance, the ratio 
of pressure to normal air velocity at the surface 
of the material. The experiments indicate that 
this quantity depends only on the material and 
not on the incident wave (except for the variation 
with frequency). Of course further detailed 
experiments, with other materials, may show 
that even the normal impedance varies with 
angle of incidence of the wave: in which case 
we will have to use another, more deep-seated, 
physical quantity to measure the material's 
absorption. Until such time as experiment forces 
us to complicate the picture, however, it seems 
worth while to develop a theory of absorption 
in terms of the normal acoustic impedance Z, 
and to assume tentatively that Z is a function 
only of the frequency of the incident wave, and 
not of its angle of incidence. It has been shown 
elsewhere 4 that the reflection coefficient for a 

free plane wave striking an infinite plane surface 
of the material at an angle 0 to the normal is 

I•cøs O-I [ ' R,,•= , g= (Z/pc), (1) 
i' cos 0+ 1 

Math. KI. 26 (1932). An interesting analysis of the effect 
of a vibrating plate wall on the sound in a room, using 
methods somewhat similar to the present analysis, has 
just appeared, by R. Rogers, J. Acous. $oc. Am. 10, 280 
(1939). 

aF. J. V•511ig, J. Acous. Soc. Am. 10, 257(A) (1938); 
F. V. Hunt, J. Acous. Soc. Am. 10, 216 (1938). 

• P.M. Morse, Vibration and Sound(McGraw-Hill), p.304. 

where R is the ratio between the reflected and 

incident intensities, p is the density of air and c 
the velocity of sound in air. This formula has 
been approximately confirmed by two series of 
measurements? which have also indicated that 

in many cases (though not in all cases) the 
impedance Z is real. 

It should be noted here that Eq. (1) is strictly 
true only for free waves and for an infinite 
surface of material. We shall see later in this 

paper that it is only approximately true for the 
standing waves in a room of finite size;indeed, 
in certain special cases it is not at all applicable. 

Before turning to the detailed analysis of the 
relation between the decay of sound in a room 
and the normal impedances of its walls, it will 
be useful to discuss the relation between the 

normal impedance concept and the sound re- 
fraction analysis discussed by Monna • and others. 
When sound strikes a wall, part of the intensity 
is reflected and part transmitted into the wall. 
The transmitted part consists partly of air 
vibrations in the pores of the wall and partly of 
vibrations of the material of the wall itself. For 

our purposes, however, it can be considered to 
be an average wave traveling through the 
material, presumably being attenuated as it 
penetrates. Since the wall pores are not usually 
isotropic, the average xvave motion will not 
always be isotropic, the velocity parallel to the 
wall surface being, in general, different from that 
normal to the surface inside the wall. 

We shall express these velocities in ternIs of 
two average indices of refraction, the wave 
velocity in the wall, tangential to the surface 
being vt=c/n, (where c is the velocity of sound 
in air), and that normal to the surface being 
v,,=c/n,,. If there is attenuation in the wall, n, 
and perhaps also nt will be complex quantities. 
The wave equation for the pressure in this 
average wave inside the wall is then 

n• • ax • n?\Oy • 

where the wall surface is taken to be the y, z 
plane. An analysis of the refraction and reflection 
of waves at this surface, using the boundary 
condition that the pressure and normal velocity 
be continuous in value at the surface, shows 
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that the ratio between reflected and incident 

amplitudes is 

(Q/n•) cos 0-(1- (l/n?) sin 2 0) '• 
D= 

(Q/n,O cos 0+(1- (l/n, 2) sin • 0)• 

for a free plane wave striking an infinite plane 
surface at an angle of incidence 0. The quantity 
Q is the ratio of the effective density of the wall 
material to the density of air, and is therefore 
quite large. The corresponding reflection coeffi- 
cient is then [D[•=R. 

The above formula is a more general one than 
that given in Eq. (1), reducing to Eq. (1) when 
n• becomes exceedingly large, and when n, is 
equal to (Qoc/Z)=(o,,,c/Z), where 0• is the 
density of the wall material, and c is the velocity 
of sound in air. Therefore the materials which 

show experimentally a dependence of R on 0 of 
the sort given by Eq. (1) must have an effective 
tangential velocity of sound considerably less 
than ½(n[>>l), and an effective normal velocity 
greater than (c/Q) (so that Q/n,• be larger than 
unity, as it usually is). The normal velocity is 
then related to the normal impedance by the 
equation v,,=(Z/o,,,), indicating that the char- 
acteristic normal impedance of the wall, Z, is 
equal to its density times its normal wave 
velocity. Of course the actual phenomenon of 
sound absorption in the wall is much more 
complicated than a pair of average velocities 
can express; but for the purpose of studying the 
behavior of the sound field in the room, the two 
constants n• and n,•/Q suffice to fix the boundary 
conditions; and, conversely, measurements of 
sound in the room can determine only these 
two constants. 

Experimental data on the dependence of R 
on 0 have not been taken for very many ma- 
terials. Those which have been measured show 

curves indicating values of (Q/n,O between 2 
and 15 (some are complex), and values of nt so 
much larger than unity as to be indistinguishable 
experimentally from infinity. It therefore seems 
justifiable to consider the absorbing property of 
a wall material to be adequately represented by 
a normal acoustic impedance Z, independent of 
the angle of incidence of the sound wave, but 
dependent on frequency. This impedance can 
be measured by a suitable modification of the 

Fay-HalP impedance bridge, for instance. It is 
the purpose of the rest of this paper to show how 
the acoustic properties of a simple room can be 
computed if the normal impedances of its walls 
are known. 

THE STANDING x, VAvES OF SOUND IN A ROOM 

For our detailed analysis we will assume a 
rectangular room, with three joining edges along 
the positive parts of the three coordinate axes, 
and with dimensions l•, l• and lz. Each wall will 
be uniformly covered with absorbing material: 
that on the wall in the plane x = 0 having normal 
impedance Z,•, and that on the wall in the 
plane x=l• having the impedance Z• (these 
two walls will be called the x walls), and so on. 
The pressure distribution in a single standing 
wave (either in forced or free oscillation) is 

p• = X (x) Y(y)Z(z), 
(2) 

X = cosh [Orx/l•) (- • +ju•) + 

and the factors Y and Z are similar to X, 
except that x is changed to y or z. The values 
of the constants g, t• and • are to be determined 
by the boundary conditions. 

For instance, at the x=0 plane the pressure 
is ZYcosh •b•, and the normal velocity just in 
front of the wall is 

u•-0= -- (1/2a-jvp)(op/Ox)• o 

\' 2j•P•p/• '! sinh f,- Y. Z, 
where v is either the driving frequency in forced 
vibrations, or is the natural frequency if the 
wave is in free vibration. The boundary condition 
that p•-_0=-Z•au•_0 then corresponds to the 
equation 

j coth (•) = (•,/n•)(- •+jt•), 

where •',l--Z,•/oc is the ratio of the normal im- 
pedance of the wall to the characteristic im- 
pedance of the air, and where n•= 21•v/c= 2L:/X 
is the ratio of the room length to the half-wave- 
length, and is a quantity proportional to the fre- 
quency. The six boundary conditions at the six 

• R. D. Fay and W. M. Hall, J. Acous. Soc. Am. I0, 
259(A) (1938). 
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walls result in three equations from which the 
quantities Kx, %, K:, tz•, tzu and/z• can be deter- 
mined. The equation for the x walls is 

•j(tz•+jKx) + coth-'[-(i'lx/r/•)(•+j•)-] 
+coth -• [(•/,•)(•+j•)]=0. (3) 

Due to the periodicity of the hyperbolic 
cotangent with u, we have an infinity of possible 
solutions of each of the three equations; the 
lowest value corresponding to a wave with no 
pressure nodes perpendicular to the x axis, and 
the n•th corresponding to one with n• pressure 
nodes perpendicular to the x axis, and so on. 
The integers n•, n•, n• therefore serve to label 
the particular standing wave under examination. 
Those waves for which n•= n• = 0 will be said to 
be "normally incident" on the x-walls; those 
for which n•=0 are "grazing incidence" waves 
for the x-walls, and so on. The reason for the 
quotation marks will become apparent later. 

As soon as the values of the •'s and u's are 
known, the acoustic properties of the standing 
wave can be computed. For instance, the fre- 
quency factor for free vibration can be expressed 
by the exponential e J'•t-•t, where substitution in 
the wave equation shows that 

(•,, +jk ,•)• = (•c) • • (• • +.i•/l •)• 

+ + 

In the great majority of cases we can neglect k 2 
compared to •, in which case the frequency of 
free vibration of the standing wave is 

-- •-- = .... [ t (4) 
2•-2L l• •l• •l• • J 

and the attenuation constant, giving the rapidity 
of decay of the wave, is 

+ 

where (•+ •) = (4•u,•,/•), etc. 

In this formula, in •,= (2pl•/c) etc., we use here 
the frequency p,, of free vibration. 

Comparison with the usual equations" for the 

eF. V. Hunt, J. Acous. Soc. Am. 10, 223 (1938). H. 
Cremer and L. Cremer, Akust. Zeits. 2, 6 (1937). 

decay constant k• shows that the quantity 
(4•rt•g•/r/x) plays the same role in the expression 
for k as the quantities (a•+ax2) cos 0, do in the 
free wave analysis. We shall see later that in 
many cases this quantity (4•r/•/r/,) breaks into 
two terms; one, which can be called •, depend- 
ing only on the xl wall, and the other, •,•, de- 
pending only on the x2 wall Iu these cases the 
analogy with the free wave case is particularly 
close. 

The quantities a will be called damping coel•- 
cients, and are the correct expressions to use in 
the formula for k,, instead of the expressions 
• cos 0 which are obtained when the waves are 

considered to be undistorted plane xvaves, uni- 
formly distributed throughout the room. Even 
when •,• is not a function of the xl wall alone, 
the sum (•+•), a function of the properties of 
both x-walls, can be considered to be a combined 
damping constant for both x-walls. 

In the case of forced vibration, where the 
source function is q(x, y, z)e i'•t, the usual expan- 
sion in normal modes • shows that the steady-state 
pressure in the room is given by the series 

j`opc•B, 
p, = • 

,, `o•- (•+.ik•)' 

The amplitude of the nth standing wave is there- 
fore equal to a product of p, (see Eq. (2)), giving 
the distribution in space of the nth wave, times 
a constant B, dependent on the placing of the 
source, times a resonance term 

j,0`Oœ2 -- 
..... , (6) 

,o 2- (,o•+jk,,) 2 2k,+j(,o- (,o•/,o)) 

where co,, is given by Eq. (3) and k,, by Eq. (4). 
In this case, however, the quantities •= (2vl•/c), 
etc., in k,, are in terms of the frequency v of the 
source. The constant k, is the quantity used in 
steady-state measurements of room acoustics. ø 

Therefore, to investigate the acoustic proper- 
ties of a room with uniform coverage, we need to 
compute the behavior of the quantities 
= (4•r•u/r•) and u•-•2 for each of the wall pairs, 
as functions of the wall impedances •= (Z/pc), 
for each of the standing waves in the room. The 
acoustic response of the room, and its reverbera- 

7 Reference 4, page 315. 
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tion time, will be composite quantities, obtained 
by taking the corresponding values for each 
standing wave, weighted by its source coefficient 
B• and its resonance denominator, and combin- 
ing them in the proper manner. This will be 
done in subsequent papers3 The final result will 
depend as much on the shape of the room as on 
the nature of the absorbing material. 

CALCULATION OF THE DAMPING COEFFICIENTS 

Equations (3) indicate that the quantities 
(g2_•a) and 4•rt• are functions of the complex 
variables (7/•'m):(2vl/c)(oc/Z,,), (m=l, 2), 
which are proportional to the frequency and in- 
versely proportional to the normal impedances of 
the two walls. It is also apparent that the two 
quantities for x depend only on the properties of 
the two x-walls; and likewise for y and for s; so 
that the calculations can be carried out for each 

of the three wall pairs separately, and the results 
combined at the finish. 

The equations to be solved are each of the form 

•-J(•+J'O +c oth-• [-(iq/7)(•+j•)] 
q- coth -• [- (•2/7) (g q-jg) ] = 0. 

The impedances Z,• are sometimes complex, 
with phase angles •,. In such a case we can 
write •'m:q,,.e TM, where ,,• is the magnitude of 
(Z,,/oc). Solutions of this equation can be ob- 
tained in the form of series in powers of the 
quantity (7/q'), useful for calculations for low 
frequencies, small rooms and large Z's (small 
absorption); or in series in powers of the recip- 
rocal ('r/•), useful for high frequencies, large 
rooms and small Z's (large absorption). One 
computes a series for (•+j•)• and then obtains 
series for (t• a-•a) and 2t•g in terms of the fre- 
quency parameter 7, and l'• and •, the impedance 
parameters for the pair of walls under considera- 
tion. The intermediate range of the variables 
must be calculated by numerical or graphical 
methods. 

The solutions are labeled with the number n, 
giving the number of pressure nodes parallel to 
the wall pair concerned, in the particular standing 
•vave studied. The series solutions for different 

values of n, for the case where (•/n•,) (or 7/* for 
n = 0) is small compared to unity for both walls, 
the series are: 

n=0 

X (i'l •- i'd'• + r•") +" ', 

u0z_g0a 7(1 1 ) = --sin v•+--sin •o• 

(7) 

a0•q- a0= = 

sin 2•1-- 
7172 

sin (•q- qa) 

i ) q-•sin2v•a +..., 

n>0 

j•/ 1 1 \ 

T/2 
(• 1-'[- •'2) 2 q- ''' , 

1 sin •a+-- sin e= 
3'2 

q- r/2 /1 2 
--{-- cos 2•q--- cos (•+ •a) 

1 ) q---cos2•= q---- 

cos •xq---cos •= 

(8) 

sin 2W+ sin (Vlq-V2) 
h'lh'• 

) sin2v, a +-.'. 
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The series for (7/r/,'yl) small and (7/n•,2) large are 

+2[7 7• 
cos 2½• 72 ..... 2-- cos (•- •) 

•k'•2(.+ «) ø- • 

-3 72 (n+«) 2 cos 2•2 +'", 

2[ •/sin 2;v• 2'y2 ....... 4--- sin (½•- •,) 
•rL7•(n+«) 2 •'y• 

+3---(n+«) • sin 2½• +.... 

(9) 

The series for both (7/n'yO and (7/n'y:) large 
are 

•+j• = n+ 1 +--(n+ 1)(•+ 

nq-1 
+----(•+2•,•+•2•) + .. ., 

•2•2 

•-- • = (n+ 1) 2 

2 

---(n+l)•(• sin •+• sin 

3 

--•(n+l)•7x • cos 2• (10) 

cos (•+ •) 

cos 2•2]+" ', 

$.•q- a.o_ = (4/7•)(nq- 1)•(?• cos •lq-'y2 cos qD2) 

6 

---(n+l)2[• a sin 2• 

q-2'yl'y2 sin (;01+ ½2) 

+2,2 2 sin 2•]]+. ß -. 

In all these formulas, 7 = (2vl/c)= (2//X) where l 
is the distance between the pair of walls under 
consideration. The normal acoustic impedance 
Z•=pc•'•=pcT1e •t, and similarly for the second 
wall. To determine the distribution of the wave 

in the room, the frequency of the wave, its decay 
time and resonance response, one inserts these 
series results into Eqs. (2), (4) and (5). Contour 
plots of the damping constants for 
½•= ½==0, are given as functions of •,• and 'y•, 
for n=0 and n= 1, in Fig. 1. We note that the 
damping constant has a maximum value, and 
that the coefficient for n = 0 is smaller than that 
for n = 1. 

Z 0 '1 .7..5' . ' ' ' 

o 10 z,/(oc 
oj . a5 . 

0 , 
0 lb %c •0 

FiG. 1. Contours for the damping coefficients g, for a 
normal mode, due to a pair of opposite •alls having real 
impedances Zt and Z•; for frequency parameter 
Values are given of the sum of the a's for both walls, as 
f unctions of the impedance parameters m• and 7•. Lower 
contour plot is for "grazing incidence" waves; upper plot 
for waves with one pressure node parallel to walls. 
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When one of the walls in a pair is stiff 
very small), the formulas simplify, a• and a• can 
be separated, ax being equal to (4/•t) cos • (or 
to one-half this for n = 0), and the series for • and 
(u•- g•) become: 

(•//?•) small, n = 0, 

t•0•--K0 •= sin •+ sin •2 
a'?l L•rT• 

4--- cos 2•2--- -- 
3,: 2 4•r •3 45 

2•- v 
cos •2 sin 2 

3 

8•r • r/• 
cos 3e2+. ß., 

45 

(v/n,•e) small, n>0 

t•?-•=n•+ --- sin •, 

1 7 2 
cos 2 •., 

(11) 

2 ] + (vena- 3) -- sin 3•+. ß ß 
3•ran 4 T• a 

(t2) 
4 2 • 

•=--cos • sin 2• 
7• •n 2 •2 

+- (•n•-3) -- cos 3•+- ß., 
3•2n 4 •c a 

(•:/•) (•) small 

3• 

- (n+•) --sin • 

+--(n+}) a• cos 2•a 

2 

•23 X•sin3•+..- , (13) 

Fro. 2. Damping coefficient •, for a normal mode, due 
to one wall when opposite wall is a poor absorber; plotted 
as function of the ratio of the frequency parameter 
• = (2vl/c) to the impedance parameter q, = (Z/pc), for real 
wall impedance Z. Curves are given for different values 
of n, the number of pressure nodes parallel to wall in the 
standing wave. 

(g (•= 4(n+«) • cos • 

6 

--(n+«)•(?•/• a) sin 2• 
ql' 

4 

4---(n+«)•E•(n+ «)•- 6] 
2•r a 

X (,aa/•) cos 3•+. ß .. 

Values of the damping constant •a for this sep- 
arable case are plotted as function of the variable 
(•/•), for real values of •a in Fig. 2, and for 

FiG. 3. Damping coefficients, for "grazing incidence" 
modes, due to a wall having impedance magnitude ac•, 
and phase angle •; plotted as function of (•/q,) for different 
values of •o. 
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I 
4 

Fro. 4. Damping coefficients due to one wall for the 
normal modes having one pressure node parallel to the 
wall, as functions of (,1/•), for different values of q. 

different values of the impedance phase angle 
.½2 in Figs. 3, 4 and 5. Figure 6 gives values s of 
(t•,•-g,,"); for e2 and (1/•0 zero. From these 
the acoustic properties of most rooms can be 
calculated. 

DISCUSSION 

A number of conclusions of interest in acoustics 

can be obtained from these calculations. ht the 

first place the damping coefficient for any wall 
pair for a given standing wave is an additive 
function of the constants for each separate wall 
only if one or both of the wails are not very ab- 
sorbent (i.e., if •, is considerably larger than •). 
If both quantities (,//•/,) and (•1/•/•) are large 
enough so that their squares cannot be neglected, 
the series is not additive, and the absorption of 
one wall affects that of the opposite one. Another 
way of stating this same fact is to say that the 
effect of having one wall live and one wall very 
absorbent may not be the same as the effect 
for both walls having an average value of the 
absorption. 

Figure 1 shows some of these properties of the 
damping coefficients. When both •/• and •2 are 
very large (both opposite walls live) the •'s are 
small and separable. In this region the /•'s for 
n=0 (the "grazing incidence" waves) are ap- 
proximately equal to one-half the value of the 
b's for n larger than zero. As Tl and 'v2 diminish, 
(b•+/h) increases until it comes to a maximum. 
In this region the a's are not separable, and the 

s I am much indebted to Mr. N. B. Bhatt and Mr. R. L. 
Brown for valuable aid in the calculation of some of these 
curves. 

OI .iO • LO I0. 

FI6, 5. Dalnping coefficients due to one wall for the 
normal modes having two pressure nodes parallel to the 
wall. 

• JO ¾• i.• io. 
FIG. 6. Frequency coefficients (•,?--t{?) I, for a norn]al 

mode, due to one wall when opposite wall is a poor absorber, 
plotted as function of (n/qt), for real •11 impedance 
Curves are given for different values of n, the number of 
pressure nodes parallel to the wall, in the standing wave. 

value of their sum for n = 0 is considerably smaller 
than the values for n>0. If the •'s are decreased 
enough, the damping coefficients will again drop 
off in value. In most cases, there is an optimum 
set of values of •/x and 72 for maximum damping; 
making the walls either softer or harder will 
diminish the damping coefficients. 

Another interesting point is brought out when 
we attempt to compare the free wave equalion 
for damping coefficient 

br,•=(1-R) cos0 = (4/• lq- .- , 
{' real • COS 0 

ol)tained from Eq. (1), with those for the part of 
(4•r•,•g•/•) due to wall 2 in Eqs. (11), (12) and 
(13). In the first place, there is no angle o[ inci- 
dence • in the latter formulas, since these are for 

standing waves whose angles are determined by 
the boundary conditions. The nearest approach 
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to an angle of incidence is given by the equation 

1 
cos 0 -(nl,O 

corresponding to the requirement that cos 0 is 
the ratio of the wave-length to twice the distance 
between nodal surfaces parallel to the wall in 
question. 

For normal incidence Eq. (12) shows that r/ 
must be approximately equal to g, an integer; 
or, to put it another way, for any value of 
7= (2vl c) there is a maximum allowed value 
of n, n .... which is not larger than 7. For this 
nearly normal incidence the damping coefficient 
is approximately equal to (4/•) (for • real) 
xvhich is the value required by the free wave 
formula when • is large. More oblique angles are 
obtained by choosing values of n less than n .... 
for the same value of 7- Not all values of the 
angle of incidence can be obtained, however, for 
the boundary requirements specify that only 
integral values of n can occur. One cannot, 
therefore, plot a continuous curve of damping 
coefficient against angle of incidence for a give]] 
frequency; all that is possible is to obtain dis- 
crete values of/5• for the various allowed values 

of cos 0 = (•- K"'/7. 
Figure 7 shows this behavior for two cases. 

The circles show the correct values of • and the 

solid line the corresponding values for /5• .... 
The circles approach closer and closer to the 
lines as qr is increased. In every case, however, 
the correct value of /5 is larger than the free 
wave would allow. In fact, for the case •=5, the 
damping coefficient has a maximum value for 
n= 3. There is some evidence that experimental 
data matches the circles better than the solid 
line? 

This excess over the free wave, uniform dis- 
tribution value is another aspect of the distortion 

• The data given by F. V. Hunt, J. Acous. SOc. Am. 10, 
226 (1938) are plotted as 8/cos 0, except for the case of 
0=90 ø, where 8 is given. If the points in his Fig. 7 are 
multiplied by cos 0 except for the "grazing incidence" 
point, it will be seen that they follow the general trend of 
the circles in Fig. 7 of the present paper rather better 
than they do the solid curve. In fact the data seem to fit 
a set of circles for • = 12 quite satisfactorily, including the 
case of 0=90 ø. Incidentally, it should be noted that the 
curve in Hunt's Fig. 9 for $ for grazing incidence is, within 
the accuracy of the data, just one-half as high as the curve 
for • for normal incidence, given in his Fig. 6. 

of the wave by the absorbing material. A moder- 
ately "stiff" wall tends to "pull" the sound wave 
toward it, causing the pressure amplitude for 
each standing wave to be somewhat larger near 
the wall than it is elsewhere. This tendency con- 
tinues as the wall impedance decreases until a 
certain optimum impedance is reached, whose 
value depends on rt and on n. Any further de- 
crease in wall impedance will then cause the 
sound wave to recede from the wall; and 
eventually, for a very "soft" wall (or a very high 
frequency) the standing wave will have a pres- 
sure node at the wall instead of a loop. This 
case corresponds to that of an organ pipe with 
open end. These tendencies are illustrated in 
Fig. 8, where the amplitude of the factor de- 
pendent on x in the expression for p• is plotted 
for n=t against (x/l•), for one perfectly hard 
wall at x=0 and one absorbing wall at x=l•. 
When (v/m) is small, the factor is nearly equal 
to a cosine curve, with pressure loops at the two 
walls and a node midway between. As (•/•,) 
increased, the loop at the absorbing wall first 
increases in amplitude and then diminishes, 
changing to a pressure node for (r//•,) large 
enough. The node, originally at the midpoint, 

i 

•Jfre• - 

q.-5. •l-,o. ,•, • 
FIG. 7. Damping coefficients $ for standing waves, for 

two pairs of values of frequency parameter n and impedance 
parameter t = -/(for q = 0), as function o{ angle of incidence 
0 of wave on wall. Circles show allowed values of • and of 0 
as given by exact theory. Solid line gives values obtained 
by making the approximation that the incident wave is an 
undistorted plane wave. 
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blurs out and moves away from the absorbing 
wall. The x term in the expressiou for the fre- 
quency of the standing wave starts out, for 
(,/'•,) small, as that for a wave in a pipe closed 
at both ends; and ends up, for (7,,•') large, as 
that for a wave in a pipe closed at one end and 
open at the other. 

Another manifestation of this alternate attrac- 

tion of the wave toward, and then recession from 
the wall as (7 '•) is increased, is evident in the 
curves for $ shown in Fig. 2. The damping 
coefficient • first increases to a maximum at 

(r/,:q•) roughly equal to n, and thereafter rapidly 
decreases as (•/'?) is further increased. The 
tendency to form a node at the wall can be con- 
sidered to begin at (•//?) mn for the nth wave. 

Another very important point indicated in 
Fig. 6, and also in Eq. (11), is that the effective 
damping coefficient for "grazing incidence" 
waves (those for n=0) is not zero, as might be 
expected from the equation for 6rr•. This does 
not mean that the equation for •u• is wrong, 
but simply that it does not apply inside a room; 
for the angle of incidence 0 for the waves for 
n=0 is not exactly 90 ø. No waves can be true 
grazing incidence waves in a finite room with 
absorbing walls. A little consideration will show 
why this must be so. A true grazing incidence 
wave has no component of air velocity normal lo 
the wall. This contradicts our boundary condi- 
tions, for there is a pressure fluctuation at the 
wall, aud since the wall has a finite normal im- 
pedance, there must be some normal velocity. 

For low frequencies (more specifically, for 
small values of (v//qr), Eq. (11) shows that 
the damping coefficient for "grazing incidence" 
(n=0) is just half that for normal incidence. 
This factor of one-half has been derived theo- 

retically before by more approximate methods, •ø 
and has since been verified by several experi- 
mental measurements2. • The present calcula- 
tions indicate that when the damping coefficient 
for normal incidence is less than 0.4 (i.e., -• is 
greater than 10), and • is less than 10, then all 
standing waves except the "grazing incidence" 
ones have damping coefficients equal to the 
normal coefficient, and the ones for n=0 have 

Reference 4, page 309. See also L. Brillouin, Rev. 
d'acoustique 5, 99 (1936). 

FIG. 8. Pressure amplitude of standing wave as function 
of distance x between two parallel walls of a room, for a 
mode having one pressure node perpendicular to x; when 
one wall is rigid and the other has an effective acoustical 
impedance •c•' which is real. Curves show distortion of 
wave due to absorbing wall, for three different values of •. 

coefficients equal to one-half the normal coeffi- 
cient. 

When this is the case, the damping of any 
combination of standing waves in a room can be 
built up fairly easily out of a set of exponentials 
½-•t. The exponential factor k for all waves which 
do not graze any wall (n,, nv, n_. all greater than 
zero) is obtained by using the normal damping 
coefficients for each wall in the expression 

½ 

41,1.•l • 

04) 

In these cases the a's play the same role as the 
average absorption coefficients in Sabine's for- 
mula. However, the grazing incidence waves 
have a different exponential factor; those grazing 
the x-walls and not grazing the others will have a 
factor k similar to that given in Eq. (14), except 
that the term for the x-walls will be multiplied 
by (•); and so on. The pressure decay formula 
will have seven different exponential factors, and 
if one wall is somewhat softer than the other 

five, the decay times of several of the factors 
may be considerably longer than the others. We 
must therefore expect that pressure decay curves 
for a combination of several standing waves 
(excited by a warble-tone, for instance) cannot 
give true straight line plots on a decibel scale. 
Except in unusual cases, only individually ex- 
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cited standing waves will have straight line decay 
cnrves. 

At higher frequencies, or for smaller •,'s, the 
effective damping coefficient for n=O decreases 
in value, approaching zero as (n/T) becomes in- 
finite (i.e., as the waves become effectively 
"free"). This is due to the receding of the pres- 
sure wave from the soft wall, as has been men- 
tioned earlier. As (•//•,) increases, one after 
another of the standing waves (for larger and 
larger values of n) recedes from the wall, and 
its damping coefficient reduces in size. The 
standing wave whose angle of incidence is near 
zero ("near-normal" incidence) still have pres- 
sure loops near the wall and still are strongly 
absorbed. The waves whose angles are near 
grazing have pressure nodes near the wall and 
are poorly absorbed. 

In such cases the decay curve for a combina- 
tion of waves is quite complicated in form. The 
near-normal incidence waves xvill be very rapidly 
damped out, leaving the much more slowly de- 
caying waves which "graze" the soft wall. In 
such cases the measured "reverberation time" 

for the combination will depend almost entirely 
on the decay of the "grazing incidence" waves, 
which are only slightly affected by the absorbing 
material. In certain cases, in fact, making one 
"soft" xvall still softer will actually increase the 
effective "reverberation time" for the warble- 
tone sound. 

This difference in distribution of sound energy, 
the strongly absorbed waves having large ampli- 

tudes near the soft wall, and the near-grazing 
waves having small amplitude there, may explain 
why the sound near a very absorbent wall de- 
cays more rapidly than the sound at some dis- 
tance from the wall. 

The analysis given in this paper seems to be 
adequate to explain the contemporary experi- 
mental results for the acoustics of rooms with 

uniform coverage on each wall. The results ob- 
tained enable one to calculate the acoustic 

properties of the standing waves in such a room 
in terms of the normal acoustic impedances of 
the wall materials; provided only that the im- 
pedances do not change with angle of incidence 
(i.e., provided the effective index of refraction 
for •vaves in each wall, parallel to the surface, 
is much larger than unity). Before the results 
can be applied to the usual practical problems of 
room acoustics, however, the damping constant 
for each standing wave must be combined to 
give an average absorption coefficient for all 
waves excited by a given source: and some 
simple method must be devised to calculate the 
dependence of this average absorption coeffÉcient 
on the room arrangement and on the nature and 
position of the source. The analysis must also 
be extended to rooms with non-uniform coverage 
of absorbing material on the walls, where diffrac- 
tion effects will enter. u 

Both of these extensions of the theory are 
being attacked. 

np. M. Morse and P. Rubinstein, J. Acous. Soc. Am. 10, 
258 (1938); Phys. Rev. 54, 895 (1938). 


