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TLM-based solutions of the Klein}Gordon equation (Part I)
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SUMMARY

The transmission line matrix (TLM) method has become well established as a numerical solution scheme for
wave problems in electromagnetics and, to a lesser extent, in acoustics and mechanics. It has also been
applied to di!usion/heat-conduction problems. Here the technique is extended to solving the Klein}Gordon
equation that arises in QuantumMechanics and in the dynamics of an elastically anchored vibrating string.
In Part I, two novel, TLM-based algorithms are presented and veri"ed. By considering them as solving
a special case of the more general &forced' wave equation, they illustrate how, with care, the TLM algorithm
can be adapted to model a wide range of e!ects. Copyright � 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transmission line matrix (TLM) method in its basic formulation is a time-domain numerical
solution technique for the wave equation. Themethod has been applied widely to electromagnetic
problems and to a lesser extent to other wave phenomena, especially acoustics [1}3].�
TLM methods can be extended beyond the basic wave equation to model lossy problems,

where the de"ning di!erential equation, the telegrapher's equation, has an extra di!usion-type
term corresponding to the loss e!ect. The TLM solution of the telegrapher's equation is well
established. As the loss term becomes more signi"cant, di!usion-type e!ects soon dominate,
allowing a wide range of di!usion-type problems to be solved using TLM techniques [4,5].
In this paper, another extension of TLM techniques beyond the solution of the standard wave

equation is presented. The form of the de"ning di!erential equation is

u
��
"c�u

��
!hu (1)



It arises in classical mechanics, where u represents, for example, the lateral displacement of
a vibrating string under tension, but now with an extra, elastic acceleration or force (force
proportional to the displacement) acting at every point. The typical case is that of a #exible string
under tension embedded in a thin, elastic sheet held in a rigid frame. The same equation also
arises in the quantum mechanics of scalar mesons where it is known as the &Klein}Gordon'
equation, the name by which it is generally known. In this paper, however, the discussion will
focus on the problem of the elastically anchored vibrating string, and the hu term in Equation (1)
will be referred to as the &elastic' acceleration, proportional to the displacement. One important
e!ect of the extra term is to make the wave problem dispersive [6,7]. That is, waves of di!erent
frequency are transmitted at di!erent speeds, or equivalently, the phase relationship between
harmonics is altered as they propagate, leading to distortion.
The challenge is to "nd a way to modify the basic TLM wave-propagation algorithm to model

the extra physical e!ect properly. In total, four solution schemes are presented, two in Part I and
two in Part II. All four methods are veri"ed by comparing them (a) with corresponding
"nite-di!erence solution algorithms developed symbolically and (b) with analytical solutions
derived by Fourier techniques.

2. TLM AND THE VIBRATING STRING

The partial di!erential equation for a vibrating string is perhaps the best-known example of the
wave equation and probably the most frequently derived. If it is assumed that (a) the string is
uniform with linear density (mass per unit length) �, (b) the tension ¹ with vibration does not
change locally from the static value, and (c) the displacement, u, from the stationary position is
small at all points x along the string, (d) ¹/� is large with respect to the acceleration due to
gravity, g and (e) the string is perfectly #exible, then the governing di!erential equation is easily
shown to be

u
��
"(¹/�)u

��
(2)

The wave velocity, c"�(¹/�).
In solving wave problems by TLM, ideal impulses are assumed to travel in opposite directions

in ideal transmission lines, each pulse travelling one matrix (or mesh) line, of length�l, in one time
interval �t, before being scattered at mesh nodes. In the special case of one-dimensional waves
(and therefore one-dimensional &meshes') considered in this paper, the scattering becomes almost
trivial: on scattering, pulses simply pass through each node to the next branch of the mesh. Also,
in the one-dimensional case, the pulse velocity �l/�t is identical to the unbounded wave velocity
c. The generic TLM pulses in mesh link i will be referred to as r

�
and l

�
(for right-going and

left-going, respectively): in the di!erent methods in Part I and Part II these pulses will model
di!erent physical parameters, as will be explained.
To model a vibrating string by TLM the most obvious approach is to make these generic TLM

pulses correspond to the components of the local string displacement, u. This is the approach
taken in Part I. The actual string displacement at any point along the string is then the sum
of the two pulses passing this point at this time. Thus, the two streams of TLM pulses
become discretized versions of the well-known, counter-propagating, component solutions of
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the wave equation

u"f (x!ct)#g(x#ct) (3)

with arbitrary functions f and g determined by initial and boundary conditions. Thus u, f, g, r
�
and

l
�
all have dimensions of displacement (meters).
Boundary conditions for the string are easily modelled. For example, a "xed boundary means

zero displacement, so that re#ected wave pulses must be equal to the negative of the incident.
Arbitrary initial conditions can be modelled by specifying*for the position*the value of the
sum of the initial right- and left-going pulses and*for the velocity*the gradients (spatial
derivatives) of these component functions. This second point will be clearer from the discussion
below.

3. THE KLEIN}GORDON EQUATION

An extra, elastic force, !(k�x) u, is now added to each element �x of the string, where k is the
elastic sti!ness per metre length along the string, the force being proportional to the displacement
u but tending to reduce it. The equation of motion from Newton's second law then becomes

¹u
��

�x!k�xu"��xu
��

(4)

which, on rearrangement, becomes Equation (1) with h"c�k/¹"k/�, with dimension (s��).
To set up a TLMmodel of this equation, it might seem appropriate, at "rst sight, to modify the

basic wave TLM algorithm, described above for the vibrating string, by simply adding at each
time interval an extra (negative) displacement to the TLM displacement pulses corresponding to
the variation in displacement due to the instantaneous value of the extra, elastic force at each
point along the string. On this scheme, the displacement adjustment would be �

�
f�t�, where

f would be the acceleration (the elastic force, !k�xu, divided by the mass of the element, ��x),
shared equally between the two pulse systems (right- and left-going).
This &naive', direct approach, however, does not work. It fails to model the physical process

correctly, and the desired modi"cation to the TLM scheme must be developed more carefully.
Why it fails should become clear as the subtleties of the correct solution schemes and their
foundations are presented.

3.1. Solution Method 1: TLM pulses representing displacement, elastic force by spatial integration

Component solutions of the wave equation obey the relationship

u
�
"!cu

�
(5)

In other words, the temporal rate of change of a wave variable is proportional to the spatial
rate of change of that variable, the proportionality constant being the wave speed c. It is desired
to add in a new acceleration component, that is, to change u

��
. This implies changing u

�
over time,

which in turn can be achieved by an appropriate change in u
�
(see Equation (5)) at every time step.

Physically, this means adjusting the spatial slope of the component waveforms so that, on
propagating at the wave speed c, they produce the correct velocity change with time.
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In general, however, one cannot change the gradient of a function arbitrarily throughout its
range without simultaneously modifying the actual values of the entire function. In this case,
modifying the entire function values would amount to instantaneously changing the shape of the
string displacement throughout its length (with a view of getting the right accelerations at one
point). Even if mathematically this could be repeated for every point without meeting contradic-
tory requirements, such a procedure would make little or no sense physically.
In the present case, however, there are two counter-propagating wave components and the

gradients of the component waves can indeed be changed in such a way that their sum (the actual
displacement) remains unchanged. This is the basis of Solution Method 1. By suitably adjusting
the gradients of the component waves, the velocity at every point can be changed continually, in
proportion to the elastic force, without directly adjusting the displacement. (The subsequent
displacement of the string with propagation of the wave will, of course, be a!ected by this process,
as it ought to be, and by exactly the right amount.) It turns out that the left- and right-goingwaves
should &share' the required changes in gradient equally, although with opposite sign because they
are moving in opposite directions.
So the "rst solution scheme consists of the following steps:

(a) &Connect' (propagate) the TLM pulses for one time interval in the usual way (see below).
(b) Calculate the extra (elastic) acceleration, hu, at each point from the current displacement

value, which in turn gives the amount by which the spatial derivative (gradient) must be
changed at every point.

(c) Integrate this gradient with respect to distance along the string, adding half of this integral
to the left-going TLM pulse stream and subtracting half from the right-going stream,
starting at an arbitrary point (e.g. a boundary) and with a correspondingly arbitrary
constant of integration (e.g. zero).

(d) Scatter and propagate the TLM pulses again in the usual way and repeat the entire cycle.

Step (c) adjusts the gradients (spatial derivatives) of the component waveforms, as required, while
leaving their sum unchanged. Both the starting point for the spatial integration and the constant
of integration are arbitrary, because in this TLM scheme only the sum of the component
waveforms has signi"cance. (If the same constant is added to one, and subtracted from the other,
the sum remains unchanged.) In the numerical scheme, it is convenient to integrate from
a boundary, with zero initial value. In the symbolic analysis below, however, it is simpler to take,
as starting point for the integration in both directions, the central mesh link i"0, and, zero for
the initial value, so that r

�
and l

�
propagate without change at the "rst time step.

As a succinct way of presenting the algorithm, it is formulated below in the computer
programming language &Matlab' which is almost self-explanatory. For clarity neither initial nor
boundary conditions are presented, nor is the code optimized. The &propagate' (sometimes also
called the &connect') part of the algorithm is standard and is not shown: its e!ect is to shift the
TLM &right' arrays by one space increment to the right, and the &left' arrays by one to the left. The
heart of the code (after initializing variables) can be expressed as follows:

grad}adj"!�
�
h �t� * cumsum (u}right#u}left)

u}right"u}right!grad}adj

u} left"u}left#grad}adj

[Propagate displacement TLM pulses

u}right and u} left as normal, with boundary conditions]

442 W. J. O'CONNOR AND F. J. CLUNE

Copyright � 2001 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2001; 14:439}449



Table I. Method 1.

where the variables are as follows:

� &u}right' and &u} left' are arrays containing the right- and left-going displacement TLM
pulses, and whose sum is the displacement;

� &grad}adj' is an array for (temporary) storage of gradient adjustment function;
� cumsum is a cumulative sum function, equivalent to numerical spatial integration.

3.2. Verixcation

The "rst veri"cation is by a symbolic comparison with a "nite di!erence approximation to
Equation (1). While an implementation of the numerical algorithm is easily programmed in code,
the symbolic manipulation required to verify it, in a general way, is somewhat tedious, and will be
presented step by step.
The top of Table I shows a completely arbitrary initial distribution of rightward and leftward

going pulses (r
�
and l

�
), representing displacement, at time t

�
!�t, over "ve space intervals centred

at link 0. The pulses are shown just after scattering at the nodes (represented by the vertical dotted
lines) along a one-dimensional &mesh' (solid line). The rest of the table shows some of the
calculated new values over two subsequent time intervals when both propagation and slope
adjustment (above steps (a)}(c), inclusive) are implemented twice. The constant a incorporates the
elastic acceleration multiplier term, !k�l/��l, multiplied by �t to get the change in velocity,
divided by c"�l/�t to convert velocity adjustment to slope adjustment (cf. Equation (5)),
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Table II. Method 1.

D
��
�t� "? D

��
# !h�t�

r
��

1 1
r
��

!2#3a !2#a 2a
r
�

1!2a#4a� ? 1!2a 4a�
r
�

a " a #

l
��

a a
l
�

1!2a#4a� 1!2a 4a�
l
�

!2#3a !2#a 2a
l
�

1 1

multiplied by �l for spatial integration, and "nally multiplied by a half, to distribute the
adjustment equally between the two component waves, giving

a"!�
�
(k/�)�t (�t/�l)�l

"!h�t�/2

Whereas, in the numerical algorithms, the integration (cumulative sum) is most conveniently
begun at the boundaries, here it is evaluated from the central link line, r

�
, l

�
, arbitrarily setting the

constant of integration to zero. Thus, for example, in the "rst time interval shown, the right
wards-going pulses, r

�
, move one link length to the right and simultaneously are augmented by

a times the cumulative sum from the central node (at the previous time interval), increasing
leftwards, decreasing rightwards. At the "rst time step r

�
and l

�
therefore propagate without

change, the cumulative sum being zero for them.
To avoid clutter, only a few sample terms (mainly those subsequently needed) over the next two

time steps are evaluated and shown. Finite di!erence approximations,D
��
andD

��
, centred on the

link lines at the mid-point in space and time, respectively, can then be set up for each term in
Equation (1) to see how the working out of the TLM scheme compares. For example, the second
time derivative, at the central TLM link-line, is approximated by a standard "nite di!erence
formulation, namely, the sum of the pulses at (t

�
#�t), minus twice the sum of the pulses at (t

�
),

plus the sum of the pulses at (t
�
!�t), all divided by �t�. This produces a long expression in terms

of the original pulse values r
�
and l

�
, all expressed as a column in Table II. Expressions for the

"nite di!erence approximations for the other two terms in Equation (1) are similarly tabulated. It
is clear that the sum of the last two columns (representing D

��
and !h�t�) equals the column

representing D
��
�t� exactly. One can therefore conclude that the TLM process matches the "nite

di!erence model of Equation (1) perfectly.
The second way of con"rming the algorithm is by applying it to a problem for which an

analytical solution exists. Du!y [8] uses the separation of variables approach to obtain a Fourier
series solution to Klein}Gordon equation with initial displacement as shown at t"0 in Fig-
ure 1 (top pair of lines) and with zero initial velocity. The solution is

u (x, t)"
�
�
���

�
�
A

�
[sin(k

�
x#�k�

�
c�#h�t)#sin(k

�
x!�k�

�
c�#h�t)] (6)

where k
�
"n�/¸, ¸ being the string length, and A

�
are constants from the initial conditions.
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Figure 1. Fourier solution (Equation (6)) at successive time intervals and corresponding TLM solution
(slightly shifted vertically upwards to allow comparison) for ¸"�, c"1 and h"1, with initial displace-
ment as shown at the top (t"0) and zero initial velocity. (See Reference [8] for full details). In fact the two

solutions are indistinguishable even at moderate levels of discretization.

Figure 1 shows successive time frames of this Fourier solution paired with the corresponding
TLM solution, with the same initial conditions, shifted upwards slightly to allow comparison.
The horizontal axis is the string length, with re#ecting boundaries (zero displacement) at each
end. The initial displacement at zero velocity is shown on top and pictures at subsequent
time intervals follow vertically. Any di!erence between the two solutions is due entirely
to numerical discretization and can be made arbitrarily small by taking more terms in the
Fourier series and making the TLM space and time increments "ner. In the limit, the two
solutions match exactly.

3.3. Solution Method 2: TLM pulses represent displacement, elastic force via temporal integration

In the second method, the e!ect of the elastic force on the string is modelled as if it were acting in
parallel with, but almost independent of, the propagating wave motion. Over time, the elastic
force causes an &extra' acceleration (and corresponding extra velocity and extra displacement) at
each point along the string, all three of which can be &tracked' almost as if the displacement waves
were not present.
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In fact, this is precisely the way they should be &tracked'. Equation (1) can be interpreted in this
way. The acceleration term u

��
on the left-hand side has e!ectively two contributing e!ects shown

on the right-hand side: (a) the propagating wave e!ect c�u
��
, proportional to ¹/� ("c�) and the

local rate of change of the slope of the string, and (b) the non-propagating elastic e!ect, !hu,
proportional to h and to the total displacement. Any interaction between these two terms on the
right-hand side happens only indirectly, through the common resulting displacement. The
dominance of either term can vary. One extreme case is at h"0, when there is no elastic force and
tension e!ects dominate: the displacement then propagates as with the standard wave equation.
The other extreme is when c"0, for example if the string tension were negligible, and there are
then stationary oscillations (&elastic' or spring-like) with no propagating waves along the string. In
general, the situation will be between these extremes, but still with two distinguishable contribu-
tions to the acceleration, one wave-like and propagating, the other elastic and stationary. The
overall motion of the string can be described as the superimposition of these two motions,
coupled only by their common displacement. In particular, the contribution to the behaviour due
to the elastic force can (and should) be evaluated separately.
To achieve this independent &tracking' in TLM, a separate array is set up to store and update

the &extra' velocity (due to the elastic force alone). The array is updated at every time interval, the
local velocity change being calculated from the acceleration caused by the elastic force at each
point, so that �v"[!k�xu/��x]�t. This extra velocity gives the required, local, extra displace-
ment (�u"v�t) in the string. This is split equally between the right- and left-going TLM
displacement pulses before being added in.
Once again, this method works well and is con"rmed by comparison with "nite di!erence

schemes and by comparison with analytically derived solutions. Accuracy is found to be limited
only by the level of spatial and temporal discretization.
The symbolic TLM algorithm over two time intervals (that is, at three successive times) is

represented in Table III. Again a one-dimensional TLM line is represented, showing assumed,
displacement TLM pulse values immediately after the scattering at nodes (vertical dotted lines) at
time t"t

�
!�t. A separate array below this (boxed with broken lines) shows the &extra' (elastic)

velocity values along the same line at the same time. To obtain the values at the next time step (t"t
�
),

the velocities are changed (i.e. accelerated) by an amount a times the total displacement, where

a"(!k/�)�t

"!h�t

The displacement pulses are then increased by this velocity, multiplied by the time increment to
get displacement, with half of this total increment being applied to each component displacement
wave. That is, the new velocity is multiplied by b, and then added to each of the counter-
propagating displacement pulses, where

b"�t/2

This process is repeated over two time steps. Finite di!erence approximations for each term in
Equation (1) are then evaluated. They are expressed in terms of assumed initial TLM variable
values r

�
and l

�
and the initial velocities v

�
, and then each variable coe$cient is tabulated. This is

Table IV.
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Table III. Method 2.

As can be seen, the symbolic manipulation presented in Table IV gets rather complicated (not
a big problem, of course, with the actual numerical implementation). If the alignment between
TLM and "nite di!erence schemes were perfect, the sum of the coe$cients in the D

��
and !h�t�

columns would equal those in theD
��
�t� column. At "rst sight, therefore, the alignment is far from

perfect. Bear in mind, however, that all the assumed series of initial variables (the r
�
, l

�
and v

�
,) will

be of similar magnitude within each group (that is, if wavelengths are large in comparison with
mesh spacing, a standard TLM constraint). For example, r

��
and r

��
will be close in numerical

value to each other. Furthermore, product terms ab ("!h�t�/2) will be small, for small �t, and
the squared products will be negligible. In the light of all these considerations, the "nite di!erence
and TLM algorithm solutions line up very well, with inconsistencies approaching zero as the
discretization gets "ner.
Slightly di!erent tables are produced if a di!erent order is followed in evaluating terms and

updating the TLM pulses, but similar tables result. Finally, the table is symmetrical with respect
to left- and right-going pulses and could be abbreviated, but it was felt simpler and clearer to leave
it complete.
The &Matlab' code for the heart of the algorithm is as follows:

h}vel"h}vel!h *�t * (u} left#u}right)
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Table IV. Method 2.

D
��
�t� "? D

��
# !h�t�

r
��

1#2ab#a�b� 1#ab
r
��

!2!ab !2!2ab 2ab#2a�b�
r
�

1#ab#2a�b� 1#2ab
r
�

!ab !2ab 2a�b�
r
�

ab#a�b� ab
l
��

ab#a�b� ab
l
��

!ab ? !2ab 2a�b�
l
�

1#ab#2a�b� " 1#2ab #

l
�

!2!ab !2!2ab 2ab#2a�b�
l
�

1#2ab#a�b� 1#ab
v
��

b#ab� b
v
��

!b !2b 2ab�
v
�

2ab� 2b
v
�

!b !2b 2ab�
v
�

b#ab� b

u}right"u}right#1/2 *�t * (h}vel)

u} left"u}left#1/2 *�t * (h}vel)

[Propagate displacement TLM pulses

u}right and u} left as normal with boundary conditions]

where

� &u}right' and &u} left' are arrays for the right- and left-going displacement TLM pulses;
� &h}vel' is an array to store the &extra' velocity due to elastic force only.

4. DISCUSSION

In Part I of this paper, two approaches for solving the Klein}Gordon Equation have been
presented and each veri"ed in two ways. Unlike the methods to be presented in Part II, both
approaches use TLM pulses in the &obvious' way, namely to represent the primary variable
directly. In the case of the vibrating string, this primary variable is the local displacement from the
rest position.
In both cases, integration is used within TLM to achieve the required modelling of the physical

e!ect associated with third term in Equation (1). In Model 1, the integration is over space at each
point in time. In Model 2, the integration is over time at each point in space. In both cases care is
required to ensure that the integrated quantity (a) represents the e!ects of the &extra' force alone,
and (b) it is added to the wave variable without creating a propagating wave e!ect, at least not
directly. In Model 1, u

�
is adjusted without changing u

�
directly: in Model 2, u

�
is adjusted without

changing u
�
directly. The adjustments are &not direct' in the sense that, once the changes have

been made, they do of course have indirect e!ects: subsequent local displacement and wave
propagation will both be di!erent, but in the correct physical manner.
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There is little to choose between the twomethods. Method 1 involves more calculations at each
iteration but avoids having to store an extra array for the &elastic' velocity. Method 2 by contrast
saves somewhat on calculation but requires storage of the &extra' velocity array. In the context of
present-day computer power, however, neither method has a decisive advantage.
For both methods, a symbolic veri"cation technique has been presented which has some novel

aspects.
It seems eminently feasible to extend both methods to two-dimensional problems. In two

dimensions, Method 2 would probably prove simpler, as it avoids the (minor) complications
associated with integrating a gradient in two dimensions.
In Part II, two further methods are presented, in which the TLM pulses no longer represent

values of the primary variable in Equation (1), but are proportional to its spatial or temporal
derivative, resulting in some signi"cant advantages.
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