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Numerical solutions have been obtained for the exact equations describing the propaga- 
tion of periodic axisymmetric waves in a rigid cylindrical tube. Results were obtained for 
air over a range of conditions corresponding to shear wave numbers (s = Rm) from 
0.2 to 5000 and reduced frequencies (k = oR/a) from 0.01 to 6. For conciseness and 
convenient application, the results for the attenuation and phase shift coefficients are given 
in the form of simple polynomials for the ranges 5 4 s s 5000 and 0.01 s k G 6. This range 
covers virtually all values of tube diameter and sound frequency likely to be met in practical 
situations that are consistent with a continuum gas model. 

1. INTRODUCTION 

The effect of thermoviscous action at the wall of a rigid circular tube in which there are 
small amplitude oscillations of a fluid is one of the classical problems of acoustics. The 
attenuation and dispersion resulting has been of great interest to scientists and engineers 
for the last century or so. Kirchhoff was the first to provide a complete solution to the 
problem. A convenient full description of this has been given by Rayleigh [l]. Kirchhoff’s 
solution was, however, in the form of a complex transcendental equation which has been 
found difficult to interpret for practical situations. Much of the subsequent work on this 
subject has been aimed at providing simpler solutions that can be readily applied to 
practical applications. Many workers have developed approximate analytical solutions 
valid for limited ranges of tube dimensions, frequency or fluid properties. This work has 
been comprehensively reviewed and added to by Weston [2] and more recently by 
Tijdeman [3]. There have been a number of numerical solutions to the problem also, but 
only those by Shields et al. [4] and Tijdeman [3] have treated the full Kirchhoff equations. 

All previously published solutions have provided results for only a limited range of 
conditions of engineering interest. For example, in the most complete solution so far [3], 
it was shown that the propagation constant r could be completely specified by an equation 
of the form r (y, a, s, k) = 0, where y is the ratio of specific heats, (+ the square root of 
the Prandtl number, s the shear wave number, k the reduced frequency, r’, the real part 
of r corresponding to the attenuation per unit length along the tube and r’, the imaginary 
part of r corresponding to the phase-shift per unit length along the tube (a complete list 
of symbols is given in the Appendix). Tijdeman presented results obtained numerically 
for the following conditions: k << 1, 0.2 < s < 100; 0.02557 G k < 0*5On, 0.2 c s G 100. In 
physical terms, these ranges correspond to relatively low frequencies in tubes of relatively 
small diameter. Many practical applications correspond to much larger shear wave 
numbers and larger reduced frequencies. 

In the present work then, Tijdeman’s approach is extended to permit solution over 
the more useful range for practical purposes of 0.01 G k 6 6,0*2 < s c 5000. In common 
with previous solutions, the theoretical basis to the solution is Kirchhoff’s formulation. 
This is presented in summary form in section 2 where the underlying assumptions are 
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critically discussed in terms of practical applications. The numerical solution is presented 
in section 3 where the extensions necessary to Tijdeman’s approach to permit solution 
at high values of both shear wave number and reduced frequency are described. The 
numerical results are presented in section 4 and compared with previous solutions where 
these are valid. The numerical solutions involve the evaluation of ordinary and modified 
Bessel functions of the first kind of arbitrary complex argument in the process of solving 
Kirchhoff’s complicated transcendental equation describing the problem. To facilitate 
simple calculation of attenuation effects in practical applications, curves have been fitted 
to the results of the numerical solution to the exact equations, and these are presented 
in section 5. 

2. THEORETICAL BACKGROUND 

Kirchhoff’s formulation of the problem of sound propagation in tubes was based on 
the following assumptions: (1) homogeneous (continuum) medium; (2) small amplitude 
periodic disturbances (laminar flow equations); (3) infinitely long tube; (4) axisymmetric 
disturbance. With these assumptions, the basic fluid equations of momentum and mass 
continuity can be manipulated into the form [3] 

iZ(Z-i!?)F1’2(~-_.L) L$.$ 

+(%-ii) (Z-*Y2~-(-$$-i~) (Z-x2)1~2~=0, (2.1) 

where al = k(Z-is2/k2)1’2, a2= k(Z-,y1)“2 and u3= k(Z-,y2)1’2, and x1 and x2 are, 
respectively, the small and large roots of 

1+x{ l+i$(!+s)}+i-$$(+++i$) x2=0, 

where Z=r2, the square of the propagation constant, which is related to the general 
solution to the pressure fluctuations by 

p = (A ert + B ewr*) e’“‘, (2.2) 

in which 5 = ox/a is the non-dimensional axial co-ordinate. Both A and B are functions 
of radius, but only axial variations are of concern in this work. The problem is then 
reduced to finding the zero of equation (2.1) in terms of s and k for a given gas (y and 
U2). 

A clear understanding of the physical significance of both the shear wave number and 
the reduced frequency is necessary for the correct interpretation of the solution of equation 
(2.1). The definition of the reduced frequency can be rewritten so as to highlight its 
importance as a measure of the wavelength compared with the tube radius: i.e., k = 
wR/a = 27rR/A, where A is the wavelength. The assumption of axisymmetry will only 
be guaranteed for frequencies less than the cut-off frequency for the first asymmetric 
cross mode excitation. For a rigid circular tube this cut-off frequency is given by [5] 
f = 0*5861a/2R, which in turn corresponds to a cut-off wavelength of A = 3*412R, or, 
in terms of the reduced frequency, k = l-841. Cross mode disturbances would quickly 
attenuate below this value. However, there are many practical situations where it is 
desirable to know propagation characteristics in tubes at values of k greater than this. 
For this reason it was decided to obtain solutions for values of k up to 6, which would 
cover most situations of practical interest. The results obtained would apply only to 
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axisymmetric disturbances and as such would provide a lower bound for attenuation of 
the longitudinal disturbance in a tube. If transverse disturbances were present these would 
remove further energy from the longitudinal component. This extension to the range of 
k has been validated by measurements of sound attenuation in a tube with k ranging up 
to 4.1 [6]. There was excellent agreement between measured attenuation and that 
predicted from the solution of equation (2.1) provided propagation was planar. 

A further limitation to the validity of the solution is that the medium is a continuum. 
The mean free path for a gas at normal temperature and pressure is of the order lop7 m 
[7]. From the definitions of s and k then, the solution would only be valid when 
(2rv/a)(s/k)‘>> lo-‘, which for air at 273 K and 1 atm reduces to the requirement 
s/k >>0.5. As a practical criterion, the results presented in the present work are limited 
to s/k 2 5. Tijdeman [3] used a Newton-Raphson method to find the zero of equation 
(2.1) for air over the range of values of s and k given in section 1. Only about two-thirds 
of the results presented by Tijdeman conform to the above restriction. Here, results are 
presented for a much wider range of s and k consistent with the assumptions listed above. 
except that wavelengths shorter than the duct diameter are permitted for the reasons 
given above. 

3. NUMERICAL ANALYSIS 

Following Tijdeman, the zero of equation (2.1) was found by using an iterative 
Newton-Raphson technique. The algorithm used by Tijdeman to evalute the Bessel 
functions was developed by Simons [8] and relies upon an integral representation of the 
Bessel functions in which the trapezoidal rule is used. The accuracy of the answers given 
by this method decreases with increasing function argument for ordinary Bessel functions 
of order zero and one. Since evaluations for large values of s and k were of interest in 
this work, the Bessel functions were instead evaluated by using the method developed 
by Scarton [9] in which the ordinary Bessel function was first expressed in terms of the 
modified Bessel function. This in turn was expressed in terms of an asymptotic series 
expansion for relatively large function arguments while an ascending series expansion 
was employed for smaller arguments. 

This procedure worked well with high precision provided the complex argument was 
small enough to avoid computational overflow when the series was evaluated. (For 
example, this overflow occurred for arguments of real part greater than 87 on a computer 
that accepted real numbers up to 1038.) This limitation provided a severe restriction on 
the values of s and k that could be used. This drawback was overcome by introducing a 
scaling term in the asymptotic series evaluation so that, with this modification, Scarton’s 
procedure could be used to evaluate Bessel functions of argument with real part of 
magnitude up to about twice the maximum integer representation permissible in the 
computer used. 

4. RESULTS 

Solutions for the propagation constant were obtained for air ( y = 1.4, g2 = 0.71) by 
using the method described in section 2. Both the attenuation coefficient and the phase 
shift coefficient agreed to at least the accuracy quoted by Tijdeman [3] over the limited 
range of s and k treated in that earlier work (see section 1). 

As stated earlier, the lower limits of s and k for which solutions were obtained in this 
work were O-2 and O-01, respectively. Tijdeman [3] has given a detailed discussion of 
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solutions at low values of s and k. With k = O-01, the propagation constant was indistin- 
guishable from the “low reduced frequency” solution given by Tijdeman. Here, the main 
interest is in results at higher values for s and k. Hence, further discussion will be confined 
to results corresponding to values of s greater than 5. 

With this modification to the lower limit for s, a more complete presentation of the 
results for the attenuation coefficient is given in Figure 1, which shows r’ as a function 
of s and k. For comparison purposes, the well known and widely used approximate 
solution by Kirchhoff for wide tubes is also shown. The curve for s/k = 5 marks the limit 
of continuum theory and hence the validity of the solution. 

The results show that the attentuation coefficient is more sensitive to the reduced 
frequency at lower values of shear wave number. For s > 1000, the solution is only weakly 

Shear wave numbers 

Figure 1. Attenuation coefficient vs. shear wave number. (a) k CC 1; (b) k = 3; (c) k = 6; (d) Kirchhoff’s 
approximate solution [3]; (e) continuum limit (s/k = 5). 
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Figure 2. Phase shift coefficient vs. shear wave number. (a) k << 1; (b) k = 1; (c) k = 3, (d) k = 6; (e) Kirchhoff’s 
approximate solution from [3]; (f) continuum limit (s/k = 5). 
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dependent on k. Kirchhoff’s solution is a good approximation when s > 40 and k is small. 
but is inaccurate at other values of s and k. 

In a similar fashion, results for the phase shift coefficient are shown in Figure 2. It can 
be seen that this coefficient shows a dependence on k at low values of s but is insensitive 
to the reduced frequency over most of the range of shear wave number considered: for 
s > 100, variations in the value of P for a given value of s are no more than one figure 
in the 5th decimal digit. It can also be seen that Kirchhoff’s solution is a good approximation 
for s > 100 or, provided that k is small, for s > 10 but inaccurate at other values. 

5. ALGEBRAIC APPROXIMATIONS 

A convenient way of representing the numerical results described in section 4 is by 
means of algebraic relationships linking the important variables, of the kind given by the 
approximate analytical solutions mentioned in section 2. For this reason, the numerical 
results obtained for air (y = l-4, C* = 0.71) were treated to curve fitting procedures to 
yield simple functional relations valid for a wide range of values of s and k. 

The approximate analytical solutions showed that the attenuation constant (r’) can be 
related to the shear wave number and reduced frequency through terms involvng l/s, 
(l/s)*, (I/s)3, and (k/s)2, depending on the range of s and k of interest. This then 
provided a starting point for a least squares best fit to the data for the attenuation 
coefficient generated by using the (exact) numerical solution. However, numerical 
experimentation showed that a more complex dependence on k was present and good 
accuracy of representation was achieved by using an equation of the form 

~=A,(l/~)+A,(l/s)~+A~(l/s)~+A~(k/~)*+A~(k/s)~. (S.Ij 

For agreement between this curve and the exact solution to be better than 1% over the 
entire range being considered, it was necessary to have two sets of coefficients. With the 
break point at s = 35 the coefficients obtained are shown in Table 1. 

TABLE 1 

Curve fit coefficients for r 

A1 A, A3 A4 AS 

Maximum 
error (%) 

5=ss<35 1.03973 1.09164 0.945891 1.58455 0.530622 0.62 
35sss5000 1.04117 1.26675 -4.74691 1.53507 2.35661 0.24 

Equation (5.1) can therefore be used with air (y = 1.4, a2=0.71) to predict the real 
part of the propagation constant to better than 1% accuracy. 

A similar approach was tried for the imaginary part of the propagation constant (phase 
shift coefficient). The approximate analytical solutions were again reviewed in order to 
identify those terms in s and k whch would effect P but this process was more difficult 
than for r’. Not only were the terms in s of much more complex form but no approximate 
solution contained any term in k. However, the exact solution indicated a small dependence 
on k. In these circumstances more numerical experimentation was necessary to establish 
a satisfactory fit to the exact results. The outcome of this is 

r,l=B,+B,(l/s)+B3(1/s)2+B,(1/s)3+B,(k/s)3+B,(k/s)‘. (5.2) 
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TABLE 2 
Curve fit coefficients for r” 

Maximum 
B, B2 B, & B, B, error (%) 

sss<35 1.00055 1.02646 0.212165 -1.89499 -1.13760 -2.07118 0.11 
35 d s s 5000 1.00000 1.04357 -0.206666 0.609034 -0.509937 -5.27103 0.01 

Once again a break point was selected at s = 35 and the appropriate coefficients and 
accuracy of representation are shown in Table 2. 

Values predicted by using equations (5.1) and (5.2) are compared with the exact 
solutions in Table 3. Also shown for comparison are several of the approximate analytical 
solutions shown by Tijdeman to cover the present range of interest. Specifically, these 
are the solutions of Weston [2] for the “Wide-Narrow” and “Wide-Very Wide” cases 
and the solution of Kirchoff. Equations (5.1) and (5.2) can be seen to have consistently 
high accuracy over the full range of s and k considered in contrast to the approximate 
solutions used for comparison which have limited ranges of accuracy. 

TABLE 3 

(a) Comparison of attenuation coefficients (r’) 

Weston [2] Kirchhoff Weston [2] 
s k Exact Equation (5.1) wide-narrow wide wide-very wide 

5 
10 
20 

5”; 
100 
500 

1000 
2000 
5000 

20 
35 
50 

100 
500 

1000 
2000 
5000 

35 
50 

100 
500 

1000 
2000 
5000 

0.01 0.25831 0.25919 0.26932 0.20856 0.20856 
0.01 0.11584 0.11584 0.11728 0.10428 0.10428 
0.01 0.05493 0.05483 0.05511 0.05214 0.05214 
0.01 0.03069 0.03062 0.03073 0.02979 0.02979 
0.01 0.02129 0.02129 0.02131 0.02086 0.02086 
0.01 0.01054 0.01053 0.01054 0.01043 0.01043 
0.01 0.00209 0.00209 0.00209 0.00209 0.00209 
0.01 0~00104 0~00104 0~00104 0~00104 0~00104 
0.01 0.00052 0.00052 0.00052 0.00052 0.00052 
0.01 0~00021 0~00021 0~00021 0~00021 0~00021 

3.0 0.09042 
3.0 0.04205 
3.0 0.02680 
3.0 0.01190 
3-o 0.00214 
3.0 0.00106 
3.0 0.00053 
3.0 0~00021 

6.0 0.07773 
6.0 0.04399 
6.0 0.01607 

z:; 
0.0023 1 
0~00110 

6.0 0.00054 
6.0 0~00021 

0.09075 0.05511 0.05214 0.08571 
0.04229 0.03073 0.02979 0.04076 
0.02685 0.02131 0.02086 0.02623 
0.01192 0.01054 0.01043 0.01177 
O-00214 0.00209 0.00209 0.00214 
0.00106 0~00104 0*00104 0.00106 
0.00052 0*00052 0.00052 0.00052 
0~00021 0~00021 0~00021 0.0002 1 

0.07764 0.03073 0.02979 0.07364 
0.04389 0.02131 0.02086 0.04234 
0.01609 0.01054 0.01043 0.01580 
0.00231 0.00209 0.00209 0.00230 
0~00110 0~00104 0*00104 0~00110 
0.00053 0.00052 0.00052 0.00053 
0~00021 0~00021 0~00021 0~00021 
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(b) Comparison of phase shift coefficients (Y’) 

Weston [2] Kirchhoff Weston [2] 
s k Exact Equation (5.2) wide-narrow wide wide-very wide 

5 
10 
20 
35 
50 

100 
500 

1000 
2000 
5000 

20 
35 
50 

LOO 
500 

1000 
2000 
5000 

35 
50 

100 
500 

1000 
2000 
5000 

0.01 l-20121 1.19917 1.23714 1.20856 1.26351 
0.01 1.10349 1.10342 1.10709 1.10428 1.11642 
0.01 l-05204 1.05217 1.05245 1.05214 1.05501 
0.01 1.02978 1*03001 1.02985 1.02979 1.03071 
0.01 1.02085 l-02079 1.02087 1.02086 1.02130 
0.01 1.01043 1.01042 1.01043 1.01043 1.01054 
0.01 1.00209 1.00209 1.00209 1.00209 1.00209 
o-01 1.00104 1.00104 1.00104 1.00104 1*00104 
0.01 1.00052 1.00052 1.00052 1.00052 1.00052 
0.01 1.00021 1*00021 1~00021 1.00021 1.0002 1 

3.0 1.04799 1.04728 1.05245 1.05214 1.05501 
3.0 1.02917 1.02918 1.02985 1.02979 I .0307 1 
3.0 1.02066 1.02062 1 eO2087 1.02086 1.02130 
3.0 1.01041 1.01040 1.01043 1.01043 1.01054 
3.0 1.00209 1.00209 1.00209 1.00209 1.00209 
3.0 1.00104 1.00104 1.00104 1.00104 1.00104 
3.0 1.00052 1.00052 1.00052 1.00052 1.00052 
3.0 1+0002 1 1.00021 1.00021 1.00021 1.0002 1 

6.0 1.02268 1.02249 1.02985 1.02979 1.03071 
6.0 1.01878 1.01882 1.02087 1.02086 1.02130 
6.0 1.01022 1.01024 1.01043 1.01043 1.01054 
6.0 1.00208 1.00209 1.00209 1.00209 1.00209 
6.0 1.00104 1.00104 1.00104 1.00104 1.00104 
6.0 1.00052 1.00052 1.00052 1.00052 1.00052 
6.0 1.00021 1*00021 1.00021 1.00021 1.0002 1 

6. CONCLUSIONS 

The exact equations describing the propagation of periodic axisymmetric waves in a 
rigid tube have been solved numerically. The solutions were shown to be valid for s/k > 5 
and for unlimited values of k provided axial symmetry is maintained. Results were 
obtained for air with values of shear wave number up to 5000 and reduced frequency 
up to 6. Over most of this range the attenuation coefficient was found to be sensitive to 
the reduced frequency. The phase shift coefficient was found to be weakly dependent on 
the reduced frequency. The results for the attenuation and phase shift coefficients can 
be represented by simple polynomials which predict values to better than 0.7% accuracy 
over a wide range of conditions of practical interest. 
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APPENDIX: LIST OF SYMBOLS 

undisturbed speed of sound 
frequency 
Bessel function of the first kind of order n 
= wR/a, reduced frequency 
pressure amplitude of acoustic signal 
tube radius 
= RJpw/p, shear wave number 
time 
axial coordinate 
= r2, square of propagation constant 
ratio,of specific heats 
= r’ + ir’, propagation constant 
attenuation per unit 5 
phase shift per unit 5 
wavelength 
fluid viscosity 
kinematic viscosity 
= wx/a, dimensionless axial co-ordinate 
mean density 
square root of Prandtl number 
radian frequency 


