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At lower relative (i.e., non-dimensional) frequencies, four propagating waves exist in 
fluid-filled pipes. Each of these waves carries energy in the pipe wall, while three waves 
carry energy in the fluid as well. The otherwise fairly complex dispersion laws for waves in 
pipes simplify in the frequency region considered to simple rod- and beam-type laws. It is 
shown that these laws can be determined by approximate formulae fairly accurately, the 
accuracy decreasing with increase in frequency. Due to fluid-wall coupling, expressed again 
by simplifications, the energy flow in both the wall and the fluid can be evaluated in 
principle from knowledge of surface vibrations only. The portions of the flow in the solid 
and the fluid fluctuate along the pipe axis, and consequently spatial averaging has to be 
done in order to obtain useful results. In this way, the pipe becomes a homogeneous one- 
dimensional waveguide, suitable for measurements of energy flow by detection of surface 
vibrations only. Specific transducer patterns for this purpose are described. At higher 
frequencies however, where additional propagating waves take place, simplifications are 
no longer possible. The exact expression for the unit-length energy flow can be then 
employed in conjunction with averaging around the circumference to evaluate flow in the 
wall at a particular axial position. 

1. INTRODUCTION 

Structural vibrations of a straight pipe exhibit a two-dimensional modal pattern, consisting 
of circumferential modes of orders n = 0, 1,2, . . . and the associated axial modes. For a 
pipe filled with a fluid, to each of the circumferential modes there corresponds an unlimited 
number of axial modes which can have either purely real, purely imaginary or complex 
wavenumbers. The extent to which individual modal pairs are excited depends on the 
frequency and the spatial distribution of the excitation. 

At frequencies much below the ring frequency, R = o/w,<< l,$ only the n = 0 and n = 1 
modes (called pulsating and bending modes respectively) allow formation of purely real 
axial modes: i.e., wave propagation without spatial attenuation. This fact is relevant for 
energy flow in the pipe in view of the importance of propagating waves for energy transfer. 
The ring frequency, o, = ~,~,/a, is fairly high for pipes of common sizes and materials, thus 
the condition R<c 1 will usually hold for the low- to mid-frequency range. 

The pulsating mode, n =0, can propagate three distinct axial modes at 0 << I. One 
of these represents pure torsion, exhibiting only tangential motion uncoupled from two 
remaining orthogonal motions, axial and radial. The two other axial modes are free of 
tangential motion, but are coupled in the axial and radial directions. The bending mode, 
n = 1, is characterized by lateral movements of the pipe, such that its cross-section remains 
virtually undeformed. In this mode, all three orthogonal motions are coupled. 

t Formerly at the Electrotechnical Institute, Zagreb, Croatia. 
$ A list of symbols is given in Appendix III. 
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Corresponding to each modal pair of wail vibrations, there exists one modal pair which 
governs the motion of the contained fluid. Due to compatibility conditions. the axial 
wavelengths and the radial movements in the wall and in the fluid are equal at the interfac- 
ing surface, which in turn determines the pressure distribution inside the pipe. Therefore. 
a detailed enough knowledge of pipe wall vibrations enables an evaluation to be made of 
the energy flow along both the solid and the fluid parts. 

It follows that the vibroacoustical energy flow along an existing pipe can be detected 
by an appropriate measurement and signal processing procedure. The main difficulty of 
formulating such a procedure results from the fact that there exists an interchange of 
energy along the pipe not only between different modes but between the solid and the fluid 
as well. 

The modal behaviour of fluid-filled elastic cylindrical shells has been analyzed in refer- 
ences [I] and (21. A very detailed account of vibroacoustical energy propagation along 
such shells, based on a modal approach, was given in references [3] and [4]. These works 
have revealed a fairly complex behaviour of the shell, even in the low frequency region. 
However, the majority of authors working on energy flow in pipes related to practical 
applications (see e.g., references [5-71) prefer to use simplified pipe concepts (beam--rod 
or single-component impedance models). Energy flow in pipes was treated in more depth 
in reference [8], where theoretical considerations were supplemented by error analysis and 
experimental work. Both the pulsating and the bending modes were taken into account; 
however, the “acoustic” axial mode (one of the two non-torsional axial modes correspond- 
ing to n = 0) has not been covered to the same extent as the other modes. The experimental 
procedures require matched accelerometers of very low cross-sensitivity. 

In reference [9], formulae were presented in terms of physical rather than modal displace- 
ments, for intensity in a circular cylindrical shell. These were used in reference [lo] for a 
low frequency formulation of energy flow through fluid-filled pipes vibrating in the n = 0 
mode. In both references [S] and [IO] the importance of axial motions in energy propaga- 
tion through pipes, which has often been neglected, was emphasized. 

2. VIBROACOUSTICAL LOW FREQUENCY CHARACTERISTICS OF A 
FLUID-FILLED PIPE 

The four characteristic axial propagating modes taking place in a fluid-filled pipe at low 
frequencies shall be denoted as follows: I, or longitudinal, mode, pertaining to n = 0; a, or 
acoustical, mode, n = 0; t, or torsional, mode, n = 0; b, or bending, mode, n = I. The axial 
wavenumbers pertaining to these modes are the real solution of the dispersion equation. 
In this work, the equation based on Fliigge’s model is used (see Appendix I). At 
low frequencies, the wavenumbers can be represented by the following simple expressions, 
derived from the approximate dispersion equations for n = 0 and n = 1 given in Appendix 
I: 

KIN rlG K, = can, Kr=<rn, KtlN if&J. (I) 

Here K = k.4 is a non-dimensional representation of the axial wavenumber k,, while the 
subscripts f, a, t and b refer to the four types of modes as specified above. The constants 
6 are 

c,=(l+d)“2, 6” = [If/ + (217 + v2)/( 1 - v2)]‘j2, 

<, = [2/( I - vp2, f&=(2+ ‘1P4, 
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Figure 1. Co-ordinate system for the shell. 

with (see Figure 1) 

Y = (G/C,)‘, ‘I = (PrIPS)(alh)~ A=v2(v-l)/[(w-l)(l-v2)+2~+~f2]. 

In accordance with the nature of the equations of motion for the circular cylindrical shell 
[ 111, the three orthogonal components of the wall motion at the middle surface, axial (u), 
tangential (u) and radial (w), can be expressed in terms of the four wave components as 

u=jU,+CL,++jCTI-~l_+jU,+Pn++jU,-Bo_+jClh+~Lh+ cos 3++jU,-P,_ cos 3 ~ 

v= V,+P,+ + V,_P,_ f Vh+PLb+ sin 3, + Vb_PLD_ sin 3, 

w= w,+p,.+ + w,-p,- + w,+p,+ + w,,-p,- + w, +p/)+ cos 19 + + w,-p, cos 39 . (2) 

where P denotes the propagation factor, and 3 defines the polarization of the bending 
waves: 

~~~=exp (~jKQxIa+jV)q+t, q=l,a,t,h, ,?.=a-y,. 

The wave amplitudes U, V and Ware real quantities, while the components u, v and w 
are complex (indicated by bold symbols). The three equations for the displacements, (2). 
are given in a form which allows the most general conditions of wave motion under the 
assumptions specified before, and yet satisfies the equations of wall motion [I I] for the 
dynamic conditions. In particular, wave propagation is assumed in both directions, while 
for oppositely moving bending wave components different polarization angles are allowed. 

Waves in the fluid contained within the pipe are of the same type as the waves in the 
solid, with the exception of the torsional waves which cannot exist in the fluid. The 
acoustical pressure in the fluid, represented by a characteristic radial distribution [l2], 
assumes in this case the following form, obtained by a small-argument expansion of Bessel 
functions : 

p=]l - S:(rla)2/41(~,+p,++P,~~/-)+[l -SnZ~vla)2/41(P"+~"++P,~-~L,,~ ) 
+(Sh12)(rIu)(Ph+pl+ cos 3++Ph& cos 3->. (3) 

Here P are the acoustical pressure amplitude maxima (located along the axis for 1 and a 
waves and at the wall for b waves), while 6 is the normalized radial wavenumber which, 
satisfying the formula k2= wfl*- K2, can assume either imaginary or real values for real 
K. By virtue of the equation of fluid motion and of the compatibility conditions at the 
fluid-solid interface, relationships can be established between the motions in the fluid and 
in the pipe wall. 
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3. RELATIONSHIPS BETWEEN WAVE AMPLITUDES 

The displacement amplitudes U, V, W and the pressure amplitudes P stand in a firm 
relationship for any modal pair, which results from the equations of pipe motion [I 11. For 
low values of frequency 0, the displacement relationships simplify to (see Appendix I) 

where r= vc/(c’- 1). 
It can be seen from equations (4) that the amplitudes of axial wave components of the 

longitudinal mode, U,,, , have to be much larger than the amplitudes of the corresponding 
radial components WI*, since R<< 1 and l-/z l/v or smaller. The opposite applies to the 
bending mode where radial (and thus tangential) motions dominate. This implies that 
measurements of longitudinal and bending modes have to be done by detecting the axial 
and the radial motions respectively. 

Concerning the acoustical mode, a unique conclusion regarding the ratio of the axial 
and radial component amplitudes cannot be drawn. The limiting frequency L&,=,,=r, 
exists according to equations (4) below which the axial motions are larger and above 
which the opposite applies. If the pipe behaviour approaches that of a rigid duct, where 
~.z&=cS/cY (upon assuming cS>>cJ, the limiting frequency will be mainly unaffected 
by the pipe geometry since in this case r, x(vcY)/(cS). This condition applies to light 
fluids, i.e., gases, unless the pipe is extremely thin. In other cases, the limiting frequency 
gradually rises with the pipe thickness, as shown in Figure 2 for the cases of pipes made 
of steel or hard rubber and filled with water (for the sake of comparison, the curves for 
pipes containing air compressed to 10 bar instead of water are also shown). 

SteellAw 00 bar) 

002 004 0.06 008 0.10 

Thlckness/dlameter 

Figure 2. Frequency of equal axial and radial amplitudes of a types of waves. 
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The acoustical pressure amplitudes become related to the radial displacement amplitudes 
via the following expressions derived from reference [3] on basis of low frequency and 
small wavenumber values : 

p/* = --2p,c:n*/( <:a) ws*, p,* = -2p&‘l~ 4;h) w,*, 

Ph* = 2pfc,2~*!&a)W,4+ (5) 

4. VALIDITY OF LOW FREQUENCY ASSUMPTIONS 

The low frequency assumptions, made so far, limit the validity of the analysis to the 
region where (a) simplified dispersion expressions for various wave types, (1) are tolerable 
and (b) the n = 2 mode cut-on frequency lies above the upper frequency limit. 

The first condition, (a), will be dictated by the quality of approximation (I) referring 
to the bending-wave axial wavenumber, K b, as this approximation is less accurate than 
the approximations for the pulsating mode wavenumbers. In Figure 3 is shown the bending 
wavenumber error, given as the ratio of the approximate and the exact ub values in dB 
units, for infinitely thin pipes vibrating in UCZCUO, where the error depends only on the 
frequency and the Poisson ratio. The exact solution of the dispersion equation (see Appen- 
dix I) was evaluated for this and the forthcoming examples using a numerical programme. 

-1 
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0.0 01 02 03 04 05 00 01 '02 IO3 04 05 

Frequency / Poisson rat10 

Figure 3. Error in bending wavenumber formula (I ) : infinitely thin pipe vibrating in oacuo 

The example shown is representative of ail situations where the fluid loading is relatively 
small (in which case the thickness becomes largely unimportant for the wavenumber). It 
can be seen that the error increases with frequency (as expected) but also with v (which 
was not so obvious). Even with frequency reducing to zero the error exists, but for the 
trivial case v = 0. For v = O-3, which is representative of most metals, the 10% difference 
in the approximate and exact solutions (zl dB), taken here as the tolerance limit, occurs 
at frequency R z 0.09. 
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Figure 4. Error in bending wavenumber formula for water-filled pipes: left, steel pipe; right, hard rubber pipe. 

The same error is shown for the case of a water-filled pipe in Figure 4. Case (a)-a steel 
pipe-is an example of moderate fluid loading, while case (b)-a hard rubber pipe-- 
represents high loading. As expected, the error increases with decreasing thickness. The 
more the thickness decreases, the more the mechanical properties of the pipe depart from 
the Euler-Bernoulli bending model which the corresponding formula in equation (1) actu- 
ally represents. Given the range of thicknesses between l/l0 to l/l00 of the diameter, the 
1 dB error lies between ~0.09 and ~0.06 for steel and between ~0.05 and ~0.02 for rubber 
pipes. This shows that the approximate formula for the bending wavenumber, based on 
the Euler-Bernoulli model, is of modest accuracy, despite the fact that fluid loading of the 
pipe is represented in this formula in a way that is consistent with the model: i.e., as an 
added mass. 

The accuracy of wavenumber approximations for n = 0 modes is much higher. The case, 
analogous to the one from Figure 3 (zero thickness, zero fluid loading), which refers to 1 
waves, is exactly represented by K/ = i2 1 + v*/( I- v* - Q’), and approximation becomes 
thus unnecessary. In Figures 5-7 are shown the errors of the wavenumber approximation 
for both 1 and a type waves, for some characteristic pipe-fluid combinations. Unlike the 
errors for other types of waves, the error for I waves in these examples is shown as the 
ratio between the approximate and the accurate values of Jm, instead of simply KI 
values. The reason for such a representation is in the fact that the relative wavenumber of 
I waves, K/, is usually close to 0, implying that the dispersion constant, 6, (see equation 
(1)) is close to 1. Since some important relationships concerning energy flow are given in 
terms of the quantity T/cc 1 /(CT - 1) cc I/( KY - Q2), it is this difference which matters more 
than the wavenumber itself. 

The approximation error related to water-filled steel pipes (Figure 5) depends much 
more on thickness for c1 waves than for I waves. The latter error is almost independent of 
thickness in the relevant O-l dB region. The a wave error, on the contrary, depends very 
much on thickness. The approximations used are seen to be consistent :t the error vanishes 

t An approximate formula relating the phase velocity of a waves to frequency [ 131 is more accurate than the 
simple formula (I) at higher frequencies, but it lacks consistency at low frequencies as it does not converge to 
the exact solution with frequency reducing to zero. 



VIBROACOUSTICAL ENERGY FLOW IN PIPES 

0.0 

-0.5 

- I .o 

-1.5 

g-2.0 

-2.5 

-30 

-3.5 

d/h = I 00 / \ 

\ 

I I I i 1 1 I 1 I 

-0-5 

-I 0 

-I 5 

- 2.0 

I I I I I I I I I 

0.0 0 I 0.2 0.3 0.4 0.5 0 0 0 I 0.2 0.3 04 05 

Frequency 

Figure 5. Error in wavenumber formula for pulsating mode of water-filled steel pipes: left, I waves; right, 
a waves. 
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Figure 6. Error in wavenumber formula for pulsating mode of rubber pipes containing compressed air 
(IO bar): left, I waves; right, a waves. 

as the frequency approaches zero for both types of waves. The “usable” frequency range 
is here quite broad, 0.3 for I waves and from 0.3 to above 0.5 (depending on thickness) 
for u waves. 

Very similar results apply to rubber pipes containing compressed air (Figure 6). The 
range of thickness displayed ( l/l00 to l/IO of the diameter) was chosen to show the 
influence of various parameters, although thin rubber pipes subjected to internal pressure 
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Figure 7. Error in wavenumber formula for pulsating mode, (I waves: left, steel pipe containing compressed 
air (10 bar); right, rubber pipe filled with water. 

are of no practical interest. In the cases where mismatch between properties of the pipe 
material and the fluid (mass density and sound velocity) is either extremely large (Figure 
7(a)-steel/compressed air), or very small (Figure 7(b)-rubber/water), the approxima- 
tions for the wavenumber of a waves are either extremely good (a) or modest (b). 

It can be concluded that the approximate formulae (1) are generally applicable to lower 
frequencies and thicker pipes. When using these formulae, care should be taken with the 
degree of matching of properties between the pipe material and the fluid and, where 
necessary, a more accurate solution of the dispersion equation than the one given by 
equation (1) should be employed. 

Above the cut-on frequency of the n=2 mode, the previous results remain the same, 
but an additional wave type appears, which makes an analysis of pipe motion much 
more complex for a number of reasons. The cut-on frequency is reported as being clearly 
noticeable in measurements [8]. It therefore becomes important to determine this frequency 
with sufficient accuracy. 

The cut-on frequency for any particular mode n can be evaluated from the dispersion 
equation (Al) by setting K to zero: 

(n’-&)[I -L22-H+P2(n2- l)‘]-n2=0. (6) 

For n >O and a, KC< 1, the fluid loading becomes proportional to frequency square, 
Ff= qQ2/n (see Appendix I). The solution of equation (6) then can be approximated by 
a linear equation in Q2: 

nfl,,.0”= p’n$?- 1)2/[ 1 +nZ( 1 + q/n) +P2(nZ- l)2]. (7) 

This solution holds for small to medium values of q (i.e., for not too thin pipes). In such 
a case, the cut-on frequency exhibits an almost linear dependence on thickness. By neglect- 
ing the term in square brackets containing p2, and setting n=2, a simple formula is 
obtained, as already reported [ 141. 
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Figure 8. Cut-on frequency of n=2 mode: left, steel pipe; right, hard rubber pipe. Full thin line, vacuum; 
dotted line, compressed air (10 bar); full thick line, water. 

In Figure 8 is shown the dependence of the lowest cut-on frequency, i.e., the one for 
n = 2, on the thickness to diameter ratio for (a) steel and (b) rubber pipes containing 
vacuum, 10 bar pressurized air and water. The frequency increases with thickness, but 
decreases with mass density of the contained fluid. The diagrams represent the exact 
solution for the cut-on frequency; the approximate values obtained from equation (7) 
differ by no more than 0.24% for the cases considered. 

5. ENERGY FLOW 

Given in terms of middle surface displacement components, the energy flow in axial 
direction per unit circumferential length in the wall of a circular cylindrical shell reads [ 151 

HJ=HO(Ai,+&+jZ,.), lfO= E,h/( 1 - v2). (g) 

The energy flow factors, extensional A,, flexural A, and curvature-dependent A,. read 
___ -~ 

n,=-(aU,/ax+ v &J,/dy)ri,- ((1 - v)/23(c7uo/a~,+au,/ax)~o, 

A,=(h2/12)[~w~~- (a2w0/ax2+ v a’w,/ay*) &&/ax 

- (1 - V)(J2VV&X I$) d@G,/r3y], 

A,= -( I/a)[ vwotio+ (h2/12){ ~(d~~~o/~?y~)ti, 

-[(1 - V)/2][(l/a)(auo/ay-doo/ax) +dZWo/aX 8y]tio 

-[(l- V)/2]{a(auo/al,-avo/a.u)/~.~~~~o- (v/a)(dwo/~x)~o + (v/a)wo &+,/ax 

+ [( 1 -. v)/z](au,/ay- duo/a-u) &/L7y} 1. (9) 
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The total flow in the wall is obtained by averaging the unit flow H,: around the circumfer- 
ence, denoted here by ( )>, : 

H,(x) = 
s 

2nn 

#.x(x, VI dy = ‘h3H°K&),. + <A,),.+ (4>,,). (IO) 
0 

After applying expressions (8) and (10) to the low frequency pipe motion, expressed in 
terms of modal superposition (equations (2)) formulae are obtained for the energy flow 
factors which contain the x co-ordinate as a variable. While the total energy flow through 
the pipe does not depend on x throughout any sourceless, lossless region represented by 
equations (2), there exists an interchange of a portion of the total energy between the pipe 
wall and the fluid, as already reported [9]. It is therefore convenient to operate with axially 
averaged energy flow values. After the axial averaging is done, the three factors assume 
the following form:t 

(&)g,x= @/2a){ K,( u:+ - u:-> + K,( u:+ - &) 

+ ((1 - V)/2)K,( v:+ - v:-) + (%/2)[( @+ - &) + ((1 - V)/2)( v;+ - vi-)] 

+ (( 1 + v)/4)(ub+ vb+ + ub- vhk)}, 

(A,>y,.~= ((+)p’[d( w:+ - w:-> + d( w:+ - wt-) + Kb((l + d)/2)( wit+ - f’f’?-)], 

(A,),,, = (o/2a)[v{ (I + B’)l(U,+W,+ + UI-WI-) + (U,+W,+ + U-W,-)1 

+~[~-~‘((~-~)/~)](~,+~,++~,-~,-)}+~’{~ “}I. (11) 

Since p’<c 1, the terms containing j?’ can be neglected in comparison to unity, which is 
always the case for low frequency motion. By expressing each particular wave type through 
only one of the orthogonal components of motion, using the established coupling relation- 
ships (4), and by additionally neglecting the low order terms, the expression for energy 
flow in the wall assumes the following simple form: 

H.s= nE,/( 1 - v~>(~/u)c$~~[~,( U:+ - U:-) + m( U:+ - CJ-) 

+ (( 1 - v)/2)1,( v:+ - v:-) + <i&@ wb+ - wb&)]. (12) 

Energy flow in the fluid contained within the pipe can be obtained by directly integrating 
the axial component of sound intensity over the cross-section. Since the axial velocity of 
the propagating waves is proportional to the acoustic pressure, 

jo u,, =_V(wpf) @lax= *~K,I(~+,Q)~~*, q=L a, 6, 

the intensity, and thus the fluid energy flow, becomes proportional to the difference of the 
pressure amplitudes squared : 

(I(~)& = ( l/2) Re {p(Mr)*) 

=[1/(2~~C,in)]{K,[1 -5:(~/U)‘/4]‘(P:+-P:-) 

+ K,[ 1 -5o”(l’/U)*/4]‘(P;+ - Pfm~) + Kb[ &,(r/2&2](P;+ - &)}. (13) 

t Because of fixed relationships between the three orthogonal displacement components, each of the four wave 
modes will be dealt with by using one of the components while expressing the others through the selected one. 
The “representative” component will be the one exhibiting the largest amplitude. For a type waves, the largest 
amplitude component will depend on the circumstances, as described. Here the axial component will be chosen 
as the representative one for a waves but. where appropriate, it can easily be converted to the radial one by 
using equation (4). 
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Upon integrating the axial component of intensity over the interior cross-section of the 
pipe, and subsequently expressing the acoustical pressure amplitudes in terms of the 
selected displacement component amplitudes via expressions (5) and (4) the fluid energy 
flow, averaged in the axial direction, becomes, after some simplifications, 

&= ]27r&l(l - ~‘~l~~,l~~~~~~‘~{~~/~W -i:>*w>w+ - c> 
+{i~/~vl-~~~‘/~~}~~~+-~~-)+i~{~JiZ/~~}~~~+- %,I. (14) 

The averaged energy flow in the pipe wall and the fluid, given by equations (12) and 
(14) is seen to be a linear superposition of four characteristic differences of amplitude 
squares. The coefficients in the two energy expressions are simple functions of the pipe 
geometry and the solid and fluid material parameters. It follows that measurement of 
energy flow in a pipe reduces virtually to measurement of four differences of squared 
amplitudes. 

6. MEASUREMENT OF ENERGY FLOW 

The four differences of squared amplitudes which have to be detected in order to evaluate 
the total energy flow in the pipe, according to equations (12) and (14), are 

L=u:,-u:_, A= Vi+- iJ:_, T= I’;+ - V;_, B=W&W:, (15) 

A straightforward way to determine the unknown quantities from equations (15) would 
consist of sampling the vibration field at a sufficient number of locations, and evaluating 
the unknowns from a set of the corresponding displacement equations (2). The problem 
is that equations (2) contain far more unknowns than needed for energy flow evaluation --- 
eight wave amplitudes, eight wave phases and two polarization angles, i.e., 18 in total. 
This problem can be circumvented by use of an appropriate combination of measurement 
signals. 

It should be noted that equations (2) refer to the mid-surface displacements, while any 
measurement has to be done at the outer pipe surface. Only the radial displacements are 
equal at the two surfaces, while the remaining two displacement components satisfy the 
following relationships [ 1 I] : 

u = UIJ - (h/2) aw,/ax. u= ug- (h/2)(&Vo/$V- &),/a), (16) 

where the subscript zero denotes the mid-surface. If the superposition of displacements 
(either sum or difference), located at two diametrally opposite positions, Q and a + n, is 
introduced via 

q*(.? a) = (1/2)[q(.r, a) fqk f2 + K)]. q=l, u, 1, h. (17) 

the squared amplitudes differences T and B can be directly obtained by a suitable multipli- 
cation plus time-averaging procedure as follows : 

Here 6 is an arbitrary spacing which determines the locations of measurement points about 
the reference position taken at x=0. The difference of squared torsional amplitudes is 
given by a single averaged product of the mean tangential velocity at x= 6 and the mean 
tangential displacement at x= -6. The difference of squared bending amplitudes is given 
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by a sum of two similar products, composed of radial motions, to account for the polariza- 
tion effect of bending waves. Here 6 denotes the distance from x = 0, which can be arbi- 
trarily chosen as long as it stretches only within the zone where the wave equation 
assumption given by equations (2) holds. 

Extraction of axial squared amplitudes is more complex than described so far for other 
wave types, because two axial wave types exist for the same circumferential mode n = 0. 
Extraction can be done by measurement of mean axial motions U’ at four axial locations 
(both in amplitude and phase), and determination of each individual axial amplitude by 
use of complex matrix algebra. It should be noted that mean displacements u+, taken at 
the outer surface, are influenced not only by axial but also by radial displacements, as seen 
from equations (16). The relative influence of radial displacements can be found to be 
given by (h/2a)(c/r)f12, which is so small a quantity that can be safely disregarded for 
n<< 1. 

A particular extraction method, related to quantities L and A (i.e., axial squared ampli- 
tudes) is described in Appendix II. The method is based on detection of axial displacements 
and strains. Such a combination is appropriate for practical measurements in view of 
typical levels of the two quantities. 

If the pipe is empty, only one of the two axial wave types exists (1 type). In such a case 
the first of equations (18) applies for evaluation of the difference of squared amplitudes 
also for the axial mode, with o replaced by u and <, replaced by cl. 

7. PARAMETERS OF ENERGY FLOW 

The preceding analysis has shown that axial motions largely govern the energy flow in 
pipes at low relative frequencies. The major benefit of the modal approach in evaluation 
of energy flow, as described, is the possibility of detection of the fluid flow without any 
physical contact with the fluid. The fluid contribution to the energy flow due to the bending 
motion will usually be negligible in comparison with the solid contribution; the ratio 
between the two is a very small quantity, 0~/[8fi], as can be evaluated from equa- 
tions (12) and (14). The fluid contribution due to axial motion, however, can be very 
important. This contribution depends on the ratio of the amplitudes of I and u type of 
waves. 

The effect of the variation of the amplitudes on the energy flow distribution in the pipe 
and the fluid can be considered by assuming for simplicity that propagation of the waves 
is in one direction only. It can be readily seen from equations (12) and (14) that the ratio 
of energy flow in the solid and the fluid cannot take any arbitrary value under the assump- 
tion of one-directional propagation. In Figure 9 is shown the range of the dependence of 
the solid-to-fluid energies ratio, presented in dB, in the thickness-to-diameter ratio for steel 
pipes filled with (a) water and (b) 10 bar compressed air. For water-filled pipes the range 
of this ratio is on average between +30 and -15 dB, while for air filled pipes it is much 
wider: +70 to -50 dB. The same quantity is shown in Figure 10 for hard rubber pipes, the 
ranges being much narrower due to a smaller mismatch between solid and fluid properties. 

The possibility of practical detection of both solid and fluid energy flow from measure- 
ments on the external pipe surface depends on the ratio of amplitudes of I and u waves. 
lf this ratio is higher than z +30 dB or lower than z -30 dB one of the two waves will 
most probably remain undetected by usual measuring techniques. In Figures 11-14 is 
shown the dependence of the ratio of I and a amplitudes of the axial displacement on the 
ratio of solid-fluid energy flow and on the thickness-to-diameter ratio for pipe and fluid 
combinations from the preceding examples. 
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Figure 9. Ratio of energy flow in solid and fluid for steel pipes containing left. water. and right, compressed 
air (IO bar). 
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Figure IO. Ratlo ofenergy flow in solid and tluid for rubber pipes containing left. water, and right. compressed 
air ( IO bar). 

According to the ~~30 dB criterion of detectability of both axial waves in the pipe, the 
limiting ratio between energy flow in the solid and the fluid can be found to depend on 
the pipe thickness. For water-filled steel pipes the flow in the fluid can still be detected if 
it is 5-10 dB lower than in the pipe wall (Figure 11). The flow in the wall can always be 
detected, no matter how large the flow in the fluid. Pipes conveying IO bar compressed air 
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Figure I I. Ratio of amplitudes of I and a waves for steel pipes filled with water. 
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Figure 12. Ratio of amplitudes of I and n waves for steel pipes containing compressed air (IO bar) 

can be successfully treated only if they are very thin, and if the flow in the fluid is more 
than 15-20 dB higher than in the wall (Figure 12). This results from very weak fluid-solid 
coupling. The good coupling which exists with rubber pipes filled with water makes detec- 
tion of both axial waves possible provided that the flow in the solid is no more than lo- 
15 dB higher than in the water (Figure 13). Finally, the flow in compressed air contained 
in rubber pipes can be detected only if it exceeds the flow in the wall for realistic values 
of the thickness (Figure 14). 
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Figure 13. Ratio of amplitudes of I and a waves for rubber pipes filled with water. 
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Figure 14. Ratio of amplitudes of I and a waves for rubber pipes containing compressed air ( IO bar). 

8. CONCLUSIONS 

At lower relative frequencies, the dispersion characteristics of each of the four types of 
travelling wave which can propagate in a fluid-filled pipe can be reasonably reduced to a 
very simple form (equations (1)). In this way the pipe virtually becomes a rod-beam type 
waveguide up to the cut-on frequency of the first “lobar” mode, n = 2. An analysis of the 
accuracy of simplifications enables determination of the limits of the rod-beam approach. 
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The expressions (12) and (14) for energy flow in the wall and the fluid, based on the 
simplified description of vibroacoustical pipe parameters, show that at each particular 
frequency the flow can be expressed in terms of four differences of squared amplitudes of 
the four assumed wave types. The amplitudes refer to one out of the three orthogonal 
components which is dominant for the given wave type (and thus easiest to measure). As 
already found earlier, the “longitudinal” and the “acoustic” type waves carry energy in 
both the wall and the fluid, with the solid part mostly due to extensional motions in the 
axial direction. The bending waves cause very small energy flow in the fluid, while torsional 
waves do not interfere with the fluid at all. 

Since the relationships between all the parameters of pipe and fluid motion are known, 
energy flow not only in the wall but also in the fluid can in principle be determined from 
data on the wall surface vibrations only. All that is essentially necessary is to determine 
the four pairs of wave amplitudes. This means that in practical measurements different 
wave components have to be “demodulated”, or “separated” from the total motion. The 
procedures described in section 6 and Appendix II enable such a separation to be done by 
minimizing the number of variables required for measurement. Worked-out examples of 
the dependence of the vibration amplitudes of the pipe wall on the ratio of energies in the 
wall and the fluid show that, in practice, separation can be achieved for the usual cases of 
interest. 

When measurement conditions do not satisfy the assumptions made in the analysis, the 
energy flow in the pipe wall can be obtained by unit-flow detection, according to equations 
(8), and an additional spatial averaging (equation (10)). As mentioned earlier. in the 
presence of a fluid in the pipe, some portion of the energy flow fluctuates between the fluid 
and the solid along the pipe. Thus, measurements by this “direct” method have to be 
taken at a number of axial positions and the results averaged. 
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APPENDIX I: DISPERSION EQUATION FOR A PIPE 

The dispersion equation can be written in the form 

det [Q] = 0, (Al) 

where the coefficients of the matrix Q, according to Fliigge’s model, are 

Q,,=K’+[(l-~)/2](1+~~)n*-.n~, Q12= Q21= -[(l + v)/2]KF 

Q13=Q31=-~~-j?2~[~2-((l-v)/2)n2], Q22=rz2+[(l - V)/2](1 -t-p2)~*--~‘, 

Q23 = Q32 = n + [(3 - v)/2]P2nK2, Qj3= 1 -LIZ-F1+/3’[1 -2n2+(K2+n2)2]. (A2) 

The non-dimensional term Fl represents external normal loading on the wall. For a shell 
internally filled with fluid this term is [ 151 

(A3) 

Expansion of FI to first order, applicable for K << 1, yields 

n=O: FI,_P,a?_. 
N psh w-i” 

n=l: ‘v F/mfJ2 ef a 
ps h’ 

(A4) 

For n=O, the dispersion equation can be expanded in powers of R2, where the terms 
higher than first can be disregarded when iR<< 1. The solution of the equation is then 
given by 

K=@-& 

where the proportionality coefficient c follows from the quadratic equation 

(A3 

(‘46) 

The dispersion equation for n = 1, after being simplified by neglecting less important 
terms, results in a formula of Bernoulli-Euler type, equations (1). 

The coefficients of the matrix Q determine the ratio between the amplitudes of three 
displacement components : 

APPENDIX II: EXTRACTION OF AXIAL COMPONENTS OF THE ENERGY FLOW 

The quantities to be identified are the differences of the axial displacement squared 
amplitudes, L and A, as defined in equations (15) : 

L= u;+- UT_, A= U;,- U:-. 
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It follows from equations (2) that the axial displacements pertaining to I and u modes. 
needed for evaluating L and A, can be extracted by using the superposition expressions 
(17): 

u+=jII,+~,++jO/-~,-+jI/;,+~Ln++jUo~Iln-. (AX) 

Here : 
~k=ev {~jK,(xla)+jn+}, co+ = exe ( rj K&/a) + jqh > . 

Upon introducing the new abbreviations 

@,=jU/+ exe (jn+)+_iU,- exp (jq,-1, K= -(KJa)[U+ exe (jq,+) - U,- exe Cjw,-)l, 
@,=jcb+ exe (.h+)+jI/,- exp C.&L 

m = -(GI~)[U~+ exe (jqb+) - U,- exp (jqb)l, -0 (A9) 

the following relationships emerge from equations (A8), which express the new quantities 
in terms of the (total) axial displacement U, axial strain E, = &/8x and two strain deriva- 
tives (all of these are measurable): 

a,= -(K:U+d &</dX)/(K: - K:), E,= (K:&, + Uz d*E,/ih’)/( Kf - K:), 

@,, = -( K;U + U2 8&,/8x)/( K: - K:), 8, = ( K~E, + a* c?%,/~x”)/( K$ 4). (AlO) 

Finally, the time-averaged products of Q, and corresponding B pairs have to be taken, 
to produce results directly proportional to the required squared amplitudes differences: 

Z-I(I)@l(f)=(1/2)Re {s@~}=~,[o/(2a)](U?+-U~-), 

Z,(r)Qa(t) = (l/2) Re (&#} = K,[cD/(~u)]( Uz+ - Ui. >. (All) 
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APPENDIX III : NOTATION 

mean radius of the shell 
velocity of propagation 
pipe diameter 
Young’s modulus 
fluid loading 
thickness 
energy Bow 
intensity 
imaginary unit 
Bessel function 
wavenumber 
circumferential mode number 
pressure 
pressure amplitude 
displacement (general) 
radial co-ordinate 
time 
axial displacement 
axial displacement amplitude 
tangential displacement 
tangential displacement amplitude 
radial displacement 
radial displacement amplitude 
axial co-ordinate 
circumferential angle 
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= (h/a)/,,&?, relative thickness 
polarization angle 
non-dimensional constant 
spacing between transducers 
normal strain 
wavenumber constant 
non-dimensional constant 
circumferential angle 
non-dimensional axial wavenumber 
power factor 
propagation factor 
Poisson ratio 
non-dimensional radial wavenumber 
measurement variable 
mass density 
phase angle 
measurement variable 
non-dimensional constant 
angular frequency 
non-dimensional frequency 

Indices 
a acoustic 

; 
bending 
fluid 

I longitudinal 
.r solid 
t torsional 
+ positive direction 
_ negative direction 
0 middle surface 

Operators 
c bold letter denotes complex quantity 
det determinant 
Re real part 

time average 
( ) spatial average 
. temporal derivative 
* complex conjugate 
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