
The effect of wall elasticity on the properties of a Helmholtz 
resonator 

Douglas M. Photiadis 
Naoal Research Laboratory, Washington, DC2037õ-5000 

(Received 14 August 1990; accepted for publication 28 March 1991 ) 

The effect of compliant walls on the properties of a Helmholtz resonator is examined. The 
effective stiffness of the resonator is decreased by the wall compliance, while the effective mass 
is unchanged to leading order. The radiation resistance is also decreased due to a cancellation 
between the radiation from the cavity opening and the radiation from the cavity walls. This 
leads to a reduction in the cross section at resonance by the factor [Z,/(Z, + Z•) ] 4, where 
Z, is the wall impedance and Z• is the total fluid loading on the breathing mode of the cavity. 
PACS numbers: 43.20.Ks, 43.20.Tb, 43.20.Rz, 43.55.Ev 

LIST OF SYMBOLS 

a Cavity radius 
p Density of the fluid 
c Acoustic wave speed 
k Acoustic wave number 

•4n Hole area 
0 o Polar angle subtended by the hole 
g•n Solid angle subtended by the hole 
•, Solid angle subtended by the shell 
Z• Shell impedance 
Z n Effective hole impedance 
Z• pc(ks) -2 [j•(ka)lt•(ka)] -• 

Z k 

P½• 

P•s 

H(x) 

jt(ht) 

Z, +Z•-Zk - •'o (1 -go) 
zn + zk(z,/z,) + [z, + z?/(1 - ]/z, 
(21 + 1 ) - ]/•« [P•_, (cos 0o ) -- P•+, (cos 0o ) ] 
P,•, [Z• + Z•/(1 -- •o ) ]/Z, + 6p(Z• + Z})/Z t 
Field in the pr• of rigid sphere 

• I0 

H•viside function 

•gendre polynomi• 
Sphedc• hamchic 
Spherical Bessel(Hankel) function • 

INTRODUCTION 

The use of Helmholtz resonators as sound absorbers in 

air has been studied in great detail. •-• Nevertheless, the ef- 
fects of wall elasticity on the properties of a Helmholtz reso~ 
nator have not been reported. Apparently, such resonators 
have been primarily considered for in air applications and 
the effects of wall elasticity would typically be unimportant. 

Near the fundamental mode, the dominant forces on the 
cavity walls are due to a buildup of pressure inside the enclo- 
sure; the motion of most interest is therefore the breathing 
mode. As a simple model to examine the leading-order ef- 
fects of the wall elasticity, consider a spherical cavity with a 
uniform radial vclcmity d•t•rmined by the average pressure 
difference across the cavity wall, 

Z.v. -= .-•-. (P,. - Pc., ). (1) 
The geometry is shown in Fig. 1. The external pressure field 
p• is incident on the resonator. The fieldsp• andpo• are the 
pressure inside and outside the enclosure, respectively. The 
hole is located in the region 0 < •o in spherical coordinates. 
We assume that the shell impedance is stiffnesslike as appro- 
priate for a shell below the ring frequency. * 

The velocity of the fluid at the hole is assumed equal to a 
constant oh, and to satisfy, 

Z• vn f d•(p,. = -po.,). (2) Jain h 

Determining the mean fluid velocity in this way actually 
gives somewhat better results in air than the physically at- 
tractive choice • vn cr (cos 0 -- cos 0o ) - •/• containing the 
appropriate singularity at the edge of the hole. 4 The imped- 

Pi 
FIG. 1. The prototype H½lmholtz resonator. 
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ance Zh is the effective impedance of the hole, due either to 
viscosity or the presence of a porous material at the hole 
entrance. 

The pressure fields inside and outside the sphere are 
determined by the wave equation and the boundary condi- 
tion on the surface of the sphere, 

8p _ ipeo[v• + (v h -- vs)H(0o -- 0)]. (3) 
The interior and exterior fields can be written as 

\Jr (ks) / 
and 

{ ht(kr) 
Pout =P•, + ipcZv,,.[' h ,,-Z•a)').,,.(11). (4) 

The quantity Prig is the total pressure field as if the entire 
sphere including the fluid at the hole location were rigid. 
This decomposition simply uses the superposition principle. 
It is convenient to define the total fluid impedance Z} such 
that the net pressure difference across the sphere at r = a is 
given by 

•' ou• -- t•,, = Pri, + • Z )vtm Ytm (Sa). (5) 

I. THE MODIFIED RESONATOR PARAMETERS 

Using Eq. (5) to eliminate the pressure difference from 
the equations of motion [Eqs. ( 1 ) and (2) ], one obtains two 
algebraic equations for the fluid velocity at the hole and the 
shell velocity. The solution is most easily expressed in terms 
of various impedance combinations in addition to the shell 
and hole impedance; the stiffnesslike and masslike fluid im- 
pedance of the rigid resonator, Zk and Z,,, the effective total 
shell impedance Z,, and the l = 0 fluid impedance Z•. In 
addition, define •e o = 12h/4rr to be the ratio of the hole area 
to the total surface area of the sphere; •o is typically a small 
parameter. 

The stiffnesslike impedance, Zk = •eoZ• is the l = 0 
component of the fluid impedance for the rigid resonator 
and contains the resistive radiation loading as well as a small 
piece of the mass loading. The total impedance to breathing 
motion of the shell, 

z, = + - - o(1 - 

is reduced somewhat by the presence of the hole. For a small 
hole, we may neglect the term involving Z,.and the main 
effect of the hole is to reduce the fluid loading in a natural 
way by the amount ( 1 - •eo). 

The solution for the hole velocity is 

Z• v • = - P •e• , (6) 

where the effective impedance Ze• r is defined as 

Z• = Z• + Z• (Z•/Z, ) 

+ [z. + - ]/z, 
and the effective driving pressure is 

(7) 

o 

=t,.g [z, + z,./(1 - ]/ 

z, + + zy)/z,. (8) 
The quantity •p is the contribution to the excitation due to 
modes with l> 1. 

The resonator stiffness and the radiation resistance, 
both contained in Z•, are reduced by the ratio (ZJZ,). For 
a small hole, Z, m [Z• + Z•( 1 - •o ) ] and the stiffness of 
the internal fluid and the shell are intuitively combined as 
two mechanical elements in series. The radiation resistance 

is reduced because radiation from the hole and the accompa- 
nying motion of the shell tend to cancel. 

The effective drive on the resonator is also reduced. For 

the case of small ka such that only the l = 0 term is impor- 
tant, the reduction is by the factor [Zs + Z,,/( 1 - •o ) ]/ 
Z, •o•oZ•/Z,; to leading order the same factor as for both 
the effective stiffness and the radiation resistance. 

The effect of the elasticity on the effective resonator 
mass is in general more complicated. Let the mass due to the 
1 = 0 mode be rn o, so that Zk gives the contribution -- ia•rn o 
and Z,,= -- ko(m -- rn o ). The effective mass is 

rn• = rn o (Z•/Z,) 

+ (rn - rno) [Z• + Z•/(I - •o) ]/Z,. (9) 
The first term above, which tends to decrease the resonator 
mass, is due to the stiffness of the shell that opposes the 
motion of the fluid through the hole. The second term is due 
to the following mechanism: Flow out of the hole decreases 
the pressure in the cavity causing the shell to contract, but at 
the same time the exiting flow exerts a small reaction force 
driving the shell to contract further. This additional force, 
driving the shell to contract more than it otherwise would, 
mimics an inertial effect. For a small hole, •o< 1, and small 
ka we may make the above result explicit by using 4 
mo/m • 9rr• o•/•/80, 

3/2 

reef r • trl [ 1 -- Z•/Z t (9rr• e o•/•/80 - 2•o) + O ([ o ) ]. 
(10) 

For a very small hole the resonator mass is decreased, but for 
•/2 > 9rr/160, the effective inertia of the resonator is in- 
stead increased. 

The resonance frequency is thus lowered by the com- 
pliance of the walls, to leading order by the factor 
(Z•/Z,) •/2. The Q of the resonator is (again to leading or- 
der) 

Q ---- r. Oom/(rr• d q- ri) 

--}OJom( Zs/Z t ) '/2/[rra d ( g•/g t ) q- r• ]; 

i.e., if radiation loading is the dominant source of damping 
the Q will be increased while if internal damping is dominant 
the Q is decreased. Above, r• a and r• are the radiation resis- 
tance and internal resistance respectively. How can one 
compensate for the compliance of the walls in the design of 
the resonator? The classic Helmholtz resonator result is 4 

•Oo =c(• •/•IV) 
where •n is the area of the hole and Vis the resonator vol- 
ume. One may therefore either increase the area of the hole 
or decrease the volume, both increasing the stiffness of the 
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cavity. An increase in hole area increases the radiation resis- 
tance relative to the mass and correspondingly decreases the 
Q. 

II. SCATTERING 

The total scattered field is produced by both flow 
through the hole and by the motion of the shell. The velocity 
of the shell is given by 

z, v• ø = - p• (zn + z.. )/z• 
+ bp/(1 - •o)(Zk + •oZn)/Zee. (11) 

Assuming that (Zh + Z,, ) is masslike and that the totill 
shell impedance is stiffness like, one can see that the motion 
of the shell always opposes the motion of the fluid at the hole. 
The net volume outflow, v ø = v,ø( 1 -- 2o ) + V•o, is 

/30 • 0 0 -p•/z, + •op.,•/z•. (z•/z,)2 + o(• ). (•2) 

The first term is the contribution of the shell, almost inde- 

pendent of the presence of the hole. The second term yields 
the scattering from the Helmholtz resonance. Notice that 
this term has been reduced from the value expected from Eq. 
(7) by an additional factor of Z,/Z,; this is the result of a 
leading-order cancellation between the radiation from the 
hole and the radiation from the shell. It is interesting to note 
that if the shell impedance were masslike and substantial, the 
radiation of the shell could add in phase with the radiation 
from the hole and lead to amplification. 

The far-field pressure near resonance (omitting the 
background field scattered by the shell) is 

4trr Ze• 

and the total cross section at resonance is thus reduced to, 

O'½ff O'olZsl 4 4Ti' 1(Zsl4. = = -•-7r• (r• + r, ) - \ Z, } kZ, } 

Evidently, one must have fairly stiff walls relative to the 
bulk stiffness of the internal fluid in order to observe the 

resonance in a scattering expe•ment. 
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